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1. Sensitivity analysis.

In order to determine which parameters may be uniform across the patient population and which

parameters need to be patient-specific to adequately describe and predict progression, we perform a

sensitivity analysis. [25] We calculate the sensitivity matrix § = [Z—Z :7V Z—Z evaluated at each time an MRI
0

was taken. We then take the 2-norm of each column vector, thus estimating absolute sensitivity across all
time. We do this across 20 replicates and average their results, normalizing according to the maximum
sensitivity. As a result, we find model output tumor volume to be most sensitive to rate of evolution of
resistance ¢ (Figure Sla). Tumor volume was found to be relatively insensitive to net growth rate A and
initial treatment sensitivity y,. Therefore, we keep ¢ to be patient-specific, and make 4 and y, to be uniform
across all patients. An example of time-dependent sensitivities is shown in Figure S1b for a representative
patient across continuous time. Notice that the magnitude of model sensitivity to ¢ exceeds those
sensitivities to A and y, and each point in time. Also notice given that we fix the model solution to the final
observation, sensitivity is 0 at that point.
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Figure S1. Sensitivity analysis. (a) Model output tumor volume is most sensitive to rate of evolution
of resistance ¢. Therefore, we keep ¢ to be patient-specific and make 1 and y, to be uniform across all
patients. (b) Time-dependent sensitivities of tumor volume to model parameters for representative
patient.



2. Identifiability analysis.

In order to ensure that model parameter values are indeed estimable, we perform an identifiability analysis.
[26-27]

2.1. Structural identifiability

In this section, we prove that the base tumor growth and inhibition (TGI) model is indeed identifiable. This
is a pre-requisite to further practical non-identifiability analysis. The model is practically identifiable only
if it is structurally identifiable.

Claim: The TGI model is structurally identifiable.

Proof: We need to show that vt € R,V (t,0,) = V(t,0,) = 6, = 0,.

Let 0, = [A; vo1 &l 02 =[A2 vo2 &) suchthatV(t,8,) =V(t,0,) Vt ER.
Define f(t):= V(t,0,) — V(t,8,)

=A— A — Vo1 e +yp, et
=0.
ThenVn € Z, f®({) = (—1)" Yo, el e 51t + (=1)" Ly, - el et
= 0.
.g,-e(E1—€2)L
Y2,0€2°€
Sove1= o
1
. -gy-e(E1—E2)E .g2.g(e1—€2)t
In particular, y,, = 2222< = ot s

R L
Therefore, &; = €,, which implies y; o = ¥, and 4; = 4,.
Ergo, 6, = 6,, and the TGI model is structurally identifiable. m

2.2. Practical identifiability

To determine practical (non-)identifiability, we estimate parameters for the final, reduced model with
uniform net growth rate A and initial treatment sensitivity y, across 20 replicates. We plot the results below
in Figure S2. The estimated uniform model parameters are highly correlated with Pearson correlation
coefficient p = 1.00, making the reduced model practically non-identifiable. We therefore set the least
sensitive parameter y, to a nominal value that maximizes R? (y, = 0.4608 day, R? = 0.78).
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Figure S2. Model is practically non-identifiable. Uniform model parameters are highly correlated
(Pearson correlation coefficient p = 1.00), and the model is practically non-identifiable. We set the
least sensitive parameter y, to a nominal value that maximizes R? (y, = 0.4608 day?, R? = 0.78).



