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Abstract: Grapevine reproductive development extends over two growing seasons (vegetative cycles),
for the complete formation of inflorescences and clusters. Induction and floral differentiation, the
mechanism that leads to the formation of reproductive structures inside dormant buds, is a complex
process divided into three well-defined stages (formation of anlagen, inflorescence primordia and
flowers). This sequence of stages comprises morphological, biochemical, and physiological events,
influenced by a set of environmental and endogenous factors. Inflorescence primordia formation
determines the potential number of clusters that will be formed in the following growing season.
Thus, during bud dormancy, viticulturists and winemakers can obtain a first yield prediction through
the determination of bud fruitfulness. This information allows adjustments to be made to bud
load, promoting balanced yield and fruit quality and higher commercial value. The present review
describes the morphology and physiology of the formation of inflorescence primordia, as well as
discusses the main abiotic and biotic factors involved, including a physiological disorder known as
primary bud necrosis. In the same way, we intend to approach the more used techniques of analysis
of fruitfulness and its importance for a robust yield forecasting.

Keywords: bud differentiation; inflorescence primordia; potential yield; reproductive structures;
Vitis vinifera

1. Introduction

Grapevine (Vitis vinifera L. and interspecific hybrids) is one of the most economically
important fruit crops in the world. The sector’s sustainability, mostly devoted to wine
production (57%) [1], is greatly influenced by fluctuations in annual harvests. These yield
variations, with a high impact on berry quality, are frequently due to changes in the number
of inflorescences formed per grapevine, in the number of flowers per inflorescence, and in
the fruit set and fruit weight [2–4]. Environmental conditions (e.g., air temperature), diseases,
pests, and cultural practices (e.g., winter pruning) also have an important effect [4,5].

Winter pruning is a first viticultural practice through which yield can be regulated
and quality improved [6]. Each year, during dormancy, the bud load is adjusted according
to the bud fruitfulness in order to meet the productive objectives [7]. However, and
remarkably, grapevine reproductive development extends over two vegetative cycles
(growing seasons) (Figure 1). It begins with inflorescence primordia formation in first year
and with differentiation of the flowers, development of the clusters until the physiological
maturation of berry and seeds in following year [8].

Determined by the differentiation of anlagen in inflorescences during the first vegeta-
tive cycle, bud fruitfulness represents the first measure of productive potential, as it defines
the number of bunches that will be formed [5,9–11]. Thus, bud fruitfulness provides an
estimate of the potential yield for the following season [5,12]. It depends on the variety,
type of bud and position of the bud along the shoot whose effect manifests in terms of the
number of inflorescences per bud and size (number of flowers) [8,13]. Bud fruitfulness is
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generally lower in basal buds and gradually increases until reaching maximum values in
the 3rd and 4th bud, then decreasing [14,15]. Buds are considered fruitful when they have
at least one primordium inflorescence. Conversely, the bud is considered infertile in the
absence of inflorescence primordia or the existence of only tendril primordia and leaves [16].
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Figure 1. Grapevine reproductive cycle showing the sequence of cluster formation events over two growing seasons.

Therefore, the main objective of the present work is to provide an integrated overview
of the morphology and physiology of axillary meristems and buds, as well as the effects
of abiotic and biotic factors on the mechanisms of induction and floral differentiation. In
addition, the most used techniques of fruitfulness analysis are discussed.

2. Grapevine Buds: Morphology, Structure and Function

The development and the morphology of the grapevine buds have been described
previously [17–21]. During shoot development, an axillary bud complex can potentially
develop at the axil of a leaf (base of the petiole) [15,22]. In normal ontogeny, buds undergo
dormancy (dormant bud), except when they develop in the same season as they are
differentiated, in which case they produce a sylleptic shoot that can be fruitful, but rarely
reaches comparable quality of production [8,23].

The dormant bud remains in a state of dormancy until the following year due to
hormonal inhibition of the apex of lateral shoots [8,24]. Anatomically, the dormant buds
comprise a larger central bud, which corresponds to a primary bud and two smaller buds
(secondary and tertiary buds) on either side of the primary. Due to their complex structure,
dormant buds are also defined in the literature as compound buds. Figure 2 shows a
transverse section of a dormant bud with a primary and two secondary buds protected by
the bud scales. Generally, the primary bud develops into a new fruiting shoot in spring,
while the secondary and tertiary buds remain dormant. If the primary bud is damaged or
dies, the secondary bud may develop a shoot to compensate for the loss [25–28]. However,
these buds have a lower fruitfulness than the primary. The secondary buds may form one
or more inflorescence primordia in some varieties and tertiary buds do not usually produce
inflorescences [24,29].

The formation of the primordia of all vegetative and reproductive organs occurs inside
the dormant buds, being the whole structure well protected by a set of bracts and epidermal
hairs (protection from unfavorable weather conditions, insect damage, or diseases) [8,20,30].
After the formation of reproductive structures, dormant buds go into dormancy until
next spring when they restart their growth in response to environmental conditions, and
complete their development with the formation of flowers and berries [15,16,21,30]. These
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are the most fruitful buds, as they have undergone a long process of differentiation with
higher energy needs [8]. They usually give rise to one or two inflorescences per bud,
depending on variety, bud position in the shoot, and abiotic and biotic conditions.
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Figure 2. (A) Bud of Fernão-Pires variety during the dormant period surrounded in set of bracts
that protects them from unfavorable environmental conditions, pests, and diseases. (B) Longitudinal
section of a dormant bud of Loureiro variety obtained by dissection, showing bud position: in a
central position the primary bud (PB) and the secondary (SB) and tertiary bud (TB) on each of primary
bud. LP-Leaf primordia, IP-Inflorescence primordia.

3. Inflorescence Morphogenesis and the Appearance of Flower Primordia

The successive stages of floral initiation and differentiation have been described based
on morphological and histological studies using electronic microscopy [29,31–34]. The
formation of inflorescence and flowers is initiated in dormant buds and results from a long
process that involves three main stages, which includes two growing seasons [29].

The first stage starts with uncommitted primordia (UP) formation that is also designed
by anlage or anlagen [11,15,16,35,36]. Anlagen arises like club-shaped meristematic protu-
berance from the apices of the primary buds and it represents the first step of inflorescences
formation [19,29,36,37]. The anlagen will differentiate and can generate inflorescence
primordia or tendril primordia or, sometimes, an intermediate structure, depending on
environmental conditions and hormonal factors [11,16,29,37,38]. Then, in the second stage,
the development of anlagen starts with the formation of bract and splits into two unequal
parts; inner and outer arm. Both arms have the potential to produce inflorescence primor-
dia or tendril primordia [4,16,22]. The inflorescence primordia differentiation occurs by
extensive branching of the anlagen [19,29]. The inner arm, the adaxial portion nearer to the
apex, will have more potential to divide and form globular branch primordia, which will
give rise to the main body of the inflorescence (rachis). The branching degree of the inner
arm gradually decreases in an acropetal direction giving the inflorescence primordium a
conical shape [19,22].

The outer arm, the smaller abaxial part adjoining the bract, will give rise to either a
wing or a larger branch on the top of the cluster [29]. The branching of the outer arm is
less extensive and develops into the lowest branch of the inflorescence. The differentiated
inflorescence primordia are then formed by an axis with small protuberances in the axilla,
where are inserted the globular rudimentary branches and the future flowers to be formed,
resembling a cluster [8,39]. Both stages, crucial in bud fruitfulness, mark the beginning of
floral initiation and establish the potential number of inflorescences and subsequently the
number of clusters per bud that will be formed in the following season [21].

Flower differentiation is the third and last stage. After budburst, in the next spring, the
inflorescence primordia continue differentiation to form floral organs on individual floral
buds along the rachis [20]. Each branch of the inflorescence primordia divides successively
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and finally forms the flower initials [37,38]. The appearance of the calyx as a continuous
ring of tissue on the rim of the primordium marks the beginning of the flowering. The
calyx comprises a continuous ring of tissue, which covers the whole flower primordium
and forms an incomplete cap [19,29]. The petals, which develop at the same time as the
calyx, become lobed and make their way through the calyx cap. As each petal elongates,
cells are formed on its margins, which interlock with similar cells on the margins of the
adjacent petals to form the calyptra [19,20,37,40]. Finally, the flower is fully developed
and ready for anthesis. The arrangement of flowers on an inflorescence becomes visually
clearer when the inflorescence begins to rapidly elongate before anthesis [6,8].

4. Tendril Primordia Formation

Tendrils and inflorescence primordia derive from similar meristematic structure (ho-
mologous structures), the anlagen or uncommitted primordium, but later on, they follow a
divergent developmental pathway. When anlagen undergoes repeated branching, it gives
rise to inflorescences, while producing few branches it turns into tendrils [16,34,37]. How-
ever, the anlagen differentiation is a complex mechanism, regulated by a set of stimuli of
environmental and endogenous natures. A small imbalance in the factors involved during
anlagen differentiation can cause it to differentiate into tendrils instead of differentiating in
inflorescence primordia [16,20,38,41].

5. Factors Affecting Induction and Flower Formation

Different studies have focused on the environmental (abiotic) and endogenous (biotic)
factors that directly and indirectly influence the process of induction and differentiation
of inflorescence primordia [4,14–16,21,42]. Temperature, light, water status, and macronu-
trients availability are the environmental factors that most influence these processes. In
addition, endogenous factors such as carbohydrate reserves (source/sink regulation), hor-
monal balance, and genetics also have an important role [4,15,21]. Thus, positive stimuli
during the differentiation of anlagen will promote the inflorescence primordia development
and have decisive impacts on the fruitfulness.

5.1. Environmental Factors
5.1.1. Temperature

A strong relationship between relatively high temperatures during the differentiation of
inflorescence primordia and the number of inflorescences formed in dormant buds has been
reported [29,42–45], although varietal dependent [4,46]. Studies carried out in a temperature-
controlled environment with different varieties (Almeria, Muscat of Alexandria, Riesling,
Syrah, and Thompson Seedless) have shown that the optimum temperature interval for the
formation of inflorescences varies from 20 to 35 ◦C [47,48]. Temperatures below 20 ◦C enable
tendrils formation, reducing bud fruitfulness and yield. On the other hand, temperatures
above 30 ◦C, for at least 4 a 5 h per day, appear to be sufficient to induce the maximum
number of inflorescence [16,47–49]. Buttrose [42] concluded that the three weeks before the
anlagen formation is the critical period to high temperatures.

In addition, high temperatures are fundamental for the differentiation of the second
and third inflorescences in many varieties, including cool climate varieties [16]. More
recently, Watt, et al. [50] compared the time and extent of initiation and differentiation in
Chardonnay primary buds in cool and hot climates (showed more advanced development).

However, the mechanism by which temperature affects the initiation of inflorescences
remains unclear, although some hypotheses have been presented. Among the explanations
is the influence of temperature on the biosynthesis of gibberellins (GAs) and cytokinins
(CKs). Temperatures ranging from 25 to 35 ◦C promote CKs biosynthesis known to stimu-
late the differentiation of inflorescences [24]. Low temperatures (<20 ◦C) promotes GAs
biosynthesis, responsible for promoting vegetative growth and limit nutrient accumulation.
Another hypothesis is the influence of temperature on biochemical processes, particularly
in photosynthesis, enzymatic and respiratory activities [27,51]. The optimal temperature
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range for photosynthesis varies between 25 and 30 ◦C, depending on variety, phenology,
and pedoclimatic conditions. Temperatures above 35 ◦C negatively affect the photosynthe-
sis, as the stomata begin to close [27,52].

5.1.2. Light

Light (irradiance) has been described as a key factor for inflorescence initiation and
development in dormant buds [5,15,17,44,47–49,53]. Buttrose [47,48] found that the number
of inflorescence primordia increased with light intensity under controlled environmental
conditions (growth cabinets with different light levels and photoperiod). These results are
in agreement with other findings [44,46].

Under field conditions, the exposure of shoots to solar radiation increased the number
of inflorescence primordia in Cabernet Sauvignon, Chardonnay, Flame Seedless, and Thomp-
son Seedless varieties [46]. Conversely, low light intensity or total shading during initiation
and differentiation can reduce the number and size of inflorescence primordia [16,53,54].
May and Antcliff [55] investigated the effects of shading on Thompson Seedless and con-
cluded that a 70% reduction in light intensity for four weeks before anthesis drastically
reduced bud fruitfulness. In addition, a reduction in number and size of inflorescence
primordia occur in scion grafted onto vigorous rootstocks, that form dense canopies, subse-
quently, reduce the incidence of light inside canopies [44,56].

The importance of light in bud fruitfulness is essentially manifested by the influence
of direct radiation on leaf photosynthetic activity and carbohydrate availability. Low light
intensity reduces the amount of photoassimilates, limiting the carbohydrates supplied to
the developing buds [5,15,27,36]. Therefore, it is essential to adjust canopy management
practices, particularly trellis-training systems, shoot control, row spacing, and pruning
intensity to ensure good exposure to radiation and avoid yield losses [5,8,57].

Although the photoperiod (day length) is not a particularly determining factor in
inflorescence induction, it appears that the number of inflorescence primordia is greater
on long days than on short days in some varieties [15,19]. As an illustration, Muscat of
Alexandria showed to be a day-neutral variety while Riesling and Shiraz performed better
on long days [47].

5.1.3. Water Status

The grapevine water status impacts the induction and differentiation of inflores-
cence primordia by the direct and indirect influence that water has on biochemical and
biosynthetic processes, namely in maintaining cell turgidity, photosynthetic activity, and
nutrient and photoassimilate transport [4,15,22,24,58,59]. The adequate water availability
is reflected in improved conditions of differentiation of inflorescences contributing to an
increase in bud fruitfulness [8]. Conversely, the number and size of inflorescences are
negatively affected under water stress conditions. A study carried out in a controlled
environment showed that the number and weight of Cabernet Sauvignon inflorescences de-
creased progressively with increased plant water stress [58]. Under water stress conditions,
there is a reduction in the photosynthetic activity, and the carbohydrates produced may
not be sufficient to provide the energy required for the differentiation of inflorescences [8].
On the other hand, a moderate water stress can increase bud fruitfulness due to reduced
canopies density and improving bud light exposure, especially in the renewal zone [60].

Water stress also decreases the levels of CKs in xylem sap and increases abscisic acid
(ABA) levels in leaves and stems, contributing to an imbalance in hormonal levels, with
negative implications in the differentiation [15,19]. In response to the water stress, the
increase of ABA endogenous levels induces stomata closure, inhibiting photosynthesis [59].
The differentiation of inflorescences is also sensitive to the combined effects of nitrogen
deficiency and water stress [45].
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5.1.4. Macronutrients Availability

An adequate supply of macronutrients (nitrogen, phosphorus and potassium) is particu-
larly important to ensure optimum induction and floral differentiation and naturally increase
bud fruitfulness [27,29]. Nitrogen (N) is a fundamental element in the composition of amino
acids, which form structural proteins and enzymes, responsible for catalyzing all biochemical
reactions. Furthermore, it is also an integral element of chlorophyll and hormones [27].

The number of inflorescence primordia and the number of flowers per inflorescence
increased after N application to grapevines with low initial levels of N [19,45]. On the other
hand, excessive N nutrition translates into an increase in plant vigor and increased shading
of buds with negative effects for fruitfulness [15,61]. At the biochemical level, too much N
promotes the biosynthesis of GAs [8].

Phosphorus is an indispensable macronutrient, as it is a structural constituent of
biomolecules involved in energy metabolisms, such as nucleic acids and phospholipids [62].
Skinner and Matthews [63] found that the initiation, differentiation and maintenance of
reproductive primordia were sensitive to the deficiency of this macronutrient.

Potassium (K) is involved in numerous physiological and biochemical processes,
namely enzymatic activation, photosynthesis and plant water relations [64]. The application
of K to the soil stimulated an increased Thompson Seedless fruitfulness [65]. In another
study, K fertilization, during the first growth cycle, promoted an increase of 40–58% in the
size of inflorescence primordia, depending on the bud position [66].

5.2. Endogenous Factors
5.2.1. Carbohydrate Reserves

The number of inflorescences developed depends on the availability of sugars and
starch reserves accumulated in the perennial organs of the previous year and on the
photosynthetic activity of the current year [36,67]. In order to better understand these
relationships, different studies evaluated the effect of defoliation on the bud fruitfulness
of the following year [35,68–70]. The authors concluded that early defoliation reduced
root and trunk carbohydrate reserves associated with significant decreases (up to 50%) in
the inflorescence number per shoot and flower number per inflorescence in the following
season. The main cause for these findings may be the competition for photoassimilates
between vegetative growth and induction and floral differentiation, which occur simulta-
neously [35,68]. On the other hand, leaf removal performed at a later stage, or under dense
canopy conditions, can improve the exposure of the basal buds to light and, consequently
benefit their fruitfulness [36,71].

5.2.2. Hormonal Balance

Induction and floral differentiation are processes mediated by the interaction between
two hormones with opposed effects: GAs and CKs [15,16,22]. GAs synthesized at leaf level
are responsible for the initiation of the anlagen, but later inhibit its development as an inflo-
rescence, promoting the formation of tendrils [21,22,41]. Srinivasan and Mullins [16,37,41]
observed that in certain genotypes it is possible to convert one form into another structure
through the application of hormones or their inhibitors. Thus, exogenous application of
GAs in form of gibberellic acid in young inflorescences converts them into tendrils or
intermediate structures. On the other hand, the exogenous application of chlormequat
(a gibberellin synthesis inhibitor) promoted inflorescence formation from anlagen and
tendrils. This response can be explained by the inhibition of GAs synthesis and increases
of endogenous CKs levels in the ascending sap [19,38].

Synthesized in the roots, CKs are transported via xylem sap to the target sites directly
interfering in the differentiation of the inflorescence primordia and the different floral
pieces [15,22,29,41]. Repeated applications of CKs at the apex of shoots showed that it can
induce the formation of inflorescences in place of tendrils [16,37]. On the other hand, the
application of synthetic CKs, PBA (6-(benzylamino)-9-(2-tetrahydropyranyl)-9H-purine)
in tendril primordia isolated in vitro culture, induced the branching of these structures by
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converting them into inflorescences [38]. Similarly, in twelve varieties of Vitis vinifera and
six species of Vitis sp., the successive application of PBA at the shoot apex promoted the
formation of inflorescences in place of tendrils. Thus, CKs stimulate the development of
inflorescences from the lateral meristem, while GAs, although fundamental in the initiation
of the primordia, inhibit the development of inflorescences, favoring the formation of
tendrils [21,72]. In addition, since the hormones GAs and CKs can alter the rate of cell
division in the anlagen, a “physiological time” can be defined as opposed to “chronological
time. As an illustration, repeated pruning and N application (to stimulate vegetative growth)
and GAs application followed by CKs, which also aimed to anlagen proliferation and shoot
elongation, ended up shortening considerably time to fruitfulness of grape seedlings [73].

5.2.3. Genetic Factors

Induction and floral differentiation occur sequentially and under tight genetic con-
trol [40]. The analysis of the molecular regulatory network that controls the different
stages of reproductive development is based on the identification and functional analysis of
V. vinifera orthologous of Arabidopsis thaliana genes involved in flowering-signal integration,
establishment of flower-meristem and flower-organ identity [20,30]. Molecular studies
in V. vinifera showed that many genes expressed during flowering are also expressed in
dormant buds at the time of the initiation and differentiation of inflorescence primordia.
The ability to induce and form floral organs occurs through a complex network of nonlinear
relationships between genes and their products (proteins, miRNAs). These relationships
have been described in several species, especially in A. thaliana [74].

The flowering locus T (FT)/terminal flower 1 (TFL1) gene family has an important role
as a flowering signal integrator. This gene family homologous to the A. thaliana encodes
proteins with similarity to phosphatidylethanolamine binding proteins (PEBPs), which
function as promoter and repressor of flowering [21,75–77]. Phylogenetic analyses iden-
tified at least five members of grapevine FT/TLF1 gene family that are grouped in three
subfamilies: MFT-like, FT-like and TFL1-like. The VvFT gene (FT orthologue) is expressed
in dormant buds and during the initial stages of inflorescence development [21,75]. Addi-
tionally, VvFT and VvMFT expression are associated with meristem determination and
differentiation of organs, such as inflorescences, flowers or tendrils supporting the role of
these genes as flowering promoters. On the other hand, VvTFL1A, VvTFL1B and VvTFL1C
genes (that belong to TFL1-like family) are associated with vegetative development and
maintenance of meristem indetermination within the bud [74,75,78,79].

Early flowering can be induced when certain genes are over-suppressive. Among
the genes involved in the flowering process is the transcription factor known as VvVFL
(AtLEAFY orthologue) expressed during the anlagen of dormant buds in the Riesling
and Tempranillo varieties [21]. Some gene families are also involved in the initiation and
differentiation of inflorescence primordia and tendrils in the Cabernet Sauvignon and
Tempranillo varieties [72,80]. Among these genes, it was reported the VvSOC1 (homolo-
gous to SOC1 e A. thaliana) and VvMADS8 (a subfamily of the MADS-box gene of MADS
transcription factors that are positively regulated during the first stages of inflorescence
development and return to normal level in later stages of flowering development).

The most important hormones in the inflorescence initiation and differentiation pro-
cess, GAs and CKs, act at the transcriptional level. Genetic evidence supports the inhibiting
role of GAs in the differentiation of inflorescences, through the mutant phenotype of
gibberellin-insensitive grapevines, with a mutation in the VvGAI gene, where all the ten-
dril primordia differentiated in multiple inflorescences throughout the aerial part, even
in the buds where there was less prevalence to form tendrils. This phenotype comes
to support the hypothesis that GA-dependent signal-transduction pathway inhibit the
differentiation of inflorescences [20,30,74].

Research studies based on transcriptional analyses during the development of inflo-
rescences and tendrils, found that these two homologous organs initially share a common
transcriptional program related to cell growth and proliferation functions [72]. In more
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advanced development stages, they display specific genic expression programs related to
the differentiation processes that occur in each of them. Tendrils have a higher transcription
of genes related to photosynthesis, hormonal signaling and secondary metabolism, unlike
inflorescences that have a higher transcription of genes encoding transcription factors,
especially those belonging to the MADS-box family.

6. Analysis Techniques of Bud Fruitfulness
6.1. Bud Dissection and Histological Analysis

During dormancy, it is difficult to identify and quantify the fertility of buds, requiring
the use of specific laboratory techniques and procedures, allowing to evaluate the inflores-
cence primordia [13,43]. The dissection and histological analysis of buds, in addition to
helping to quantify the number of inflorescence primordia in each bud, allow to analyze
the bud viability, namely to diagnose possible necrosis in the tissues and to evaluate the
extent of the lesion in the tissue [26,81–83].

The dormant bud dissect method uses a stereomicroscope supported by tweezers
and a scalpel blade to easily observe and identify the inflorescence primordia [13,17,43].
However, it is a time-consuming procedure, which requires a lot of care to avoid damaging
the structure as the cuts and removal of protective structures are carried out. Small
and careful cuts are made, from top to bottom towards the base or in the longitudinal
direction to reveal the entire interior of the bud. The fragility of the primordia and the
meristems and the difficulty in removing the epidermal hairs that line these structures
and hinder visualization are the major problems. The great advantage of this technique
is that the information is immediately available after the anatomical cut of the bud. In
Australia, dissection for fruitfulness estimation is a widely used technique, with commercial
laboratories providing this service, assisting winegrowers in making decisions on the winter
pruning intensity [83].

In histological analysis, the buds are embedded in paraffin wax, sectioned, stained and
observed under an optical microscope [26,43]. Similar to another histological technique,
its success is related to the process of fixation plant material. After collecting the buds,
the scales and epidemical hairs are removed to allow the fixatives solutions and paraffin
wax to act and preserve the entire structure [43]. In order to increase the effectiveness
of the practice, bud cuts must be made in series to guarantee the visualization of all the
inflorescence primordia [13]. This is a time-consuming technique and requires equipment
and reagents at higher costs [13,17,53,81].

Although with technically different procedures, all these methods need a good knowl-
edge of the anatomy of the segment for unambiguous identification of all structures and
primordia. A poor identification or non-visualization of inflorescence can lead the operator
to mistakenly consider as infertile [13,43].

The inflorescence primordia fully developed are a small axis with many protuberances
that will give place to the flowers (Figure 3). Usually, the inflorescence primordia are near
apical meristem [39]. Microscopic analyses of buds are destructive methods. Therefore, the
evaluated buds should not be destined for production, but those that would be suppressed
in pruning [13,43]. This method can be inaccurate, especially for small buds, such as the
basal buds, which are usually the most important for pruning [43].

These techniques are also useful to analyze the bud viability, assessing the existence of
tissue damage, namely necrosis that can compromise its development [82]. The incidence
of primary bud necrosis (PBN) is one of the causes of detrimental impacts on yield, due
to the loss of the most fertile buds [15]. PBN is described as a physiological disorder
resulting in the death of the primary bud during bud initiation [5,61,82,84,85]. Although
the healthy secondary bud develops, but often less fruitful, to compensate for the loss of
the primary one, lower yields are obtained [5,28,83]. Since the external appearance of a
necrotic dormant bud is identical to a normal bud, its diagnosis and identification involve
anatomical sections to observe internal structures, through bud dissection and histological
observations [5]. Susceptibility to PBN also seems to be varietal dependent. A few studies
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reported a high PBN incidence in Shiraz [61,82], Riesling [84], and Thompson Seedless
(Sultana) varieties [86,87]. The PBN has been also associated with other factors, namely
high shoot vigor [88], rootstocks of American species of Vitis [89], exogenous application
of gibberellic acid [83,90], canopy shading [87], excessive irrigation [91] and low bud
carbohydrates content [84,89]. Thus, it is important to make an early diagnosis of PBN, so
that the number of buds left at winter pruning can be adjusted [5,28,83].
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6.2. Forcing Dormant Buds in Controlled Environmental Conditions

Forced cultivation under controlled conditions also allows an early indication of the
number of inflorescences developed in each bud [2,43,81,92]. Forcing buds presupposes
the use of two-year-old wood containing one or more dormant buds, and subjecting them
to controlled conditions of temperature, relative humidity, irradiance and photoperiod to
induce the budburst [13,81,92]. Fruitfulness is determined by simple visual observation and
counting the number of inflorescences in the young shoot. Forcing budburst of dormant
buds is a simple and expeditious method, which does not require detailed knowledge about
the anatomy of buds. However, the results are not immediate, as is necessary to wait for the
development and visualization of inflorescences [2,81]. Although the plant material can be
harvested at any time during the dormancy, in case the dormant buds have not accumulated
enough chilling hours, the cuttings must be subjected to a chemical or physical agent to
break the dormancy artificially. This process promotes the budburst to occur more quickly
and homogeneously. In case the cuttings are collected close to budburst onset, the chilling
requirements are already being fulfilled [43]. Low percentage budburst and fruitfulness of
the base buds in some varieties represents a limitation to the use of this methodology [2].

7. Conclusions

The yield fluctuations verified annually are the result of a set of abiotic and biotic
factors that influence the formation and development of grapevine reproductive organs.
One of the starting points to minimize yield irregularities is prior knowledge of bud
fruitfulness. During the dormancy, the dormant buds contain a specific number of all
reproductive and vegetative organs that constitute the future shoots. At this phenological
stage, identifying and quantifying the number of inflorescences allows knowing the number
of clusters to be formed. This information permits the first advance yield estimation, which
brings advantages mainly in the adjustment of the crop load at winter pruning. Although
the identification of bud fruitfulness is not possible by direct observation during dormancy,
methods of budburst forcing or laboratory techniques and procedures make it possible.

Even though early yield estimation based on bud fruitfulness is a useful tool for
viticulturists and winegrowers, it does not take into account the detrimental impacts that
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may occur later on the season, caused by factors such as severe weather conditions (e.g.,
hail damage), incidence of pests and diseases and eventually incorrect cultural practices.
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