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Abstract: Weeds are among the most harmful abiotic factors in agriculture, triggering significant
yield loss worldwide. Remote sensing can detect and map the presence of weeds in various spectral,
spatial, and temporal resolutions. This review aims to show the current and future trends of UAV
applications in weed detection in the crop field. This study systematically searched the original
articles published from 1 January 2016 to 18 June 2021 in the databases of Scopus, ScienceDirect,
Commonwealth Agricultural Bureaux (CAB) Direct, and Web of Science (WoS) using Boolean string:
“weed” AND “Unmanned Aerial Vehicle” OR “UAV” OR “drone”. Out of the papers identified,
144 eligible studies did meet our inclusion criteria and were evaluated. Most of the studies (i.e.,
27.42%) on weed detection were carried out during the seedling stage of the growing cycle for the
crop. Most of the weed images were captured using red, green, and blue (RGB) camera, i.e., 48.28%
and main classification algorithm was machine learning techniques, i.e., 47.90%. This review initially
highlighted articles from the literature that includes the crops’ typical phenology stage, reference
data, type of sensor/camera, classification methods, and current UAV applications in detecting and
mapping weed for different types of crop. This study then provides an overview of the advantages
and disadvantages of each sensor and algorithm and tries to identify research gaps by providing a
brief outlook at the potential areas of research concerning the benefit of this technology in agricultural
industries. Integrated weed management, coupled with UAV application improves weed monitoring
in a more efficient and environmentally-friendly way. Overall, this review demonstrates the scientific
information required to achieve sustainable weed management, so as to implement UAV platform in
the real agricultural contexts.

Keywords: precision agriculture; unmanned aerial vehicle; weed

1. Introduction

Weeds are significant contributors to the decline in crop yield and quality [1]. Weeds
compete with crops in terms of nutrients, water, and sunlight. Weed losses are expected to
reach 11 billion USD per year in India, ranging from 13.8% in transplanted rice to 76% in
soybean; in which, weeds contribute the highest potential loss, accounting for 34% of all
biotic stressors, followed by insects of 18% and diseases of 16% [2]. The high morphological,
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physiological, and anatomical plasticity of wild species such as weeds makes them more
resistant to environmental stressors than crop species [3].

The interaction of weeds with other biological components is; it can damage nearby
crops [4]. Due to this reason, weed containing herbicide residuals can cause the accumu-
lation of off-flavour products [5], or in some cases, making them harmful to humans and
animal health when they enter the food chain [6]. If consumed, the detrimental health
ingredients could cause hepatic failure in humans and farm animals [7]. Herbicides move
away in various ways, from the target plants, triggering pollution in the environment. The
sorption process binds herbicides to soil particles, resulting in severe soil pollution [8].
Then, herbicides seeping to deeper layers of the soil surface or carried directly to field
drains could enhance losses of herbicides in target crops and contaminate the surface and
groundwater. This potentially leads to soil and water pollution, putting the above and
belowground wildlife biodiversity at risk, including flora, fauna, and microorganism [9].
On the other hand, herbicides applied in farming activities spray drift in the air, and the
volatilised, dispersed, and transported of its residues over a long distance facilitates the
process of environmental recycling between the atmospheric and terrestrial environments.
However, this process creates air pollution in the local environment and adversely impacts
the global environment [10]. Thus, alternative weed mitigation strategies must be designed
and promoted to mitigate and eliminate the ecological, environmental, and potential social
problems with the intensive use of herbicides.

Spraying herbicides is the most common approach to weeding worldwide [11]. Weed-
ing is typically conducted by uniformly spraying herbicides over the field, irrespective
of weed density, which results in over-spraying in weed-free areas. This approach of
weeding generates herbicide waste and pollutes the agricultural ecological environment.
The site-specific weed management (SSWM) approach was suggested to tackle these prob-
lems [12]. SSWM is a strategy that consists of varying management of weed within a crop
field to suit the variation in density, location, and composition of the weed population [13].
Weed populations are often dispersed irregularly inside crop fields. Therefore, the basis
of this control strategy is to provide a guideline of weed spatial information to apply
the herbicides with a minimum consumption by adapting it according to actual needs
and utilised other techniques, including any use of plant derivatives that comprises of
allelopathy effect, i.e., natural herbicides to minimize agrochemical pollution [14], thereby
helping to lessen soil, water, and air pollution. By realising these benefits, detailed and
resource-efficient approach of herbicide spraying with SSWM in smart farming decreased
herbicide consumption by 40% to 60% [15], thus providing better environmental protection,
sustainable agricultural production, and increasing economic profits.

The first step in implementing a SSWM strategy is weed detection and mapping
(Figure 1). This task includes creating a weed map by integrating the sensor, processing
procedures, and the actuation system. On-the-ground or remote sensing technologies can
be used to capture weed images or non-imaging data. Previous research has shown that
ground-based approaches (also known as proximal sensing) can capture high-resolution
images, allowing for the early detection of substantially lower weed densities, and the
discrimination of primary plant species [16,17]. Alternatively, traditional remote sensing
platforms such as piloted airborne and satellite may investigate wider areas but have lower
image spatial resolution [18].
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The emerging priority of remote sensing in the precise management of weed is to
facilitate extracting information relevant for data-driven decisions [19]. A remote sens-
ing technique must meet three requirements: (i) supply cost-effective data, (ii) ability of
capturing and providing information promptly, and (iii) have user-defined spectral charac-
teristics to enable crop indication adjustment. Satellites, manned planes, and ground-based
platform can be used with remote sensing sensors. Satellite image analysis offers some
solutions that could cover the entire fields and solving problems of the applications of
herbicides by sampling, but it has a lower resolution and depends on high weed infestation
in the absence of clouds to obtain good results [20]. Furthermore, different types of satellites
offer some advantages and disadvantages of its features (Table 1). Contrarily, manned
aircraft can cover broad areas but are prohibitively expensive. Handheld sensors are very
accurate; yet, when compared to aerial remote sensing, their coverage area is incredibly
limited [21].

Table 1. Advantages and disadvantages of different satellite features.

Types of
Satellites Advantages Disadvantages References

WorldView-3

- High spatial and spectral
resolution (panchromatic of 31 cm,
multispectral of 1.24 m, short wave
infrared of 3.7 m, and 30 m CAVIS)
- Broad spectral range i.e., has 29

spectral bands
- Precision geolocation without

ground control points
- Huge collection capacity i.e.,

more than 25 million km2 per year
- High classification accuracy in

terms of visual interpretation and
supervised classification

- High resolution
of sensor limited

to visible and NIR
wavelengths

Warner et al. [22]
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Table 1. Cont.

Types of
Satellites Advantages Disadvantages References

Sentinel-2

- Make available data with a
minimum spatial resolution of 10

m
- Broad acquisition coverage

- 13 bands based on visible to Short
Wave Infrared (SWIR)

- Short time revisits cycle i.e., less
than five days globally

- Need to depend
on other satellite
data before the

commencement of
Sentinel-2.
- Rate of

uncertainties in
data fusion and

downscaling
methods

Orlikova et al.
[23] and Varghese

et al. [24]

Land Satellite
(Landsat)

Operational
Land

Imager (OLI)

- High spatial variability even
though the time elapsed is one

month
- Has a push broom configuration
generating 16-bit images with at

least an eight fold increase in
signal-to-noise ratio than previous

Landsat missions
- Data saturation in sites with high
biomass and penetrable canopies
in low cover areas generate large

uncertainties

- Higher spatial
resolution sensor
is limited by the

temporal
resolution when

compared to
medium-

resolution data.

Abascal Zorrilla
et al., [25]

Clouds, Aerosols, Vapors, Ice, and Snow: CAVIS.

UAVs have shown the remarkable potential of low altitude applications in agriculture
since they are more cost-effective and easier to use [26,27]. Current UAVs have higher
image spatial resolutions, whereby technological breakthroughs in miniaturisation sensors
are embedded. The most recent generation of multispectral (i.e., sensors offer from 3 to
7 bands), superspectral (i.e., sensors offer from 7 to 20 bands), and hyperspectral (i.e.,
sensors offer more than 20 bands) provides an opportunity to create very precise weed
maps [28]. Advances in two-dimensional and three-dimensional sensor and camera images,
as well as more powerful and efficient computers processing data streams in near real-time,
could provide the tools required for real-time SSWM [29]. Nonetheless, those spectral
cameras, 3D cameras, and LiDARs are costly. Generally, they are used on broad land- and
time scales. Since it is smaller and lighter than other sensors, an RGB camera is a more
cost-effective sensor.

In this perspective, it is essential to recognize the published studies attributed to the
application of UAVs for the detection of weed to realise the research fields. Furthermore,
assessing the advantages and disadvantages of each sensor and its algorithm is crucial to be
used by agricultural industries. Although UAV capabilities are well known in agriculture,
lack of review articles that structurally extracted and synthesised about the latest and
upcoming utilization of this technology for detecting weed in different aspects. Therefore,
this systematic review would fill this knowledge gap. The purpose of this review is to
describe the current and future trends of UAV applications on weed detection in the crop
field. It is organized in the following main aspects: (i) current trend of UAV applications
for detection of weed, (iii) advantages and disadvantages for each sensor (iii) advantages
and disadvantages for each algorithm, (iv) benefit of UAV to the agricultural industry, (v)
future trend of UAV applications for detection of weed (Table 2).
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Table 2. Topics reviewed in this article.

Topics of Detecting Weed
Using UAV Review Focuses

Current trend of UAV
applications for detection of weed

-Spectral differences of weed detection
-Types of remote images on weed detection

-Effect of spatial and spectral resolutions on weed
detection

-Algorithms and classification techniques for weed
mapping

Advantages and
disadvantages for each sensor

-RGB
-Multispectral
-Hyperspectral

-Thermal

Advantages and
disadvantages for each

algorithm

-Object Based Image Analysis
-k-nearest neighbour classifier

-Neural networks
-Support vector machine

-Decision trees
Benefit of UAV to the
agricultural industry

-Wireless sensor networks and artificial intelligence
models

Highlighted problems for future trend
of UAV

applications for detection of weed

-Deep learning algorithm problems
-Imaging platform challenges

-Computation burdens
-Different capability of different devices for UAV flight

control detection of unknown weed species
-Difficulty in manual labelling labour for labelling

images

2. Materials and Methods
2.1. Search Strategy

This systematic review followed the Preferred Reporting Items for Systematic Reviews
recommendations (PRISMA) [30] and referred to the Pickering and Byrne [31] systematic
quantitative literature review method. A systematic search of the literature was carried
out using the electronic databases: Scopus, ScienceDirect, Commonwealth Agricultural
Bureaux (CAB) Direct, and ISI Web of Science (WoS) (Figure 2). All searches were conducted
on 18 June 2021, using the following Boolean string: “weed” AND “Unmanned Aerial
Vehicle” OR “UAV” OR “drone” based on the titles and/or abstracts and/or keywords. This
study used various search term combinations according to the criteria or limitations of each
database (Table 3). No geographical restrictions were applied to the identification process,
and the search period in the databases was from 1 January 2016 to 18 June 2021. Articles
identified in the search engine were inserted into Mendeley version 1.19.2 (Mendeley Ltd.,
London, UK). The articles were screened using guidelines [32] based on the following three
categories: (i) not published in English, (ii) non-original research, and (iii) non-full text.
Only original articles and conference papers were selected for eligibility.
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Table 3. The search strategies.

Database Search Terms

Scopus Titles, abstracts, keywords: “weed” AND “Unmanned Aerial
Vehicle” OR “UAV” OR “drone”

ScienceDirect
Title, abstract, keywords: weed “Unmanned Aerial Vehicle”

Title, abstract, keywords: weed UAV
Title, abstract, keywords: weed drone

CAB Direct Abstract: “weed” AND “Unmanned Aerial Vehicle” OR
“UAV” OR “drone”

WoS (Abstract = “weed” AND Abstract = (“Unmanned Aerial
Vehicle” OR “AUV” OR “drone”)

2.2. Selection Criteria

Full text of the original articles that meet those three categories was assessed in
detail according to inclusion or exclusion criteria: weed detection using UAV, including
RGB, multispectral imaging, hyperspectral imaging, and thermal imaging. Therefore,
non-weed studies that irrelevant to UAV imaging were excluded. In the end, 144 articles
were included in the systematic review, whereby their findings were then undergone data
extraction and synthesis.

2.3. Data Extraction

The first author independently extracted the data from all included studies and co-
authors cross-checked the findings. The authors identified and gathered common themes,
and any inconsistencies were discussed and reconciled. Information about the research
in the 144 articles was extracted, including (i) the common phenology stage of crop,
(ii) reference data, (iii) type of sensor/camera, (iv) classification methods, and (v) current
trend of UAV applications for detection of weed.

2.4. Data Synthesis

The extracted information from the included studies was compiled in a summary. The
findings were compared narratively, and the (i) advantages and disadvantages for each
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sensor, (ii) advantages and disadvantages for each algorithm, (iii) benefit to agricultural
industries, and (iv) future trend of UAV applications for weed detection was explored.
Then, the gap from earlier studies about weed detection using UAVs were addressed.

3. Results
3.1. Selection of Eligible Articles

The search strategy from electronic databases identified 482 potentially relevant stud-
ies, of which 166 duplicated studies were removed. After the primary screening of title,
abstract and/or keywords, 316 articles were further screened for eligibility. Then, 218 full-
text articles were assessed for detailed evaluation according to the studies that satisfied the
inclusion criteria. Ultimately, 144 articles that satisfied inclusion criteria were obtained for
the final analysis (Table 4).

Table 4. Studies included in the systematic review.

Information Sub-Information Percentage of Studies (%)

Phenology stage of crop

Early-stage 21.00
Vegetative 9.68

Mature 9.68
Flowering 8.07
Seedling 27.42
Heading 1.62

Late-season 4.84
Growing season 11.29

In-season 6.45

Reference data

Visual from images 84.76
Visual labelling 3.81
Digital records 2.86

Field observations 2.86
Visual and in situ polygons, points 4.76

Landsat images 0.95

Type of sensor/camera

RGB 48.28
Multispectral (broad band) 20.69

Hyperspectral (narrow band) 4.83
Thermal 1.38

Weed detection
procedure/classification

methods

Several pixel-based classifiers 4.20
Maximum likelihood 6.29

Spectral angle mapper (SAM) 0.70
Vegetation index (pixel-based) 18.18

OBIA 14.69
Machine learning 47.90

Fuzzy art map 0.70
Unsupervised method 8.39

Supervised method 11.19
minimum distance 2.10

Perceptron 2.10
AlexNet 0.70

The publications were reported in journals and conferences were identified. The
articles published in six high-ranking journals were the main source of information for
this review. Figure 3 displays only articles that published more than two. Remote Sens-
ing, Precision Agriculture, International Journal of Remote Sensing, Sensors, Computer
and Electronics in Agriculture, and PLoS One were the top journals for weed detection
using UAV.
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Geographical analysis showed that the scientific articles were mainly published by
researchers from 14 countries: China, Italy, United States of America, India, Germany, Aus-
tralia, Spain, Greece, Brazil, Japan, France, Denmark, United Kingdom, and Switzerland.
(Figure 4).
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Figure 4. Scientific articles published by researchers from different countries (by 18 June 2021).

Funding sources that are used to support those studies have been listed in Table 5,
whereby could give some insight about which region(s) of the world is leading the pioneer-
ing role in the relevant research field.

Table 5. Previous studies that received financial support for their research.

Studies Source of Funding

Jiménez-Brenes et al. [33]
Jurado-Expósito et al. [34]

de Castro et al. [35]
Spanish Ministry of Science, Innovation and Universities

Jiménez-Brenes et al. [33]
de Castro et al. [35]

European Union-European Regional Development Fund
(EU-FEDER) funds

Huang et al. [36]
National Key Research and Development Plan: High Efficient

Ground and Aerial Spraying Technology and Intelligent
Equipment, China

Aharon et al. [37] Chief Scientist of the Israeli Ministry of Agriculture
Fukano et al. [38] Japan Society for the Promotion of Science
Smith et al. [39] Department of Agriculture and Water Resources, Australia

Ahmad et al. [40] Bahauddin Zakariya University in Multan, Pakistan
Nevavuori et al. [41] Mtech Digital Solutions Oy, Finland
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Table 5. Cont.

Studies Source of Funding

Reis et al. [42]

(i) National Council for Scientific and Technological
Development (CNPq), Brazilian Government, and (ii)

National Research, Development and Innovation Office,
Hungary

Zou et al. [43]
Yan et al. [44] National Key Research and Development Project of China

Veeranampalayam
Sivakumar et al. [45]

(i) Nebraska Research Initiative (NRI) Collaboration Initiative
Seed, Nebraska Corn Board, and (ii) Nebraska Agricultural
Experiment Station through the Hatch Act capacity funding

program from the USDA National Institute of Food and
Agriculture, USA

Deng et al. [46]

(i) Key Area Research and Development Planning Project of
Guangdong Province, (ii) Guangdong Provincial Innovation
Team for General Key Technologies in Modern Agricultural

Industry, Science and Technology Planning Project of
Guangdong Province, China, (iii) National Natural Science

Foundation of Guangdong Province, China, (iv) National Key
Research and Development Plan, China, and (v) 111 Project,

China

Xavier et al. [47]
Gulf Atlantic (Long-term Agro-ecosystem Research) LTAR

site of the U.S. Department of Agriculture by the University of
Georgia

David and Ballado [48] Department of Science and Technology-Engineering Research
for Development and Technology, Philippines

Huang et al. [49]

(i) Educational Commission of Guangdong Province of China
for Platform Construction: International Cooperation on

Research and Development of Key Technology of Precision
Agricultural Aviation, (ii) Science and Technology Planning

Project of Guangdong Province, China, (iii) National Key
Research and Development Plan, China, (iv) National Natural

Science Fund, China, (v) Science and Technology Planning
Project of Guangdong Province, China, (vi) Science and

Technology Planning Project of Guangdong Province, China,
and (vii) the Science and Technology Planning Project of

Guangzhou city, China.

Khan et al. [50]
National Center of Robotics and Automation—Advanced
Robotics and Automation Laboratory of UET Peshawar,

Pakistan

Lake et al. [51]
(i) United States Department of Agriculture, and (ii) the

United States Army Corps of Engineers and South Florida
Water Management District, USA

Huang et al. [52]

(i) Guangdong Provincial Innovation Team for General Key
Technologies in Modern Agricultural Industry, (ii) Science and
Technology Planning Project of Guangdong Province, China,

(iii) leading talents of Guangdong province program, (iv)
Science and Technology Planning Project of Guangdong

Province, (v) Key Area Research and Development Planning
Project of Guangdong Province, (vi) Science and Technology

Planning Project of Guangdong Province, China, (vii)
National Key Research and Development Plan, China, (ix)
Science and Technology Planning Project of Guangdong

Province, China, Science and Technology Planning Project of
Guangdong Province, China, and (x) Science and Technology

Planning Project of Guangzhou city, China.

3.2. Current Trend of UAV Applications for Detection of Weed

Research on the application of UAV for weed detection and mapping mainly high-
light four issues: (i) spectral differences of weeds detection, (ii) types of aerial images
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from several sensors and platforms on weed detection, (iii) effect of spatial and spectral
resolutions on weed detection, and (iv) algorithms and classification techniques for weed
mapping. UAVs have primarily been assessed in different crops such as maize, wheat,
sugarcane, cultivar, chilli, onion, vineyard, pistachio, baby-leaf red lettuce, barley, and
mixed agricultural field such as pea and strawberry (Table 6). Those are among the world’s
most widely cultivated crops, and they are highly vulnerable to weed competition, par-
ticularly during the seedling stage of the growing cycle. Our systematic review found
that the seedling stages of crop contribute the highest, i.e., 27.42% in weed detection. One
study [53] proposed that crop images could be taken precisely in the early season, so that
specifically color-dependent segmentation can be applied to segment weed patches to
achieve the higher accuracy of an algorithm.

Table 6. Example of UAV imaging applications in detecting weed for different crop types.

Crop Research Focuses References

Maize

Tested a low-cost UAV for weed mapping,
evaluated open-source packages for

semi-automatic weed classification, and
implemented a prescription map-based

sustainable management scenario.

Mattivi et al. [54]

Wheat
Optimized a deep residual convolutional neural
network (CNN) (ResNet-18) for classifying weed

and crop plants in UAV imagery.
de Camargo et al. [55]

Sugarcane Developed a framework to identify the defect
areas in the sugarcane farms.

Tanut and
Riyamongkol [56]

Cultivar

Investigated the viability of integrating UAV
image with satellite images to improve the

classification of different pistachio cultivars and
separate weeds from trees.

Malamiri et al. [26]

Chilli Detected weeds in a chilli field using image
processing and machine learning methods. Islam et al. [57]

Onion

Investigated the late-season weed mapping by
surveying dry onions with a simple off-the-shelf

UAV, employing several techniques across
various spatial resolutions, estimating weed

coverage in the fields, and assessing the spatial
pattern of weeds.

Rozenberg et al. [58]

Vineyard

Provide UAV and precision agriculture users
with a FOSS-replicable methodology that can

meet the needs of agricultural operations, as well
as operational and management needs.

Belcore et al. [59]

Baby-leaf red
lettuce beds

Provided an estimation of the exact weed
quantity on baby-sized red lettuce beds using a

light drone.
Pallottino et al. [60]

Barley

Evaluated the yield loss of spring barley due to
various C. arvense infestations in big plots in

farmers’ fields, and proposed a novel approach
to quantifying C. arvense infestation in large

plots.

Rasmussen and
Nielsen [18]

Mixed
agricultural

field

Developed a deep learning system for
identifying weeds and crops in croplands, such

as peas and strawberries.
Khan et al. [61]

This review has figured out few types of UAV that being used for weed detection
which includes single-rotor, multi-rotor, and fixed-wing (Figure 5). Ahmad et al. [40] used
single-rotor as a spraying unit in the target and off-target zones for outer field weed control
application. On the other hand, there are two studies that used the multi-rotor on the
cultivated rice in China, in which Huang [38] captured imagery on few patches of Cyperus
iric while Huang [52] captured the Chinensis, Cyperus iric, Digitaria sanguinalis, Scop, and
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Barnyard grass. In another study, Khan et al. [52] used multi-rotor to obtain imagery for
two different crops which is pea and strawberry and Eleusine indica on infested weeds in
Pakistan. In terms of fixed-wing, Zisi et al. [62] used this type of UAV to capture the images
of S. marianum and patches of other weeds such as Solanum elaeagnifolium, Avena sterilis
L., Bromus sterilis L., Cav, Cardaria draba L., Conium maculatum L., and Rumex sp. L. at the
field that previously cultivated with cereals in Greece. Also, for fixed-wing that detect
other weed types, Barrero and Perdomo [63] has detected Gramineae at the rice field in
Columbia, whereas Tamouridou et al. [64] has identified S. marianum, and other weed types
that consist the mixing of Avena sterilis, Rumexsp. L., Bromus sterilis L., Conium maculatum
L., Cardaria draba L., and Solanum elaeagnifolium Cav at the field that previously cultivated
with cereals in Greece.
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3.2.1. Spectral Differences of Weed Detection

The basic concept behind weed discrimination is to locate the spectral region or,
instead, the vegetation indices that maximise the differences between weed and crop
plants, based on the reflectance values acquired in aerial images [65]. At the time of image
acquisition, the weed percentage was very low. Using a mosaic of images is often more
difficult than using a single image because of distortions and spectral variations between
the images. The ability of detecting and identifying weed species is largely influenced
by environmental conditions. This is related to the weeds’ distribution pattern such as
patchy patterns with high inconsistency, their textural phenotype, and spectral signature
that visually similar to other vegetation types growing in the same location [66]. Spectral
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signature can be used in chemical content in the leaves or plants, in which each band
represent the condition of the plants.

To evaluate weed identification capacity, spectral signatures were acquired from
the upper surface area of the leaves, for example, from S. marianum plants and other
vegetative species such as A. sterilis and Conium maculatum [67]. Accordingly, A. sterilis
and S. marianum were found to have similar spectral reflectance characteristics, making
weed classification difficult which mainly in the early season. However, these three species
were easier to distinguish in the NIR spectrum. This indicates that the NIR zone and other
properties (i.e., texture) could be used to enable class separation. Another study [68] that
monitored the same species that mentioned previously also observed that S. marianum
had some similarities with A. sterilis in the visible spectrum (400–700 nm) but differ in the
near-infrared (700–1100 nm). This shows that the camera’s band is one of the essential
feature that allows for weed discrimination in the crop field.

Because of challenges regarding indistinguishable spectral signatures between crop
and weed seedlings, other characteristics such as different textures and shapes may help
to differentiate the two. Also, initial parameters may have an effect on the creation of
objects from pixels. Rozenberg et al. [58] applied a single set of parameters, in which the
shape and size of the weed patches varied. Due to the significant spectral differences at
the phenological stage at which the data was collected, the use of differential parameters
was unnecessary.

Monospecific patches with higher vegetation cover has a unique spectral signature
which the classifier can use it to improve its accuracy. Conversely, the spectral reflectance
of a mixed community combines the spectral signatures of the plants present in a single
location, hiding the target species’ signature and lowering classifier performance. In
addition, the image resolution was inadequate to give description of pixels indicating pure
spectral signatures of spotted knapweed, among other vegetation, and thus pixel-based
methods could not be adapted without data from field-spectrometry or a spectral library to
provide the spectral signatures of the crop. [69].

Danilov et al. [70] investigated how the form of the spectral signatures of reflectivity
for plant items changed based on their current condition, as measured during field surveys.
This is the starting of the active vegetation of weeds. The spectral signatures curves of
the plants were identified, whereby the (i) distinctive characteristics of reflectivity of some
cultivated or weed species is in the visible range of the spectrum between 400 and 680 nm,
(i) differences in the average values of the spectral brightness between few plant species
are overlapped by the sums of their standard deviations in the NIR region of 800 1100 nm,
and (iii) weed is detected by a significant variation in the amplitude of spectral brightness
fluctuations between cultivated and weed plants.

3.2.2. Types of Aerial Images on Weed Detection

Our systematic review identified four main types of cameras utilized for weed patches
identification: RGB, multispectral, hyperspectral, and thermal cameras. For example,
Agüera-Vega et al. [71] used the multispectral (green, near-infrared, red and red-edge) and
thermal sensors to discriminate weed images from maize crops. Revanasiddappa et al. [72]
stitched weed images to create a weed site map uploaded to the cloud. A study combined
simultaneously remotely sensed ground data and aerial imagery to develop models that
correlated ground-truth weed densities with image intensity and forecast weed densities
in other fields, done by Lambert et al. [73]. The weed effect on canal hydraulic efficiency
has also been assessed using ground imagery, UAV images, and high-resolution satellite
data [74].

According to the secondary development, a hardware environment for real-time image
processing has incorporated map visualisation, image collection, flight control, and real-
time image processing on board a UAV [48]. Based on Reis et al. [44], the image generated
using LiDAR data had lower canopy cover and higher cover by bare soil and grasses
compared to UAV. Differences between LiDAR and UAV may be due to image classification



Agriculture 2021, 11, 1004 13 of 27

processes, including the existence of shaded areas in UAV camera images and incorrectly
categorised pixels in digital image processing that require additional exploration.

3.2.3. Effect of Spatial and Spectral Resolutions on Weed Detection

Weed detection necessitates high spatial resolution in remote image. It is dependent
on the sensors and remote platforms used [69]. The average operational parameters of the
UAV sprayer on the spray deposition pattern (2.29 L/cm2) in the target area were found to
be the highest when the UAV operates at the higher speed of 2 m/s and a height of 2 m [40].
The weed distribution maps of the UAV imagery were also generated using a semantic
labelling technique. An ImageNet with the residual framework was adapted in a fully
convolutional version and fine-tuned before being uploaded to the dataset. The field of
view of convolutional filters was then extended using atrous convolution; the performance
of multi-scale processing was assessed, and a fully linked conditional random field was
employed to refine the spatial features [67]. As a result, the ability to differentiate weeds
was significantly influenced by the spatial resolution of the image, making the use of higher
spatial resolution images more appropriate [75].

Watt et al. [76] discovered that vegetation indices obtained from multispectral UAV
data and satellite data were strong predictors of weed metrics, with a spatial resolution of
1 m being optimum. To examine classification performance, the scale of the weed mapping
utilizing UAV and multispectral imaging was altered by reducing image resolution, with
1 m resolution yielding the maximum classification accuracy [67]. Mesas-Carrascosa
et al. [77] investigated the optimum flight settings for maintaining spatial accuracy in the
bundle adjustment, which were 70% to 40% overlap and altitudes above ground level
(AGL) ranging from 60 to 90 m. At various flying altitudes, the spatial resolution was
relatively similar, allowing us to optimize mission planning, fly at a higher altitude, and
increase the area overflow without reducing orthomosaic spatial quality.

Many weed and crop pixels had similar spectral values at higher altitudes, which
might increase discrimination errors. Hence, an agreement among spectral and spatial
resolution is needed to optimise the flight mission according to the size of the smaller object
to discriminate (weed plants or weed patches). As Che’Ya et al. [75] reported the lower
flight altitude will determine the highest spatial and spectral resolution of the imagery,
they found that at 10 m flight altitude will help to detect weeds accurately at less than 1 cm
spatial resolution. The imagery showed the weeds patches more clearly and accurately [78].
The weeds are mostly look alike with the plants. Thus, the high accuracy will help to detect
the weeds through the spatial and spectral resolution. Spectral signature can be used to
differentiate weeds and plants in the field [75,79]. Not only that, the method to detect the
weeds also the main factor to get the accurate classification. Roslim et. al. [80] found that
the artificial intelligent (AI) can be used to detect the weeds patches in the rice field. Thus,
the used of UAV can help to gain the highest spatial and spectral resolution in the field.

With the small UAVs, such as Phantom 3 Professional (Da-Jiang Innovations, Shen-
zhen, China) quadrotor, it is possible to map 10 ha in 20 min at 40 m flight altitude, which
corresponds to the duration of one battery [74]. The best date for a weed emergence predic-
tion model survey was implemented using a UAV with visible range sensors, resulting in
an orthophoto with a spectral resolution of 3 cm, allowing for good weed detection [81].

3.2.4. Algorithms and Classification Techniques for Weed Mapping

Weed discrimination in row crops can be categorised according to crop rows and then
detect weed plants as vegetation between the rows. The effectiveness of this approach is
attributed to the creation of advanced classification algorithms for analysing UAV images.
Researchers used different type of algorithms for weed mapping in their studies. Therefore,
this review has categorized the algorithm into several classes as follows: (i) pixel-wise
classification vs object-based analysis (OBIA), and (ii) machine learning methods such as
ANN, CNN, SVM, RF vs distance or likelihood-based methods.
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A pixel-wise was built by Huang et al. [52] which capable of obtaining the position of
each pixel and properties of points to train the classifiers. For the pixel-wise classification,
fully convolutional network (FCN) has been employed in the deep learning approach,
and transfer learning was utilised. In another study by Kerdegari et al. [82], their dataset
consist of crop, weed, or crop-weed combination data, and their associated pixel-wise
annotated data. Different percentages of pixel-wise annotated images i.e., 50%, 40%, and
30% were used as labelled data to the discriminator during semi-supervised training. In
a network developed by Anand et al. [83], two image scales are used for training and
three image scales are used for prediction, which referred as a hierarchical model. Using
image attributes extracted from the lower scale image, it derived a pixel-wise dense relative
attention between the lower and higher image scales. The weights of the attention map
could represent the relevance of features at different scales and positions. Thus, the
attention module determines the amount of pixel-wise attention to be paid to features at
various sizes and positions. This allows for the depiction of attention for each scale by
displaying the expected logits.

OBIA also has been applied for weed mapping of the UAV imagery, whereby VGGNet-
based FCN has achieved the highest accuracy [84]. The combination of imagery and an
Automatic Decision Tree-OBIA Procedure algorithm developed using aerial images allows
quick and accurate mapping of weed growing in vineyard cover crops [85]. A semi-
automatic OBIA procedure is also being developed with Random Forest (RF)s combined
with feature selection techniques for inter-row weed detection. Additionally, the two binary
weed masks produced from the Hough transform (HT) algorithm and OBIA were fused for
accurate weed mapping [85]. An Automatic RF-OBIA algorithm combined orthomosaics,
Digital Surface Models (DSMs), and machine learning techniques for early weed mapping
between and within crop rows [86].

Beeharry and Bassoo [87] found that AlexNet algorithms give an accuracy of 99.8%
for weed detection compared to conventional ANN algorithm. It is proven in another
study [88] that identified weed through colour images along with the GoogLeNet and
continuous convolution of Visual Geometry Group 16 (VGG-16) inception models. ANN
also being used differentiate between weed, crop, and soil. When compared between
ANN and visible atmospherically resistant index (VARI), ANN has higher accuracy of
98.6% and Cohen’s Kappa value of k = 83.7 compared to VARI which is 98.1% and k = 72,
respectively [81]. However, higher reduction percentage of the sprayed herbicide area
that ranged from 65.29% to 93.35% when VARI was used, and from 42.43% to 87.82%
when ANN was used. This indicated that ANN has the potential to obtain a reduction in
herbicide application and direct advantages for the environment and farming operation
cost. In another point of view, when compared between the Counter-Propagation-ANN
(CP-ANN) and the XY-Fusion network (XY-F) to recognize S. marianum with vegetation,
Pantazi et al. [68] found that the accuracy of S. marianum identification rates using CP-ANN
was higher i.e., 98.87%, compared to XY-F i.e., 98.64%.

Other than ANN, CNN also showed the accuracy of up to 98.8% to identify weed
compared using pre-processed images in other high-cost methods. Liang et al. [89] found
the best performance in image classification with RGB data than the Normalized Difference
Vegetation Index (NDVI) data [41]. Tang et al. [90] applied CNN on Ipomoea cairica L. sweets
and compared with artificial intelligence, including LeNet, GoogleNet, AlexNet, VGG, and
ResNet. A deep learning-based method for estimating the crop and weed distribution from
images captured by a UAV leverages the CNN to perform image semantic segmentation
and a post-processing step being applied to compute the weed [91]. LeNet, which is
based on the CNN methodology, emerged as a promising technique because it used
spatial information from UAV images inside that learning framework’s architecture. It
was operated by enforcing a local connectivity pattern between neurons of adjacent layers
to incorporate the spatial relationships between features that comprised the shape of the
Lomandra tussocks detected [92]. The Single Shot Detector model’s optimal confidence
threshold was much lower than that of the Faster RCNN model, which indicated that
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Single Shot Detector might have the lower performance of weed detection than Faster
RCNN for weed detection in soybean fields using UAV imagery [45].

Chen et al. [93] proposed a SVM to properly segment citrus trees under varying
brightness and weed coverage conditions. A chromatic aberration segmentation algorithm
and the Otsu threshold approach have been integrated to extract viable fruit tree areas to
accurately differentiate them from varying weed coverage backgrounds. The areas’ of 14
colour features, five statistical texture characteristics, and local binary pattern features were
then calculated to create an SVM segmentation model. Furthermore, the performance of
SVM also examined by Islam et al. [57] that detected weeds using images gathered from
an Australian chilli crop field, whereby the weed detection accuracy is 94%. In another
perspective, SVM has been classified on various type of vegetation such as eggplant, corn,
string beans, and grass/weeds, whereby the output map can also be used to update the
initial land cover map created from high resolution LiDAR data on a regular basis [48].
Based on above studies, they found that SVM are effective and practical to apply and they
can be simply implemented for detecting weed in UAV image.

Another study [94] used classification algorithms based on the RF for weed extraction
and unsupervised classification with the K-means algorithm to estimate weeds in non-weed
areas. The simple linear iterative clustering algorithm and RF classifier had discriminated
rice and weeds with better performance using hue-saturation-brightness than RGB and CIE-
L*a*b consumer-grade UAV images, as shown by Kawamura et al. [95]. The images from
Canon S110 NIR (green, red, near-infrared) on UAV were also classified by Reis et al. [42] by
combining RF and maximum likelihood algorithms. Interestingly, Yuba et al. [96] has tried
to integrate OBIA and RF with auxiliary information layers in mapping P. alopecuroides, and
they found that the combination of these algorithms has increased classification accuracy
which is out of bag accuracy = 0.99 and generalized error accuracy i.e., 1.00 from the lowest
altitude of 28 m.

The maximum likelihood classifier has been tested by Tamouridou et al. [64] to differ-
entiate S. marianum from other weed species, i.e., Avena sterilis L. To evaluate classification
performance, the size of the mapping was altered by lowering the image resolution, with 1
m resolution yielding the maximum classification accuracy. The overall accuracy of the
classification rates obtained was 87.04%, in which demonstrated the viability of operational
S. marianum mapping with UAV and multispectral imagery. Maximum likelihood also
able to generate precise weed maps in onion fields during the late-season, as generated
by Rozenberg et al. [58]. In terms of the weed spatial pattern, weed coverage that varied
significantly from 1% to 79% was comparable within and between crop rows; and weed
pattern was patchy in all fields. In another comparative study that separate weed from
vegetation, Malamiri et al. [26] revealed that maximum likelihood has higher accuracy
compared to fuzzy artmap. They also overserved that maximum likelihood has a high
accuracy in terms of land area and cultivation layout.

Albani et al. [97] has displayed the distance-based exploratory pattern for field cover-
age and mapping which includes (i) the central cell that represents the agent’s position,
(ii) the numbers represent the priority of each place, which is determined based on distance,
(ii) the momentum of the agent illustrated by vector represents a possible directional bias,
(iv) cells in the darkened region are only accepted if no valid cells are discovered in the
other semi-plane, and (v) the wrapped cauchy density function with various persistence p
values. This technique could maximizes coverage time by minimizing the distance traveled
from cell to cell and progressively visiting all cells in the field.

3.3. Advantages and Disadvantages for Each Sensor

Each type of sensor has its advantages and disadvantages. RGB images performed
better than NDVI images, indicating that multiple spectral bands expand information
content compared to the condensed NDVI image. In terms of utility, RGB cameras are
lower cost than multispectral imagery sensors, as they are smaller and lighter than other
kinds of sensors. This reason makes RGB the most commercially available UAVs already
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equipped with decent cameras capable of producing high-resolution images [98], which
is affordable for many users [99]. Furthermore, the high-resolution RGB camera saves
images on a secure digital memory card and is fixed by an angle fixer, which decreases
the high-frequency noise caused by the six high-speed motors [43,93]. Nonetheless, the
large spectral bandwidths of RGB cameras limit the pixel-wise of differentiating between
weeds and crop based on colour or RGB incidences. Therefore, it could be preferable for
the researchers to include the details information regarding the texture, leaf shape, and size
in the classification [100].

Multispectral sensors have a slow imaging speed, which limits their use. Unfortu-
nately, the use of multispectral cameras for UAV photography systems is regarded as
a disadvantage due to their high cost compared to the lower cost of RGB sensors [101].
Moreover, due to spectral resolution limits, the accuracy of the derived variables is fre-
quently limited, and early signals of plant stresses, i.e., nutrient shortage and crop disease
cannot be identified effectively in a timely manner. Hyperspectral imagery efficiently
monitors weeds from long-term dynamics elsewhere, allowing management measures to
be more precise, faster, and efficient [88]. The hyperspectral images were typically derived
through satellite or aircraft, whereby high-resolution spectral data and equipment are
expensive. Additionally, data handling of large images is complicated and frequently
limited to smaller areas [102]. Some important information in images is also lost when
using free low-resolution of spectral data. Accordingly, hyperspectral images are ineffective
for monitoring weeds in their early phases [89]. All in all, multispectral and hyperspectral,
however, takes a long time to collect images from large-scale areas. When the amount of
data is large, it requires a large calculation to analyse the images, making it challenging to
create a panoramic weed map of the area [43].

Near-Infrared (NIR) cameras can be easily converted from conventional RGB cameras
and thermal functions to cover the majority of all the infrared spectrum. On the other hand,
thermal imaging is sensitive to the environmental condition in which the image is captured,
such as illumination conditions, canopy architecture, and crop maturity [103]. Furthermore,
thermal imaging faced many problems of low pixel resolution caused by environmental
variables in an open system, particularly with small uncooled thermal cameras, which are
the most common kind employed in unmanned aerial systems [104].

3.4. Advantages and Disadvantages for Each Algorithm

Successful weed management is essential for precision agriculture. The most signifi-
cant procedure for an automatic system to eliminate the targeted weeds in the crop rows is
implementing a reliable sensing approach to establish an accurate differentiation of the
weeds and crops at specified locations in the field [105]. This can be achieved by imple-
menting several modelling and algorithm while doing data analysis and interpretation.
According to Liu and Xia [106], the dissimilarity between object-based and pixel-based
classification procedures can be observed from classification units and classification fea-
tures. The object-based approach comes with its limitations, i.e., errors that usually exist in
image segmentation, including over-segmentation and under-segmentation. The Object
Based Image Analysis (OBIA) method produces excellent classification results because
it overcomes some of the limitations of pixel-based methods by segmenting images into
adjacent pixel groups with homogeneous spectral values and can integrate spectral, topo-
logical, and contextual information from these objects to manage complicated classification
scenarios [86].

Machine learning assignments are usually classified into several extensive categories
based on the learning type (supervised/unsupervised), models learning (classification,
clustering, and dimensionality reduction), or the learning models applied in the specific
task [107]. There were several excellent classification techniques utilise in agricultural stud-
ies, such as Bayesian networks, k-nearest neighbour classifier (k-NN), ANNs, decision trees
(DT), and support vector machine (SVM) [108]. k-NN is a standard instance-based learning
algorithm used to categorise unknown objects by ranking the objects neighbour among
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the training data as the output will excellently predict the class of the new objects [109].
Zhang et al. [110] stated that the k-NN technique is quite good as it was easy to apply but
could be prolonged if the input data set capacity is quite big.

Neural networks have been widely utilised in agricultural data analysis. However,
lots of aspects need to be considered in establishing a neural network for resolving a
particular problem, such as the learning algorithm, the architecture, number of neurons per
layer, number of layers, data representation, and they were pretty sensitive towards noise
appearance in the training data [111]. In the current advances of machine learning, there
was enhancing interest in time series classification, which employed deep convolutional
neural networks (CNNs) and recurrent neural networks (RNNs), which can take advantage
of neural networks for time series end-to-end classification [112]. RNNs approaches can
be utilised for pixel-based time series procedures and offer models to precisely control
temporal dependencies between data, for example, long short-term memory (LSTM) [113].

SVM is one of the most prevalent data classification and regression techniques. Ac-
cording to Prabakaran et al. [114], SVM aims to formulate a hyperplane that can be utilised
to expand geometric margin limits of their classification error when given in two classes of
linear differentiable problems. It is the most valuable system which intensely optimising
structural risk assessment of real-time data. However, SVM cannot perform well for skewed
imbalance datasets due to its difficulty obtaining the optimal separation hyperplane. The
disadvantages of SVM include parameters selection, algorithmic complexity that influence
the training time of substantial data sets classifier, and multi-class problems in developing
optimal classifier [115].

3.5. Benefit of UAV to the Agricultural Industry

Developments of UAVs to detect weeds for precision agriculture have influenced the
revolutionisation of the agricultural industry. The recent approaches of combining wireless
sensor networks and artificial intelligence models to detect weed could increase agricultural
efficiency. As opposed to traditional agricultural methods that require more time, effort
and eventually lead to inaccurate outputs and losses, modern agricultural approaches
including artificial intelligence and the internet of things will assist farmers in making
better decisions and increasing the total of crop yield and efficiency [116]. For example,
U-Net, a deep semantic segmentation neural network, was observed to detect weed in
crops better. It could produce good results with a small number of training samples [43].

With the help of technology, performance of plant monitoring may be improved,
and thus weed issues in agricultural industry can be solved. Farmers’ concerns were
that precision weeding techniques overcome the vast number of crops lost during the
weeding activity. These autonomous UAVs not only increase productivity, but they also
eliminate the need for unwanted herbicides and pesticides. Aside from that, farmers
may effectively spray herbicides and pesticides on their farms with the help of UAVs,
whereby plant monitoring is no longer a burden. For starters, shortages of resources
and jobs in agribusiness can be recognized with the help of man-made brain power [117].
In conventional approaches, a large amount of labor was necessary to obtain the crop
characteristics such as plant height, content, and soil texture; as a result, manual testing
need was carried out which was time-consuming.

3.6. Future Trend of UAV Applications for Detection of Weed

New insights into crop competition are needed to apply low altitude remote sensing
approach (e.g., UAV) in agricultural contexts, allowing only harmful weed species to be
identified and eliminated. With the intention to this, there is a need to suggest the re-
searchers to use UAV on detecting weeds based on the published studies. The future trend
of UAV application was elaborated to highlight problems as follows: (i) deep learning
algorithm problems, e.g., short of training data, precise model inference ability, and robust
applicability over different scenarios; (ii) imaging platform challenges, e.g., camera param-
eters and air drone flight parameters; (iii) computation burdens, e.g., cloud computing and
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edge computing, (iv) different capability of different devices for UAV flight control, and
(v) detection of unknown weed species, and (vi) difficulty in manual labelling labour for
labelling images.

Future research need to solve the deep learning problems in order to automatically
obtaining effective features for weed and crop classification in outdoor scenarios and
comparing different sensors and platforms of weed detection [85]. Therefore, it is worth
of quantifying various aspects such as aircraft altitudes and ideal resolution for creating
accurate weed maps. Additionally, it would be interesting to address the evaluation using
a larger image dataset containing a broader range of variables, such as different image
acquisition sites and spatial resolution [118].

There is a short of training data and its limited scale for deep learning algorithm,
making it difficult to include all the plants that could exist in the UAV image. This problem
was seen by Xi et al. [88] that found MmNet’s-based on a deep CNN identification of the
phorophyte is less reliable since the phorophyte training data which includes a variety of
plants in the field mostly unknown. Hence, the developed algorithm could be built to be
robust and operate in all expected situations because it used a large amount of training
data for the algorithm classification while maintaining high classification accuracy. In
addition, using semi-supervised generative adversarial networks could provide pixel-by-
pixel classification for all captured images. It will comprised of a generator network that
creates photo-realistic images as additional training data for a multi-class classifier that
acts as a discriminator and is trained on relatively small amounts of labelled data.

Another problem discovered in the previous studies were the capability of precise
model inference, whereby researchers may use cloud computing or edge computing tech-
nology for model inference. The time span between data analysis and spraying tasks
may be considerably decreased using the real-time processing platform, improving the
practicability in real SSWM applications [84]. To differentiate weed pixels from soil and
crop, one-class or binary classification algorithms might be examined. A trained model
may be slightly adjusted to fit the new data better, and this method could give better results
at the expense of low computational effort. Therefore, it may be interesting to investigate
the incremental learning paradigm. In this case, a trained model could be slightly modi-
fied to fit new data better, and this approach could ideally result at the expense of a low
computational load [119].

The problem on applicability of robust application over different scenarios has also
been identified by the researchers. The algorithm developed for detection of weed must
be highly robust because very similar seedling crop and weed plants mixed within the
crop row. Therefore, supervised machine learning technique could be used for creating a
model of detecting weed. The future studies could consider previous findings and tries
to deal with some of the problems that have been identified when using OBIA. It was
an approach that have may enhance better performance than the pixel-based method in
preliminary output. Furthermore, a method for enabling robust image classification that
does not rely on the user spending significant time drawing new polygons defining classes
for each new image is required. To that purpose, a semi-automatic method for re-training
the classifier for each new image could be designed, and combining unsupervised and
supervised categorization.

Different camera parameter is one the challenges for imaging platform. The influence
of model compression techniques and approximation algorithms created for neural net-
works can be examined to evaluate the edge computing limit in-field and near real-time
weed detection. However, the algorithm’s performance could be caused by poor image
quality [90]. In order to overcome this problem, researchers must configure the UAV cam-
era’s parameters and determine the optimal distance between the UAV and the weed for
optimum image quality. Furthermore, size of the image could influence not only model
accuracy but also monitoring accuracy. Some weeds were misclassified as crops, and some
crop edges were incorrectly segmented as weeds. As a result, the weed density assessed by
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UAV was slightly higher than that assessed by manual observation [43]. A more precise
crop segmentation algorithm can be explored in the future to improve evaluation accuracy.

The target of the novel deep convolutional neural network (ICSNet) developed by
Tang et al. [90] has accurately identify Ipomoea cairica L. sweets and non-Ipomoea cairica L.
sweets in the wild. The components of Ipomoea cairica L. sweets depicts several improperly
identified samples, whereby they are diverse but their quantity are quite small. This is the
reason why the algorithms identify them inaccurately. Because the samples are relatively
dark, the misidentification is acceptable. In order to overcome the problem, future studies
must consider two factors which are configure the UAV camera’s specifications for high-
quality image acquisition and determine the optimal distance between the UAV and
the Ipomoea cairica L. sweets for high image quality. Additionally, a clustering method
was used to address image object recognition produced from a digital camera. Based
on this clustering approach, an algorithm was developed to extract clusters from real
images corresponding to various types of weeds [120]. In addition to the real clustering,
this approach entails pre-processing the measured image, which includes filtering and
adjusting the brightness histogram. Therefore, cluster centre positions could be iteratively
adjusted in the future.

Air drone flight parameters is a critical environmental problem during aerial applica-
tion. The greater deposition volume on the zero mark of the UAV sprayer’s central line
was caused by the higher kinetic energy of the droplets at the moment of droplet ejection
from the nozzle. The development principle of the vortex on both sides of the spray lance
and the airflow at the wingtips in the sprayer process by a comparatively large helicopter
was identified by Ahmad et al. [40]. The vortex created by the rotor-wing on both sides
of the spray lance has altered the droplet’s original trajectory and morphology, resulting
in a higher distribution of coarse droplets on both sides of the spray lance. In the future,
the relative stable airflow profile under the structure of the UAV may be produced by
rotor-wing, which could aid in the deposit of coarser droplets in the target at a relatively
quick speed.

The cloud computing problem for computation burdens could be solved in the future.
For example, the researchers may use cloud computing or edge computing technology
for prediction model inference in weed mapping of UAV imagery using OBIA and deep
learning approaches. The time period between data analysis and spraying operations may
be considerably decreased using the real-time processing platform, which may improve
the viability of this work in real SSWM applications [52]. Researchers could also obtain
additional UAV images for model training and validation. In addition, integrate lightweight
network architecture system with variable spraying technology for weed mapping tasks
is proposed. The classification results of images can offer sprayers with decision-making
information, which can help maintain pesticide effects while minimizing chemical use [46].

Different UAV devices have their own capability for flight control which could be
improved in the future. This task conducted at various altitudes should be carried out on
low computational power devices such as standard laptops and mini-PCs (e.g., Raspberry
Pi) for UAV flight control. This would help to understand the capability of using these
devices for on-farm, near real-time data processing and actuation. Researchers can assess
the performance variation of different models using different devices in various weed
species. For example, Sivakumar et al. [45] suggested that the performance of Faster
Region-Based CNNs at various altitudes can be evaluated by resampling high-resolution
images to low-resolution images.

There were some limitations of detecting unknown weed species to the Optimized
Deep Learning model in a previous study [55]. When the model precision was increased
from 16 to 32 bits, there was no improvement in classification accuracy but a significant
decrease in speed performance, especially when a larger number of filters was utilized in
the ResNet-18 model. Future research should focus on integrating the mapping process
on UAV platforms, autonomously guiding UAVs for mapping purposes, and enabling
model transferability to other crop areas. The neural network should also be used to
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more hyperspectral maps of herbicide-susceptible and -resistant weeds among crops to
evaluate the model under various field settings that includes unknown weed species. In
future study, these maps should include data from the field to explore the efficacy of weed
detection by varying the crops, mixed pixels, weeds, lighting, imager distance from plants,
and environmental conditions [121].

There is a difficulty in manual labelling labour for labelling images. A Fully Convolu-
tional Network is a fully supervised algorithm, and the network’s training and updating
rely on a considerable number of labelled images, which necessitates substantial manual
labelling labour. Therefore, in the future, researchers could develop weak-supervised
learning i.e., limited, noisy, or imprecise sources are employed to provide supervision
signal for labelling large amounts of training data in a supervised learning setting, and
helps to reduce the burden of collecting manual-labelled data sets which can be expensive
or impractical) and unsupervised learning algorithms to minimize manual labelling work
and improve application efficiency [84].

4. Discussion

To the best of our knowledge, there were no standard techniques for extracting
previous studies systematically that focusing on weed detection using UAV. The goal of this
systematic review article has been accomplished by providing a concise and comprehensive
overview of the current application the UAV-based imaging in weed detection and future
research aspects of this technology for precision agriculture. There is information in the
previous section which extract and synthesis a total of 144 original articles from 1 January
2016 to 18 June 2021, and the articles were published in a broad range of journals and
conference papers. These previous studies elaborates the spectral differences, types of
remote images, effect of spatial and spectral resolutions, and types of algorithms and
classification techniques in weed detection. Most of the applications were utilized during
seedling stage of crop and used visual from image analysis as a reference data.

With the knowledge of how the weed and crop data are gathered and processed
through UAV, it will be easier to highlight the pro and cons of each sensor, therefore could
be beneficial for researchers to use what type of sensor based on the different purpose of
application in the field. Despite the advantages and disadvantages for each sensor, we
found that RGB cameras was the most commonly used compared to other types of sensor
because it has (i) lower cost, (ii) smaller and lighter in terms of its features, (iii) can easily
be mounted and integrated; and (iv) has capability of generating high-resolution images.

Following the pro and cons for different algorithm types, this review will provide
insight on their classification accuracy on analysing UAV images. When we compared
each algorithm, we found that the machine learning techniques were widely used because,
it (i) has high-performance computing that generate new possibilities to unravel, quan-
tify, and recognise data-intensive procedures in farming operational environments, and
(ii) comprises of diverse type of models. Nonetheless, many aspects need to be considered
because this technique requires massive data sets to train on and sometimes must wait
for new data to be generated. Additionally, the major challenge is the ability to accurately
interpret results generated by the algorithms and is highly susceptible to errors, which
could results in biased predictions that came from a biased training set. In the future,
more specific algorithms need to be developed to handle weed removal. However, faster
classification algorithms and more efficient computational hardware are still needed to
improve machine vision.

The recent approaches of integrating various type of sensor and specified classification
algorithm could increase the efficiency of weed detection. The use of UAV would give
benefits to agricultural industries, which indirectly provide opportunities for employment
to those who has expertise on using this technology and a good prospect for their career in
precision agriculture field. Furthermore, UAV also solve the farmers’ problems, in which
the weeding techniques overcome the huge number of crops lost during the weeding
activity. The UAVs not only increase crop yield and production, but they able to eliminate
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the unwanted pesticides and herbicides. Other than that, farmers may effectively spray
herbicides on their farms using UAVs, whereby plant monitoring is no longer a burden.

UAVs have many unique characteristics that keep them at the forefront in agricultural
industries compared to (nano) satellites with very high spatial and spectral resolution.
Aside from their low cost, UAVs (i) provides centimetre resolution, (ii) combining crop
height and orthophoto information, (iii) providing multi-angular data (especially from
snapshot cameras), (iii) enabling high-quality hyperspectral data acquisition, and (iv) sen-
sor flexibility. Transferring weed information obtained from UAVs into everyday practice,
on the other hand, would necessitate a change in a scientific approach. The current re-
quirement for practical and technical expertise for flight operation and data processing
impedes the routine use of UAVs in weed detection, mainly for thermal and hyperspectral
data [122,123].

There is no doubt that UAV technology will continue to advance, potentially expand-
ing its use in weed detection. We anticipate that the current trend of growing UAV sensor
quality and user-friendliness will continue, eventually allowing RGB, multispectral, hy-
perspectral, and thermal sensors for routine operation by non-expert users. Although it
is not yet possible, the future research should (i) could develop unsupervised learning,
(ii) configure the UAV camera’s parameters and determine the optimal distance between
the UAV and the weed, (iii) examine the influence of model compression techniques and
approximation algorithms created for neural networks, (iv) adjust iteratively cluster centre
positions from algorithm, (v) use cloud computing or edge computing technology for
model inference, (vi) investigate deep learning methods for automatically obtaining ef-
fective features for weed and crop classification in outdoor scenarios, and (vii) consider
two factors such as configure the UAV camera’s specifications for high-quality image
acquisition and determine the optimal distance between the UAV and weed for higher
image quality.

One of the benefit of UAV is its ability to mount and test several sensors simultaneously,
which is one of their unique features. However, data fusion should not be limited to fusing
two or more sensors on the same UAV. Combining information from the tools of the within-
field spatial variance in the management decision-making phase is promising [84], but it
has yet to be established and should be a top priority. This is proven by Che’Ya et al. [75]
that used RGB, multispectral and hyperspectral sensors in UAV platform to detect weeds
in the field. Hence, ground data is very important to crosscheck the imagery. They counted
manually the actual weeds to check the real weeds in the field. Berahim et al., [124] also
collected the ground and agronomic data and related with the aerial imagery. They found
that physiological responses similar to the aerial imagery in rice field monitoring. The end
user also is important to use the imagery, in which Roslim et al., [125] found that Padi2U
mobile apps helps end user to get access the aerial map to monitor their field. They also
used the ground data such as soil plant analysis development (SPAD) data to correlate with
the multispectral imagery through the NDVI map. Similar findings also been observed
by Yuhao et al. [126] that used SPAD meter and NDVI, Normalized Difference Red Edge
(NDRE), Soil Adjusted Vegetation Index (SAVI), and Optimized Soil Adjusted Vegetation
Index (OSAVI) map to correlate with the ground data. They found that NDRE was highest
correlation in rice monitoring in the field.

When combined with weed management preparation, the knowledge gathered from
remote imaging analysis will help to improve weed management in the future. Further-
more, imaging analysis may aid in studying weed dynamics in the field and their interaction
with the crop, both of which are required steps in developing new weed management
strategies based on interspecific crop–weed interactions [127].

5. Conclusions

UAVs allow for the accurate identification of weed patches in a plantation area, in
which increasing weed management sustainability. UAVs’ crop patch detection will aid
in integrated weed management, reducing selection pressure against herbicide-resistant
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weeds, and herbicide diffusion in the environment. Once combined with weed manage-
ment preparation, the information acquired from remote imaging analysis will strengthen
weed management sustainably. Furthermore, AI integrated with imaging analysis may
help in studying weed dynamics in the field and their interaction with the crop, both
of which are required steps in developing new weed management strategies based on
interspecific crop–weed interactions. Different machine learning techniques would provide
an accurate overview of the degree and form of infestation. In light of this review, it can
be stated that UAVs are a suitable technique for weed mapping, providing the perfect
platform for flying a medium-size field with a reasonable spatial resolution and leaving
open a broad line of future research.
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81. Nikolić, N.; Rizzo, D.; Marraccini, E.; Gotor, A.A.; Mattivi, P.; Saulet, P.; Persichetti, A.; Masin, R. Site and time-specific early weed
control is able to reduce herbicide use in maise-a case study. Ital. J. Agron. 2021, 1780.

82. Kerdegari, H.; Razaak, M.; Argyriou, V.; Remagnino, P. Smart monitoring of crops using generative adversarial networks. In
Computer Analysis of Images and Patterns; Springer: Cham, Switzerland, 2019; pp. 554–563.

83. Anand, T.; Sinha, S.; Mandal, M.; Chamola, V.; Yu, F.R. AgriSegNet: Deep aerial semantic segmentation framework for IoT-assisted
precision agriculture. IEEE Sens. J. 2021, 21, 17581–17590. [CrossRef]

84. Huang, H.; Lan, Y.; Deng, J.; Yang, A.; Deng, X.; Zhang, L.; Wen, S. A semantic labelling approach for accurate weed mapping of
high resolution UAV imagery. Sensors 2018, 18, 2113. [CrossRef] [PubMed]

85. Gao, J.; Liao, W.; Nuyttens, D.; Lootens, P.; Vangeyte, J.; Pižurica, A.; He, Y.; Pieters, J.G. Fusion of pixel and object-based features
for weed mapping using unmanned aerial vehicle imagery. Int. J. Appl. Earth Obs. Geo-Inf. 2018, 67, 43–53. [CrossRef]

86. De Castro, A.I.; Torres-Sánchez, J.; Peña, J.M.; Jiménez-Brenes, F.M.; Csillik, O.; López-Granados, F. An automatic random
forest-OBIA algorithm for early weed mapping between and within crop rows using UAV imagery. Remote Sens. 2018, 10, 28.
[CrossRef]

87. Beeharry, Y.; Bassoo, V. Performance of ANN and AlexNet for weed detection using UAV-based images. In Proceedings of the 3rd
International Conference on Emerging Trends in Electrical, Electronic and Communications Engineering (ELECOM), Balaclava,
Mauritius, 25–27 November 2020; pp. 163–167.

88. Xi, Q.I.A.O.; Li, Y.Z.; Su, G.Y.; Tian, H.K.; Zhang, S.; Sun, Z.Y.; Yang, L.; Wan, F.; Qian, W.Q. MmNet: Identifying Mikania
micrantha Kunth in the wild via a deep Convolutional Neural Network. J. Integr. Agric. 2020, 19, 1292–1300.

89. Liang, W.C.; Yang, Y.J.; Chao, C.M. Low-cost weed identification system using drones. In Proceedings of the 2019 Seventh
International Symposium on Computing and Networking Workshops (CANDARW), Nagasaki, Japan, 26–29 November 2019; pp.
260–263.

90. Tang, F.; Zhang, D.; Zhao, X. Efficiently deep learning for monitoring Ipomoea cairica (L.) sweets in the wild. Math. Biosci. Eng.
MBE 2021, 18, 1121–1135. [CrossRef] [PubMed]

http://doi.org/10.1007/s11119-018-09625-7
http://doi.org/10.3390/s17102307
http://doi.org/10.1016/j.compag.2017.05.026
http://doi.org/10.1016/j.rse.2020.112008
http://doi.org/10.1016/j.measurement.2021.109049
http://doi.org/10.1111/wre.12275
http://doi.org/10.1080/09715010.2018.1520653
http://doi.org/10.3390/agronomy11071435
http://doi.org/10.1080/01431161.2016.1230290
http://doi.org/10.1080/01431161.2016.1249311
http://doi.org/10.3390/agronomy11091809
http://doi.org/10.1109/JSEN.2021.3071290
http://doi.org/10.3390/s18072113
http://www.ncbi.nlm.nih.gov/pubmed/29966392
http://doi.org/10.1016/j.jag.2017.12.012
http://doi.org/10.3390/rs10020285
http://doi.org/10.3934/mbe.2021060
http://www.ncbi.nlm.nih.gov/pubmed/33757178


Agriculture 2021, 11, 1004 26 of 27

91. Fawakherji, M.; Potena, C.; Bloisi, D.D.; Imperoli, M.; Pretto, A.; Nardi, D. Uav image based crop and weed distribution estimation
on embedded gpu boards. In Proceedings of the International Conference on Computer Analysis of Images and Patterns, Salerno,
Italy, 3–5 September 2019; Springer: Cham, Switzerland, 2019; pp. 100–108.

92. Hamylton, S.M.; Morris, R.H.; Carvalho, R.C.; Roder, N.; Barlow, P.; Mills, K.; Wang, L. Evaluating techniques for mapping
island vegetation from unmanned aerial vehicle (UAV) images: Pixel classification, visual interpretation and machine learning
approaches. Int. J. Appl. Earth. Obs. Geo-Inf. 2020, 89, 102085. [CrossRef]

93. Chen, Y.; Hou, C.; Tang, Y.; Zhuang, J.; Lin, J.; He, Y.; Guo, Q.; Zhong, Z.; Lei, H.; Luo, S.; et al. Citrus tree segmentation from UAV
images based on monocular machine vision in a natural orchard environment. Sensors 2019, 19, 5558. [CrossRef]
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