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Abstract: The accurate classification of Amanita is helpful to its research on biological control and
medical value, and it can also prevent mushroom poisoning incidents. In this paper, we constructed
the Bilinear convolutional neural networks (B-CNN) with attention mechanism model based on
transfer learning to realize the classification of Amanita. When the model is trained, the weight on
ImageNet is used for pre-training, and the Adam optimizer is used to update network parameters.
In the test process, images of Amanita at different growth stages were used to further test the
generalization ability of the model. After comparing our model with other models, the results show
that our model greatly reduces the number of parameters while achieving high accuracy (95.2%) and
has good generalization ability. It is an efficient classification model, which provides a new option
for mushroom classification in areas with limited computing resources.

Keywords: deep learning; bilinear convolutional neural networks; attention mechanism; trans-
fer learning

1. Introduction

Amanita is a large fungus, which is an important part of natural medicine resources.
At present, using the characteristics of amatoxins to control and treat tumors is a promising
method [1–3]. Amanita muscaria is a famous hallucinogenic mushroom, which can be used
to develop special drugs for anesthesia and sedation [4]. In terms of biological control, the
toxins contained in Amanita albicans and Amanita muscaria have certain trapping and killing
effects on insects or agricultural pests [3,5]. At present, there is no artificially cultivated
Amanita, the amatoxins needed in scientific research can only be extracted from fruit bodies
collected in the field [6–8]. Moreover, due to the lack of knowledge and ability to identify
poisonous mushrooms, there are a number of cases of poisoning death from eating wild
mushrooms every year [9–13]. In Europe, 95% of mushroom poisoning deaths are caused
by poisonous Amanita [14,15]. Therefore, it is necessary to accurately classify and identify
them both in terms of use value and poisoning prevention.

Many researchers have contributed to the classification of mushrooms. For example,
Ismail [16] studied the characteristics of mushrooms, such as the shape, surface and color
of the cap, roots and stems, and used the principal component analysis (PCA) algorithm
to select the best features for the classification experiment using the decision tree (DT)
algorithm. Pranjal Maurya [17] used a support vector machine (SVM) classifier to distin-
guish edible and poisonous mushrooms, with an accuracy of 76.6%. Xiao [18] used the
Shuf-fleNetV2 model to quickly identify the toxicity of wild bacteria. The accuracy of the
model is 55.18% for Top-1 and 93.55% for Top-5. Chen [19] used the Keras platform to build
a convolutional neural network (CNN) for end-to-end model training and migrated to the
Android end to realize mushroom recognition on the mobile end, but the recognition effect
of his model was poor. Preechasuk J [20] proposed a new model of classifying 45 types of
mushrooms including edible and poisonous mushrooms by using a technique of CNN,
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which gives the results of 0.78, 0.73 and 0.74 of precision, recall and F1 score, respectively.
Dong J [21] proposed a CNN model that can detect qualified and three common types of
substandard enoki mushroom caps and achieved 98.35% accuracy. However, this model is
suitable for few types of mushrooms, and the cap must be detected.

Since the method based on the visual attention mechanism [22,23] can locate the
distinguishable areas in the image without additional annotation information, it has been
widely used in the field of fine-grained classification of images in recent years. At present,
the mainstream attention mechanism can be divided into the following three types: channel
attention, spatial attention and self-attention.

Channel attention aims to show the correlation between different channels. In a
convolutional neural network, each image is initially represented by three channels (R,
G, B) [24]. After different convolution kernels are processed, each channel will generate
a new channel with different information. Channel attention automatically obtains the
importance of each feature channel through network learning, and finally assigns different
weight coefficients to each channel. It can achieve the purpose of strengthening important
channels and suppressing non-important channels.

Spatial Attention is designed to enhance the spatial characteristics of expression of
critical areas. DeepMind designed a Spatial Transformer Layer (STL) to realize spatial
invariance [25,26]. Its principle is to transform the spatial information in the original
picture into another space and retain the key information through STL. Then, generate
a weight mask for each position and weigh the output. This method can enhance the
specific target area of interest while weakening the irrelevant background area to extract
the key information.

Self-attention reduces the dependence on external information and uses the inherent
information within the feature to interact with attention as much as possible [27,28]. How-
ever, the disadvantage of this method is that every point must capture global contextual
information, which will cause a lot of computational complexity and memory capacity, and
the information on the channel is not considered.

In this paper, a method of CNN combined with an attention mechanism is proposed
to solve the problem of difficult classification and identification of Amanita. The specific
contributions and innovations are as follows:

(1) A self-built Amanita dataset that is 3219 Amanita images obtained from the Internet
and divided.

(2) The Bilinear convolutional neural networks model was built and fine-tuned to make
the model more suitable for the dataset.

(3) The Bilinear convolutional neural networks model is combined with the attention
mechanism to improve the model. This method can quickly obtain the most effec-
tive information.

2. Materials and Methods
2.1. Image Dataset

In this paper, the original dataset comes from two sources. On the one hand, it is
a downloaded mushroom dataset from the Kaggle platform. The data on Kaggle are a
public data source and have a certain degree of authority. Special thanks are owed to the
Nordic Society of Mycologists, who provided the most common mushroom sources in the
region on Kaggle and checked the data and labels. We choose the Amanita dataset based on
the label of the mushroom dataset. Another dataset of mushroom images was collected
from http://www.mushroom.world (accessed on 24 September 2020). We searched the
mushroom database on this website based on the name of the mushroom. Then, we
recorded the color and structure of the cap of Amanita (such as egg-shaped, unfolded cap,
umbrella-shaped, spherical) according to [29] to confirm the type of Amanita again. Finally,
the dataset of Amanita was obtained, as shown in Table 1.

http://www.mushroom.world
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Table 1. Seven species of Amanita and the number of samples of each species.

Varieties Amanitabisporigera Amanitavaginata Amanita
caesarea

Amanita
echinocephala

Amanita
muscaria

Amanita
phalloides

Amanita
pantherina

Sample
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Figure 1. Images after data augmentation. (a) Original image; (b–e) effect image after data augmentation. 

2.3. Method 
2.3.1. The Efficient Net Model 

The Efficient Net [32] was proposed by the google team in 2019. Through compre-
hensive optimization of network width, depth, and input image resolution to achieve the 
goal of index improvement. It has fewer model parameters, but higher accuracy. 

EfficientNet-B4 was selected through comprehensive consideration of the parame-
ters and accuracy of the 8 models (EfficientNet-B0 to B7) by consulting the literature 
[33,34]. The network structure of EfficientNet-B4 is shown in Figure 2. 
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Quantity
(pieces) 725 303 289 463 731 400 299

In the paper, in order to make the model more applicable to the wild environment,
most of the data pictures are Amanita growing in the wild environment, but also include
some pictures of Amanita that were picked by hand.

2.2. Data Augmentation

There are seven kinds of Amanita in the original dataset, a total of 3219 pictures. All
samples are randomly divided into training and test dataset according to a ratio of 8:2.

Training convolutional neural networks requires a lot of image data to prevent over-
fitting. Therefore, in this paper, the input image data are enhanced by using the built-in
ImageDataGenerator [30,31] interface of Tensorflow2.0. The purpose of increasing the
number of images is achieved by combining random rotation, translation, cutting and other
operations, as shown in Figure 1b–e. This method roughly increases the number of images
by 6 times.
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2.3. Method
2.3.1. The Efficient Net Model

The Efficient Net [32] was proposed by the google team in 2019. Through comprehen-
sive optimization of network width, depth, and input image resolution to achieve the goal
of index improvement. It has fewer model parameters, but higher accuracy.

EfficientNet-B4 was selected through comprehensive consideration of the parameters
and accuracy of the 8 models (EfficientNet-B0 to B7) by consulting the literature [33,34].
The network structure of EfficientNet-B4 is shown in Figure 2.
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2.3.2. Bilinear Convolutional Neural Networks

The Bilinear convolutional neural networks (B-CNN) [35,36] proposed by Lin in 2015
is a representative of weakly supervised fine-grained classification. Its network structure is
shown in Figure 3. It used two A and B two-way convolutional neural networks to extract
two features at each position of the image, then multiply the outer product, and finally
classify through the classification layer.
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Figure 3. Image classification using a B-CNN.

The models are coordinated with each other through the CNN A and CNN B networks.
The function of CNN A is to locate the feature parts of the image, and CNN B is used to
extract the features of the feature regions detected by CNN A [37]. In this way, the local
detection and feature extraction tasks in the fine-grained image classification process can
be completed.

2.3.3. Visual Attention Mechanism

In this paper, we chose to use Mixed attention, which combines multiple attention
mechanisms. It can bring better performance to a certain extent. An excellent work in this
area is the Convolutional Attention Mechanism Module (CBAM) [38], which is based on
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the channel attention module (CAM) and connected with a spatial attention module (SAM).
CAM and SAM are shown in Figure 4.
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CAM uses the max-pooling output and the average-pooling output through the
shared network [39]. SAM generates two feature maps representing different information
by performing global average pooling and global maximum pooling operations. After
merging the two feature maps, the feature fusion is performed through a 7 × 7 convolution
with a larger receptive field, and finally the weight map is generated by the Sigmoid
operation and superimposed back onto the original input feature map [40]. It achieves the
purpose of enhancing the target area.

2.3.4. Our Model

In this paper, a bilinear EfficientNet-B4 model is built and combined with the con-
volutional attention mechanism module (CBAM), CBAM as shown in Figure 5, which
is a combination of spatial and channel modules. The structure of adding the attention
mechanism to the bilinear model is shown in Figure 6.

The overall process of using the model is:

(1) Use the EfficientNet-B4 network architecture to extract the feature layer after data
expansion of the input image.

(2) Combining the output result of the convolutional layer with CBAM, it will first pass a
channel attention module to obtain the weighted result, then pass through a spatial
attention module, and finally obtain the extracted result by weighting.

(3) Multiply the extraction results obtained by CBAM with the feature layer one by one.
(4) Join the fully connected layer for classification to obtain the final classification result.
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2.4. Parameters and Index

In the choice of the optimizer, we compared the two optimizers stochastic gradient
descent (SGD) [41] and adaptive moment estimation (Adam) [42], and found that the
performance of the model decreased by about 1% when the SGD optimizer with a set
learning rate of 0.001 and momentum of 0.95 was used, so we choose the Adam optimizer
with hyperparameters beta_1 = 0.9, beta_2 = 0.999, epsilon =1 × 10−8, decay = 0.0 as the
optimizer of models. In order to compare the accuracy and efficiency of different models,
we used unified hyperparameters to train different network models (Table 2).

Table 2. Training parameters of models.

Item Optimization
Method

Initial Learning
Rate Loss Batch

Size
Training
Epochs Metrics

Value Adam 0.0001 Categorical-
Crossentropy 32 20 Accuracy

The simplest and most commonly used metric for evaluating classification models
is accuracy, but precision and recall are also needed to evaluate the quality of the model.
Precision [43] can be understood as the number of correctly predicted Amanita species
images divided by the number of Amanita images predicted by the classifier. Recall [44]
is the percentage of the number of correctly predicted Amanita species images to the total
number of images actually belonging to the category of Amanita images. F1−score is the
harmonic mean of precision and recall. Accuracy, Precision, Recall, and F1−score are defined
as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1−score = 2· Precision·Recall
Precison + Recall

(4)

where TP and TN represent the Amanita image correctly classified; FP and FN indicate that
the image of Amanita is misclassified.
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3. Experimental Results and Discussion
3.1. Model Training

In this paper, the experimental environment is on the Google Colaboratory platform,
which uses Tesla K80 GPU resources. The programming environment is Python3, and the
framework structure is Keras 2.1.6 and Tensorflow 1.6.

The specific model training steps are as follows:

• Data loading;

A batch of Amanita pictures (32 pictures) were randomly loaded from the training
dataset for subsequent data processing.

• Image preprocessing;

Preprocess the image to change the image size to 224 × 224 × 3. Then, put it through
the Tensorflow2.0 built-in ImageDataGenerator for data enhancement.

• Define the model structure and load the pre-training weights;

Load the model (such as EfficientNet-B4) and fine-tune the model. Change the fully
connected layer to a custom layer and modify the Softmax layer to seven layers according
to the number of classifications required. In this paper, different layers are frozen according
to the different models, and the method of transfer learning [45] is used to perform pre-
training with Imagenet weights.

• Start training;

Before training the model, it is necessary to set the hyperparameters and optimizers
related to the network structure. Pass the training dataset pictures (as shown in Figure 7)
to the neural network for training. Among them, the feature map of the first convolutional
layer (as shown in Figure 8), after one round of model training, obtains the loss and
accuracy of the training dataset.

• Stop training;

This experiment is to avoid overtraining the network. An early stopping strategy is
set, and the loss is verified by monitoring the training process. When the verification loss
does not change within five rounds or the model training reaches the preset value, the
model will stop training.

Agriculture 2021, 11, x FOR PEER REVIEW 7 of 14 
 

 

1 2score
Precision RecallF
Precison Recall−

⋅= ⋅
+

 (4) 

where TP and TN represent the Amanita image correctly classified; FP and FN indicate 
that the image of Amanita is misclassified. 

3. Experimental Results and Discussion 
3.1. Model Training 

In this paper, the experimental environment is on the Google Colaboratory platform, 
which uses Tesla K80 GPU resources. The programming environment is Python3, and the 
framework structure is Keras 2.1.6 and Tensorflow 1.6. 

The specific model training steps are as follows: 
• Data loading; 

A batch of Amanita pictures (32 pictures) were randomly loaded from the training 
dataset for subsequent data processing. 
• Image preprocessing; 

Preprocess the image to change the image size to 224 × 224 × 3. Then, put it through 
the Tensorflow2.0 built-in ImageDataGenerator for data enhancement. 
• Define the model structure and load the pre-training weights; 

Load the model (such as EfficientNet-B4) and fine-tune the model. Change the fully 
connected layer to a custom layer and modify the Softmax layer to seven layers according 
to the number of classifications required. In this paper, different layers are frozen accord-
ing to the different models, and the method of transfer learning [45] is used to perform 
pre-training with Imagenet weights. 
• Start training; 

Before training the model, it is necessary to set the hyperparameters and optimizers 
related to the network structure. Pass the training dataset pictures (as shown in Figure 7) 
to the neural network for training. Among them, the feature map of the first convolutional 
layer (as shown in Figure 8), after one round of model training, obtains the loss and accu-
racy of the training dataset. 
• Stop training; 

This experiment is to avoid overtraining the network. An early stopping strategy is 
set, and the loss is verified by monitoring the training process. When the verification loss 
does not change within five rounds or the model training reaches the preset value, the 
model will stop training. 

 
Figure 7. Input image diagram. Figure 7. Input image diagram.



Agriculture 2021, 11, 393 8 of 13Agriculture 2021, 11, x FOR PEER REVIEW 8 of 14 
 

 

 

Figure 8. The first layer of convolutional layer feature map. 

3.2. Comparison of Modeling Methods 
In order to verify the performance of the model, we compared the proposed model 

with other CNN models on the dataset. The structure and parameters of these models are 
shown in Table 3. 

Table 3. Some parameters of these models. 

Model Classification 
Layer 

Number of Parameters, M 
Size, MB 

Total Trainable 
VGG-16 2 *(Fc 2048) 70.3 68.6 268 

ResNet-50 Fc 2048 229.1 228.9 874 
ENB4 * Fc 2048 21.4 21.1 82 

VGG-16 + VGG-16 Fc 1024 283.2 275.6 1080 
VGG-16 + ResNet-50 Fc 1024 305.7 277.8 1167 

ENB4 + ENB4 Fc 1024 19.6 19.4 130 
ENB4 + CBAM  Fc 1024 19.6 19.4 75 

ENB4 + ENB4 + CBAM Fc 1024 19.7 19.4 130 
* ENB4 = EfficientNet-B4. 

In this paper, the steps of the comparison experiment are: (1) Use the VGGnet model 
with 16 layers (VGG-16) [46], the Residual Network with 50 layers (ResNet-50) [47], com-
pare these two network models with EfficientNet-B4. (2) Combine the bilinear model to 
build a bilinear EfficientNet-B4, compare the bilinear VGG-16 model (B-CNN(VGG-16, 
VGG-16)) and the B-CNN(VGG-16, ResNet-50) model. (3) Add an attention mechanism to 
the model, conduct a comparative experiment, and discuss the effect of adding an atten-
tion mechanism. 

Figure 9 shows the changes in loss and accuracy during training and testing. Table 4 
compares the results of different methods. The comprehensive chart can be used to draw 
the following conclusions: 
(1) The EfficientNet-B4 is superior to VGG-16 and Resnet-50 in terms of accuracy, model 

parameters and model size. 
(2) On this basis, the bilinear structure was studied and used, and it was found that B-

CNN(VGG-16, ResNet-50) has good accuracy. However, it has the largest number of 
parameters in the model used, and the size of the model is also very large. However, 

Figure 8. The first layer of convolutional layer feature map.

3.2. Comparison of Modeling Methods

In order to verify the performance of the model, we compared the proposed model
with other CNN models on the dataset. The structure and parameters of these models are
shown in Table 3.

Table 3. Some parameters of these models.

Model Classification Layer
Number of Parameters, M

Size, MB
Total Trainable

VGG-16 2 *(Fc 2048) 70.3 68.6 268
ResNet-50 Fc 2048 229.1 228.9 874

ENB4 * Fc 2048 21.4 21.1 82
VGG-16 + VGG-16 Fc 1024 283.2 275.6 1080

VGG-16 + ResNet-50 Fc 1024 305.7 277.8 1167
ENB4 + ENB4 Fc 1024 19.6 19.4 130
ENB4 + CBAM Fc 1024 19.6 19.4 75

ENB4 + ENB4 + CBAM Fc 1024 19.7 19.4 130
* ENB4 = EfficientNet-B4.

In this paper, the steps of the comparison experiment are: (1) Use the VGGnet model
with 16 layers (VGG-16) [46], the Residual Network with 50 layers (ResNet-50) [47], com-
pare these two network models with EfficientNet-B4. (2) Combine the bilinear model to
build a bilinear EfficientNet-B4, compare the bilinear VGG-16 model (B-CNN(VGG-16,
VGG-16)) and the B-CNN(VGG-16, ResNet-50) model. (3) Add an attention mechanism
to the model, conduct a comparative experiment, and discuss the effect of adding an
attention mechanism.

Figure 9 shows the changes in loss and accuracy during training and testing. Table 4
compares the results of different methods. The comprehensive chart can be used to draw
the following conclusions:

(1) The EfficientNet-B4 is superior to VGG-16 and Resnet-50 in terms of accuracy, model
parameters and model size.

(2) On this basis, the bilinear structure was studied and used, and it was found that
B-CNN(VGG-16, ResNet-50) has good accuracy. However, it has the largest number of
parameters in the model used, and the size of the model is also very large. However,
Bilinear EfficientNet-B4 has a good performance in accuracy, model size and number
of parameters.

(3) For EfficientNet-B4 (accuracy rate is 92.76%), after adding the attention mechanism, its
accuracy rate is 93.53%, which improves the accuracy rate by 0.77%; after combining
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the bilinear structure and attention mechanism, its accuracy rate is 95.2%, an increase
of 1.77%. In general, adding an attention mechanism to the model will increase the
accuracy by about 1% and can reduce the time by 0.5 s.
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In addition, by comparing the first five rounds of training and testing in Figure 9, it
can be found that the accuracy of the test is slightly higher than that of the training. The
main reason is that the network is initialized with pre-trained weights. Therefore, the
model has better feature extraction capabilities in the first few rounds of testing.
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Table 4. Comparison of 8 models’ Amanita classification results.

Model
Accuracy (%)

Precision (%) Recall (%) F1−score Time, s/Frame
Train Test

VGG-16 93.89 89.66 90.03 88.01 89.01 2.41
ResNet-50 94.19 89.98 90.1 90.24 90.17 2.63

ENB4 * 95.7 92.76 92.01 92.13 92.07 5.06
VGG-16 + VGG-16 94.77 92.94 91.09 91.76 91.42 6.89

VGG-16 + ResNet-50 96.94 93.27 92.19 93.6 92.89 7.21
ENB4 + ENB4 97.57 94.35 93.61 93.9 93.76 5.14
ENB4 + CBAM 97.13 93.53 92.83 93.67 93.25 4.47

ENB4 + ENB4 + CBAM 99.4 95.2 94.5 94.6 94.6 4.56

* ENB4 = EfficientNet-B4.

3.3. Model Test Results

Not all objects are equally difficult to classify, so it is necessary to observe the accuracy
of each category and the confusion between categories. In the test dataset, there are 638
pictures, and the Bilinear EfficientNet-B4 with the attention model is used to obtain the
confusion matrix as shown in Figure 10.
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It can be seen from Figure 10 that it is difficult to classify among the three types
of Amanita vaginata, Amanita bisporigera and Amanita phalloides, resulting in the lowest
accuracy and recall rate of Amanita vaginata. Observing the dataset found that there are
three main reasons:

(1) Amanita vaginata and pure white Amanita bisporigera are similar in shape and feature,
except for the difference in color on the surface of the fungus cap. The shapes of
Amanita vaginata, Amanita bisporigera and Amanita phalloides are very similar in their
juvenile period.
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(2) Some pictures of Amanita vaginata are overexposed and the pictures are white. At
this time, the characteristics are very similar to Amanita bisporigera, so part of Amanita
vaginata is classified as Amanita bisporigera.

(3) The base of this category in the test dataset is not large.

In addition, the accuracy and recall rate of Amanita muscaria reached 1.0 and 0.959,
indicating that this model is most suitable for identifying this type of Amanita.

In order to test the robustness of the classifier, we used other types of mushroom
pictures and non-mushroom pictures for classification. Since the unknown class is not
added to the data set at the beginning of training, when the classifier classifies an un-
known category, it will be forced to be classified as a class in the data set. Therefore, the
robustness of the model can be identified according to the probability of the unknown
class classification.

The test results of non-mushrooms are shown in Table 5. Combining the classification
results with the data set pictures, it can be found that when, the shape is different from
the Amanita, it will be divided according to the color of the object. For example, when a
white cat image is used for the classification test, the test result is Amanita bisporigera. This
is because the color of Amanita bisporigera is white. However, its predicted value is 53%.
Using seven kinds of pictures for classification, it can be found that the predicted value is
relatively low (<55%).

Common edible fungi were used for classification prediction and the test results are
shown in Table 6. We can see that when using other mushroom images for classification,
their predicted values are generally higher than those in Table 5. This is because they have
a higher degree of similarity in appearance. However, in general, when we use the pictures
of the Amanita species in the data set for classification prediction, the prediction probability
is often more than 97%. Therefore, when the prediction probability is less than a certain
value, we can treat the prediction result as an unknown class.

Table 5. Non-mushroom classification.

Varieties
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4. Conclusions

In this paper, eight different convolutional neural networks are used to classify
seven different Amanita species. In order to select Amanita suitable for growing in the
wild environment, the speed and accuracy of eight classification models were compared.
These results show that the classifier based on deep learning is quite suitable for Amanita
classification.

In this paper, we used simple models (VGG, ResNet, EfficientNet) for classification
and found that the accuracy of these models is not particularly good. Therefore, the Bilinear
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Networks model is proposed. After building the B-CNN, we found that, although the
accuracy of the model has improved, the size of the model is larger and the training time is
longer. Therefore, we chose to add an attention mechanism to the model to improve the
speed and accuracy of model training.

After comprehensive comparison of models, we found that the best model is B-CNN
(EfficientNet-B4, EfficientNet-B4) which adds CBAM. After training, the accuracy of the
training set is 99.3%, and the accuracy of the test set is 95.2%, which can solve the problem
of difficult image classification of Amanita in the complex environment of the wild to a
certain extent. It can provide a certain basis for future classification and identification
of mushrooms with high similarity, and its model size is 130 MB. The presented model
processed pictures in 4.56 s, which facilitates its application in mobile devices.
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