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Abstract: UNSODA, a free international soil database, is very popular and has been used in many
fields. However, missing soil property data have limited the utility of this dataset, especially for
data-driven models. Here, three machine learning-based methods, i.e., random forest (RF) regression,
support vector (SVR) regression, and artificial neural network (ANN) regression, and two statistics-
based methods, i.e., mean and multiple imputation (MI), were used to impute the missing soil
property data, including pH, saturated hydraulic conductivity (SHC), organic matter content (OMC),
porosity (PO), and particle density (PD). The missing upper depths (DU) and lower depths (DL)
for the sampling locations were also imputed. Before imputing the missing values in UNSODA,
a missing value simulation was performed and evaluated quantitatively. Next, nonparametric
tests and multiple linear regression were performed to qualitatively evaluate the reliability of these
five imputation methods. Results showed that RMSEs and MAEs of all features fluctuated within
acceptable ranges. RF imputation and MI presented the lowest RMSEs and MAEs; both methods are
good at explaining the variability of data. The standard error, coefficient of variance, and standard
deviation decreased significantly after imputation, and there were no significant differences before
and after imputation. Together, DU, pH, SHC, OMC, PO, and PD explained 91.0%, 63.9%, 88.5%,
59.4%, and 90.2% of the variation in BD using RF, SVR, ANN, mean, and MI, respectively; and this
value was 99.8% when missing values were discarded. This study suggests that the RF and MI
methods may be better for imputing the missing data in UNSODA.

Keywords: UNSODA; missing data; random forests (RF); support vector (SVR); artificial neural
network (ANN); multiple imputation (MI)

1. Introduction

Soil properties, including bulk density (BD), water content (WC), particle density (PD),
porosity (PO), saturated hydraulic conductivity (SHC), organic matter content (OMC), and
pH, can be divided into physical properties and chemical properties [1]. OMC and pH are
the most important chemical properties. They have significant effects on plant growth [2–4].
Physical properties, such as SHC, BD, WC, PD, and PO are frequently measured to calculate
soil’s hydraulic properties [5–9] or to characterize soil compaction [10,11]. BD is also
widely used as an essential parameter for soil weight-to-volume conversion, especially
when calculating the carbon and nutrient contents of a soil layer [12]. SHC is also used to
calculate water flux in a soil profile and to design irrigation and drainage systems [13].

In theory, data on these soil properties can be obtained directly through experiments,
but in practice, direct measurements are difficult and labor-intensive, and the data are highly
variable, particularly for properties such as BD [12,14–17]. In addition, the measurement of
soil–water characteristic curves and unsaturated soil hydraulic conductivity is also time-
consuming and labor-intensive [9,18]. For these reasons, methods have been developed
to use property data with low variability to estimate soil properties which are difficult to
measure directly; these estimation methods are called pedotransfer functions (PFTs) [19,20],
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and they are commonly data-driven. One of the advantages of these data-driven models
is that they are usually far more flexible than standard statistical models and can capture
higher-order interactions between the data, resulting in better predictions. For this reason,
the role of soil property data is becoming more and more important, and a number of soil
property datasets have been established. Among them, the Unsaturated Soil Database
(UNSODA) [21,22], the European Database of Soil Hydraulic Properties (HYPRES) [23] ,
SoilVision, and the Harmonized World Soil Database (HWSD) [24] are the most representa-
tive. The UNSODA database has been widely used because it provides a large amount of
information free of charge. For example, Huang and Zhang [25], Hwang and Powers [26],
Hwang et al. [27], Mohammadi and Vanclooster [28], and Chang and Cheng [29] predicted
SWCCs using particle size distribution data; Ghanbarian-Alavijeh et al. [30] used soil tex-
ture data; and Haverkamp et al. [31], Seki [32], Ghanbarian and Hunt [33], Pham et al. [34],
and Vaz et al. [35] used soil properties such as BD, PO, and others.

However, there are missing soil property data in UNSODA for pH [pH] (pH), satu-
rated hydraulic conductivity [k_sat] (SHC), organic matter content [OM_content] (OMC),
porosity [porosity] (PO), particle density [particle_density] (PD), and bulk density [bulk_
density] (BD). The square brackets represent the features in the original tables and round
brackets represent the features used in this study.

Missing data, a real-world problem often encountered in scientific settings, is prob-
lematic because many statistical analyses require complete data. Researchers who want
to perform a statistical analysis that requires complete data are forced to choose between
imputating data and discarding missing values; the latter is the most common method of
using the UNSODA. However, discarding missing data may not be reasonable when the
proportion of missing data is not small, as valuable information may be lost and inferential
power compromised [36]. According to Strike et al. [37] and Raymond and Roberts [38],
when the dataset contains a very small amount of missing data, e.g., the missing rate
is less than 10% or 15% across the whole dataset, missing data can simply be removed
without loss of valuable information. However, when the missing rate exceeds 15%, the
missing information may reduce insights into the data [39], especially when dealing with
the extraction of knowledge from a given dataset; therefore, careful consideration should
be given to handling of missing data. Missing values are of different types, and some of
them are discussed below [40]:

(i) Missing completely at random (MCAR): The missing data are not related to known
values. With this type of missing data, we assume that a whole distribution of data is
completely missing.

(ii) Missing at random (MAR): The missing value depends on an already known value
and does not depend upon the missing value itself.

(iii) Not missing at random (NMAR): The missing value does not depend upon any given
or missing value.

These different types of anomaly generally arise from different sources. Data MCAR
may arise from sensor recording failure, and there may be no other data dependent on the
missing data. By contrast, MAR may arise when some survey questions are not answered,
yet there are other questions related to the unanswered items.

The data in UNSODA were mainly contributed by individual scientists, and some of
the datasets were taken from the literature. A questionnaire based on suggestions from
participants at an international workshop on soil hydraulic properties held in Riverside in
1989 was also used to request information for UNSODA [22,41].

The above discussion explains how UNSODA was created, but we still cannot confirm
its type(s) of missing data. For imputation purposes, the missing values in UNSODA were
supposed to be MAR.

The objective of this paper was to impute missing values in UNSODA; to our knowl-
edge, this work has not been undertaken previously. The main missing features, such as
pH, SHC, OMC, PO, and PD, were all included. After reviewing of existing missing value
imputation techniques, we used the random forest (RF) regression method to impute the
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missing values in UNSOD. Its performance was then compared with the performances of
both machine learning-based methods, i.e., support vector (SVR) regression and artificial
neural network (ANN) regression, and statistics-based methods, i.e., mean and multiple
imputation (MI) methods.

2. A Brief Review of Existing Missing Value Imputation Techniques

Imputation methods involve replacing one missing value with another value that
has been estimated based on data mining of available information in the dataset [39].
Imputation methods can be divided into single and multiple imputation methods based on
the number of values imputed [39,42]. According to the construction approach used for
data imputation, these technologies can also be classified into statistics-based and machine
learning-based (or model-based) methods [39]; the details of these approaches are listed
in Table 1.

Statistics-based methods are a popular approach for missing data imputation in
which a statistic (such as mean) is calculated for each column, and all missing values
for that column are replaced with the statistic. The MI method is another widely used
statistics-based method, which was first proposed by Rubin in the late 1970s [43]. Instead of
imputing a single value for each missing data, multiple imputation creates many completed
candidate datasets according to the missing data case, and then combines these candidate
datasets into one estimate for the missing data. Machine learning techniques, such as the
k nearest neighbor (KNN), RF, ANN, and SVR methods, have been widely employed in
the last 20 years [44]. It should be noted that KNN approaches tend to perform poorly in
high-dimensional and large-scale data settings.

Table 1. The main statistical-based and machine learning based imputation methods.

Statistics-Based Machine Learning-Based

Expectation maximization (EM) [45] Random forest (RF) * [36,46]
Hot deck (HD) [47,48] Artificial neural networks (ANN) * [49]
Multiple imputation (MI) * [50] Support vector regression (SVR) * [51]
Mean/mode * [52] K-nearest neighbor (KNN) [53]
Gaussian mixture model (GMM) [54] Decision tree (DT) [55]

Clustering [55,56]
Note: * the imputation method used in this study.

3. The UNSODA Dataset and Procedure for Missing Value Imputation
3.1. The UNSODA Dataset

The structure of the database, names of tables, and links between tables are sum-
marized in Figure 1. The main table of UNSODA is called “general”. It holds essential
information about the soils, such as the geographic location, texture, classification, and
environment of each. The “soil_properties” table contains physical and chemical properties
for each soil, such as pH, SHC, OMC, PO, PD, and BD. Table 2 summarizes the statistical
descriptions for the distribution of soil properties. Figure 2 presents the available sample
size, total sample size, and missing proportion of each soil property. Table 2 and Figure 2
show that there are a number of missing values for BD, PD, PO, SHC, OMC, and pH, and
the missing proportions for these features are 0.0354, 0.4949, 0.5316, 0.4570, 0.5089, and
0.6203, respectively. To analyze the relationships between variables as comprehensively as
possible, the upper depth [depth_upper] (DU) and lower depth [depth_lower] (DL) of the
sampling locations are specified. The missing proportions of DU and DL are only 0.1329
and 0.1329, respectively. It should be noted that the sample size used in this study was
smaller than available sample size. The main reason was that the available sample was
deleted when the corresponding BD was missing.
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General           available sample

code                                790

series                               790

texture                             776

structure                          347

depth_upper                    685

depth_lower                    685

horizon                            651

depth_water                    132

Location                          758

site_ID                             688

annual_rain                      438

avetemp_jan                    308

avetemp_jul                     309

data                                  613

publication_ID                790

keyword                          735

contact person_ID          790

Rating                             313

rated_by                          258

code                                790

Bulk_density                  762

Particle_density              399

Porosity                          370

OM_content                   388 

k_sat                              429    

theta_sat                         305    

CEC                                150

pH                                  300

electrolyte_level              26

SAR                                  80

ESP                                   19

EC                                     62

Free_Fe_AI_oxide           14            

Soil_properties available sample

xxx-yyy-h-t*

code

preshead

theta

xxx-yyy-h-k*

code

preshead

conductivity

xxx-yyy-t-k*

code

theta

conductivity

xxx-yyy-t-d*

code

theta

diffusivity

PSD                 available sample

code                                            713

Particle_size                             4174

Particle_fraction                       4174

ASD                 available sample

code                                              10

dry_aggregate_size                       71

dry_aggregate_percentage            71

Mineralogy       available sample

code                                              32

mineral_type                               105

Mineral_fraction                         105

Summary_of_tabular_data
code

(summary of the available data pairs 

for each data)

*xxx: lab or field

yyy: drying or wetting

comment_general                  212

comment_soil_properties      133

comment_field_general           48

comment_field_wat_ret            7

comment_field_hydr_cond       5

comment_field_sat_cond          7

comment_lab_general            144

comment_lab_wet_ret             24

comment_lab_hydr_cond        24

comment_lab_sat_cond             7

10 comment tables available sample

methodology    available sample

code                                       790

comment_general_ID            628

comment_soilprop_ID           511

comment_field_ID                 376

comment_fwr_ID                   234

comment_fhc10_ID                321

comment_fsc_ID                      43

comment_lab_ID                   695

comment_lwr_ID                   754

comment_lhc _ID                   508

comment_lsc_ID                    365

publication               

contact_person 

a_database_description

publication_ID           98

publication                  98

contact_person_ID     57

contact_person            57

(list and discription of all 

objects)

PSD : particle size distribution

ASD :aggregate size distribution

Figure 1. An overview of the database structure and the data in UNSODA V2.0 [21].
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Figure 2. The available sample size, total sample size, and missing proportion of each soil property.

Table 2. Statistical descriptions of soil properties in UNSODA.

Soil
Property

Effective
Sample

Data
Sample * Range Mean Q1 (25%) Q2 (50%) Q3 (75%)

Missing
Proportion
**

DU 685 659 0∼325 41.231 5.000 30.000 61.000 0.1329
DL 685 659 0∼3000 72.466 30.000 56.000 95.000 0.1329
pH 300 279 3.1∼8.6 6.259 4.900 6.700 7.540 0.6203
SHC 429 425 0.019∼27,648 613.559 20.818 95.900 459.400 0.4570
OMC 388 367 0.01∼88.4 2.942 0.340 0.940 2.500 0.5089
PO 370 366 0.175∼0.915 0.469 0.405 0.456 0.510 0.5316
PD 399 395 1.65∼2.93 2.642 2.610 2.650 2.690 0.4949
BD 762 762 0.17∼2.1 1.444 1.340 1.490 1.600 0.0354

NOTE: * The data sample was deleted when BD was missing. ** Missing Proportion = missing sample/total sample (790).
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Figure 3 presents boxplots for the distributions of these soil properties. The statistical
descriptions indicate that these features cover different scales. Among them, the SHC had
the broadest range, i.e., 0.019–27,648, in which the distribution was mostly skewed toward
low values in the range of 20.818 to 459.400. On the other hand, the distribution ratio of PO
had the narrowest range, i.e., 0.175–0.915, which centered on the range of 0.405–0.510.
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Figure 3. Boxplots for the soil properties in UNSODA: (a) DU; (b) DL; (c) pH; (d) SHC; (e) OMC;
(f) PO; (g) PD; (h) BD.
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Furthermore, according to Tukey’s rule, 176 outliers, whose values were either higher
than Q3 + 1.5IQR or lower than Q1− 1.5IQR (IQR = Q3−Q1 is the interquartile range
of the dataset; Q3 and Q1 are the first and third quartiles of the dataset, respectively) were
detected in cases of DU, DL, pH, SHC, OMC, PO, PD, and BD, as shown in Figure 3. It
should be noted that most of the outliers were observed in case of the SHC, i.e., 43 out of
176 outliers.

3.2. Procedure for Missing Values Imputation

The experimental procedure for missing value imputation is shown in Figure 4. Before
imputing the missing values in the original incomplete dataset, we first considered one
complete dataset (Dataset I) (i.e., with missing values discarded). Once missing values
were discarded, the number of datasets decreased significantly (n = 109). Second, a
missing value simulation was performed. That is, dataset I was simulated with different
missing proportions (e.g., 3%, 7%, 11%, 15%, 19%, and 23%) using an MAR approach.
Different incomplete datasets were produced with different proportions of missing data.
The purpose of this design was to simulate and compare quantitatively the advantages and
the drawbacks of the different imputation methods.

Figure 4. The experimental procedure for missing value imputation.

4. Methodology

In this Section, we introduce and describe the methods used to impute the dataset with
the values deleted at random (Dataset I) and the original incomplete dataset (Dataset II).

(i) Statistics-based methods, including mean and MI.
(ii) Machine learning-based methods, including RF, SVR, and ANN.
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4.1. General Notation

Let X be our n× p matrix of predictors that requires imputation [57]:

X =
(
X1, X2, X3, ..., Xp

)
=

 x11 . . . x1p
...

. . .
...

xn1 · · · anp

 (1)

An arbitrary variable Xs contains missing values at entries i(s)mis ⊆ {1, 2, ..., n}.
For every variable Xs that contains missing values, we can separate the dataset into

four categories:

(i) Non-missing values of variable Xs, denoted by y(s)obs.

(ii) Missing values of variable Xs, denoted by y(s)mis.

(iii) Variables other than Xs, with observation i(s)obs = {1, 2, ..., n}\i(s)mis, denoted by x(s)obs.

(iv) Variables other than Xs, with observation i(s)mis, denoted by x(s)mis.

4.2. Statistics-Based Methods
4.2.1. Mean Imputation

Mean imputation is a simple imputation technique that calculates the mean of y(s)obs and

uses the mean of y(s)obs to predict the missing values of Xs, i.e., y(s)mis. The mean imputation
method is easy to perform, simple in process, insensitive to extreme values of the variable,
and has good robustness.

4.2.2. Multiple Imputation

As shown in Figure 5, the MI method does not attempt to provide an accurate estimate
for the missing data, but rather tries to represent a random sample of the missing data by
constructing valid statistical inferences that properly reflect the uncertainty due to missing
data. Hence, it retains the advantages of single imputation while allowing the data analyst
to obtain valid assessments of uncertainty. In this study, we used SPSS 22.0 to impute the
missing values, whose algorithm is predictive mean matching (PMM).

Dataset 

with 

Missing

 data

"Complete" datasets 

candidates

Analysis

Final 

estimation

Figure 5. The simplified architecture and mechanism of the MI method.
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4.3. Machine Learning-Based Methods
4.3.1. RF Imputation Method

RF is an ensemble technique capable of performing regression and classification with
the use of multiple decision trees and a technique called bootstrap aggregation, commonly
known as bagging, which involves training each decision tree on a different data sample,
where sampling is performed with replacement [58,59].

We used binary decision trees (i.e., CART) as the base learner for the RF, as shown in
Figure 6. It was necessary to consider how to choose split variables (features) and split
points, and how to estimate the quality of the split variable and split point; the calculation
formula was as follows:

F
(
xi, vij

)
=

nle f t

Ns
H
(

xle f t
i

)
+

nright

Ns
H
(

xright
i

)
(2)

where xi is the split variable, vij is the value of the split variable, nle f t is the sample size of
the left node, nright is the sample size of the right node, and Ns is the total sample size of
the variable xi. H(x) is the impurity function, which can be calculated as:

H(xm) =
1

Nm
∑

i∈Nm

(y− ym)
2 (3)

By substituting Equation (3) into (2), we can obtain:

F
(

xi, vij
)
=

1
Ns

 ∑
yi∈Xle f t

(
yi − yle f t

)2
+ ∑

yi∈Xright

(
yi − yright

)2
 (4)

The training process of a node in the decision tree is mathematically equivalent to the
following optimization problem:(

x∗i , v∗ij
)
= arg min

x,v
F
(
xi, vij

)
(5)

Bootstrap 

Tree 1 Tree 2 Tree m-1 Tree m

Prediction  1 Prediction 2 Prediction m-1 Prediction m

Average

Random forest prediction (Output)

...

...

Dataset

Figure 6. An illustration of RF regression.
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The above discussion explains how to train a CART; it should be noted that the
prediction results of the RF involve averaging all results of all CARTs. The RF can be used
to estimate missing values by fitting an RF to predict the non-missing values of Xs, i.e.,
y(s)obs ∼ x(s)obs, and using this to predict the missing values of Xs, i.e., y(s)mis ∼ x(s)mis. BD was
considered to be the label because it had the lowest missing proportion (0.0354). The RF
imputation Algorithm 1 can be described as follows [57]:

Algorithm 1: The RF imputation.

1 Make an initial guess for all missing categorical/numeric values (e.g., mean, median);
2 k←vector of column indices in X, sorted in ascending order of % missing;
3 while not γ do
4 Ximp

old ←store previously imputed matrix;
5 for s in k do
6 Fit an RF that predicts the non-missing vales of Xs:y

(s)
obs∼x(s)obs;

7 Use this to predict the missing values of Xs:predict y(s)mis using x(s)mis ;

8 Ximp
new← updated imputed matrix, using the predicted y(s)mis

9 end
10 updated γ

11 end
12 Return the final imputed matrix

4.3.2. SVR Imputation Method

SVR regression is an adaptation of the support vector machine (SVM) algorithm used
for regression problems [60]. The SVR can be divided into two types, i.e., hard margin
and soft margin [61]. To illustrate the basic idea behind the SVR, we first introduce the
case of linear functions, as shown in Figure 7a,b. In the hard margin model, there are no
points outside the shaded region; the parameter ε affects the number of support vectors
used in the regression function. That is, the smaller the value of ε, the greater the number
of support vectors that will be selected. However, this may not be the case, or we may also
want to allow for some errors, as shown in Figure 7b; therefore, the soft margin SVR model
was proposed. In the soft margin model, another important parameter, the cost parameter
(C), is involved; it determines the tolerance for deviations larger than ε from the real value.
That is, smaller deviations are tolerable for larger values of C. The training process of SVR
is mathematically equivalent to the following optimization problem:

Minimize:
1
2
‖w‖2 + C

n

∑
i=1

(ξi + ξ∗i ) (6)

Subject to: 
yi −w · x− b 6 ε + ξi

b + w · x− yi 6 ε + ξ∗i
ξi, ξ∗i > 0

(7)

where C is the cost parameter and C ≥ 0. w is the coefficient matrix.
The SVR formulations described above make up a linear decision boundary to fit the

training dataset. Kernel functions are commonly used for non-linear SVR; they transform
the data into a higher-dimensional feature space to enable linear fitting. There are two
commonly used kernel functions, the polynomial and Gaussian radial basic functions.

The SVR can be used to estimate missing values by fitting an SVR to predict the
non-missing values of Xs, i.e., y(s)obs ∼ x(s)obs, and using this to predict the missing values of

Xs, i.e., y(s)mis ∼ x(s)mis. The SVR imputation algorithm is similar to RF.
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
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



i
*

i

(a)                                               (b)

Figure 7. Illustrations of SVR: (a) hard margin; (b) soft margin.

4.3.3. ANN Imputation Method

An artificial neural network (ANN) is a computing system designed to simulate the
way that the human brain analyzes and processes information. It is the foundation of
artificial intelligence and solves problems that would prove impossible or difficult by
human or statistical methods. Feed-forward multi-layer perceptron ANNs are frequently
used in engineering applications [62], as shown in Figure 8. Here, we use a standard ANN
with one hidden layer as an example. Weights of the first layer connect the input data
variables to the H hidden units (neurons), and the second layer’s weights connect these
hidden neurons to the output units. First, given a p dimensional input vector x, the H
hidden neuron outputs are computed in the form [44]:

zh = σ

(
p

∑
j=1

w(1)
hj xj + w(1)

h0

)
(8)

where h = 1, 2, ..., H, zh is the hidden neuron output, w(1)
hj is the first layer weight, w(1)

h0
is the corresponding bias parameter, the superscript (1) indicates that the corresponding
parameters are in the first layer, and σ is the activation function chosen as the ReLU function
in this study. By analogy, considering zh as another input, the output can be calculated.

The ANN can be used to estimate missing values by fitting an ANN to predict the
non-missing values of Xs, i.e., y(s)obs ∼ x(s)obs , and using this to predict the missing values of

Xs, i.e., y(s)mis ∼ x(s)mis. The ANN imputation algorithm is also similar to RF.

x0

x1

x2

x3

x4

x5

x6

x7

Input layer Hidden layer 1 Hidden layer 2 Output layer

Output

Figure 8. A schematic of an artificial neural network (ANN) with two hidden layers and a single
neuron output.



Agriculture 2021, 11, 727 11 of 28

5. Model Evaluation
5.1. Quantitative Evaluation

To assess the quality of the RF, SVR, ANN, mean, and MI predictions in the complete
dataset (Dataset I), it was essential to establish metrics that allow the comparison of the
different methods. This evaluation had to consist of a comparison between the prediction
results and the actual results. We used two common statistical measurements, the root
mean square error (RMSE) and the mean absolute error (MAE):

RMSE =

√
1
n

n

∑
i=1

(xi − x̂i)
2 (9)

MAE =
1
n

n

∑
i=1
|xi − x̂i| (10)

where xi is the actual value, x̂i is the predicted value, and n is the total number of miss-
ing value.

5.2. Qualitative Evaluation

RMSE and MAE of the imputation should also be used to determine which method
performs better for imputing the missing values in UNSODA. However, the real values of
these missing values are unknown, and we therefore used nonparametric tests (the reasons
for not using ANOVA follow) to analyze whether there were any statistically significant
differences between different features before and after imputation. As the missing values
in UNSODA are supposed to be MAR, the data before and after the imputation were
expected to not show significant differences. Before the ANOVA analysis, all features
before and after imputation had to be tested for normality. In this study, the values of
skewness and kurtosis were used. In addition, we used a multiple linear regression model
to quantitatively determine which imputation method performed better for UNSODA.

6. Parameter Determination and Sensitivity Analysis

In this study, scikit-learn (version: 0.22), an open-source machine learning library,
was used to perform the model training. We took the RF as an example to explain how to
calibrate the parameters.

As discussed in Section 4.3.1, RF is a meta estimator that fits a number of CARTs on
various sub-samples of the dataset and uses averaging to improve the predictive accuracy
and control over-fitting.

The main parameters include the number of trees in the forest (n_estimators), the
maximum depth of the tree (max_depth), and the minimum number of samples required to
split an internal node (min_samples_split, default = 2). It should be noted that the number
of features and sample sizes in Datasets I and II were not enough; therefore, the maximum
depth of the tree was considered to be none, which meant nodes were expanded until all
leaves were pure or until all leaves contained less than min_samples_split samples.

According to Bisong [63] and Pham et al. [64], the number of trees in the forest has a
significant effect on the model accuracy and the RF will converge to a lower generalization
error as the number of trees increases. Dataset I with a missing proportion = 0.15 was
used to estimate the number of trees. As shown in Figure 9, the mean squared errors
(MSEs) of pH and SHC did not decline when the numbers of trees exceeded 31 and 41,
respectively. However, considering the size of the sample and the number of features, the
n_estimators were considered to be 100. By analogy, the parameters of the SVR and ANN
can be calibrated; the details are listed in Table 3.
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Figure 9. The relationships between MSE and n_estimators for (a) pH and (b) SHC.

Table 3. Parameters used for model training.

Imputation Methods Parameters

RF n_estimators
100

SVR C ε kernel
100 (50) 0.01 rbf

ANN learning_rate_init activation solver alpha
0.005 (0.06) relu adam 0.001 (1)

Note: the value in the round brackets used for Dataset II.

7. Results
7.1. Quantitative Measures for Dataset I

Table 4 summarizes statistical measurements for the performances of RF, SVR, ANN,
mean, and MI methods on Dataset I. The obtained results revealed that the missing pro-
portion has a potential effect on the performances of the imputation methods. RF and MI
outperformed the other imputation methods examined in this study; the mean and ANN
had inferior performances.

For further discussions, Figure 10 presents the relationship between the missing pro-
portion and the statistical measurements for each imputation method. For RF imputation,
when the missing proportion increased from 0.03 to 0.11, the RMSE of the DU increased
from 5.99 to 33.32, and the MAE increased from 6.61 to 19.80. However, when the missing
proportion increased from 0.11 to 0.15, the RMSE was decreased significantly from 33.32 to
20.98, and the MAE from 19.80 to 12.07. When the missing proportion further increased
from 0.15 to 0.23, the RMSE increased from 20.98 to 25.91, and the MAE from 12.07 to 16.87.
Similar behavior was obtained for DL, pH, SHC, OMC, PO, and PD.

For SVR imputation, when the missing proportion increased from 0.03 to 0.19, the
RMSE of the DU increased from 15.39 to 42.73, and the MAE increased from 16.17 to
32.43. However, when the missing proportion increased from 0.19 to 0.23, the RMSE was
gradually reduced from 42.73 to 37.49, and the MAE decreased from 32.43 to 30.3. Similar
behavior was obtained for DL, pH, SHC, OMC, PO, and PD. The ANN, mean, and MI
imputations performed similarly to the RF and SVR imputations.

The above discussion cannot clearly explain which methods performed better for
Dataset I, because the RMSEs and MAEs of all features fluctuated within accepted ranges,
except for SHC. It should be noted that the RMSE and MAE of SHC were high using every
imputation method, probably because of the outliers in the raw data, as shown in Figure 3d.
These results indicate that RF, SVR, ANN, mean, and MI methods are adequate and could
be used to impute the missing values in the original incomplete dataset (Dataset II).
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Table 4. Statistical measurements for RF, SVR, ANN, mean, and MI imputations in Dataset I.

Feature Missing Proportion
RMSE MAE
RF SVR ANN Mean MI RF SVR ANN Mean MI

DU

0.03 5.99 15.39 32.2 26.68 5.5 6.61 16.17 39.28 23.27 4.8
0.07 12.39 24.74 16.12 36.57 17.68 10.32 21.43 11.57 32 14.2
0.11 33.32 39.23 34.2 40.24 28.19 19.8 27.78 18.93 29.06 21.8
0.15 20.98 40.91 18.23 39.81 23.82 12.07 32.42 15 31.71 16.55
0.19 25.58 42.73 45.38 64.12 44.16 17.07 32.43 38.88 49.03 30.62
0.23 25.91 37.49 20.4 44.6 21.98 16.87 30.03 15.09 36.83 17.08

DL

0.03 6.43 23.72 59.07 40.9 15.57 5.36 20.81 43.67 34.97 9.93
0.07 19.3 57 28.89 69.87 51.48 15.26 39.6 23.43 51.66 42.44
0.11 33.26 34.85 42.43 42.29 54.19 21.54 27.27 32.77 36.79 46.8
0.15 35.75 67.96 38.1 70.98 63.37 21.34 47.33 25.55 52.49 42.68
0.19 26.54 28.76 61.14 31.64 44.12 17.57 21.65 42.71 27.82 32.73
0.23 36.56 52.57 34.76 54.58 49.47 24.57 36.55 26.23 39.99 37.49

pH

0.03 0.86 0.91 0.32 1.32 1.08 0.81 0.8 0.27 1.29 0.83
0.07 1.32 1.02 2.11 1.46 1.53 1.16 0.92 1.66 1.27 1.39
0.11 1.86 1.69 2 1.61 1.88 1.76 1.49 1.82 1.53 1.57
0.15 1.35 1.27 1.33 1.35 0.97 1.01 0.98 1 1.17 0.78
0.19 1.65 1.98 1.95 1.66 1.71 1.43 1.71 1.65 1.51 1.51
0.23 1.66 1.98 2.16 1.77 1.91 1.39 1.69 1.77 1.63 1.75

SHC

0.03 854.75 825.83 1200.1 662.66 953.15 679.27 519.22 935.43 576.29 751.7
0.07 2818.95 3867.88 1710.57 3756.35 1887.4 1236.26 1256.13 751.89 1560.21 736.49
0.11 1594.87 1906.36 1026.96 1839.52 303.95 710.16 582.82 563.94 901.18 202.68
0.15 1896.67 1951.17 1697.06 1867.5 1933.28 682.14 630.66 984.73 903.6 738.41
0.19 2299.21 2986.01 1794.31 2867.45 2003.19 1098.22 995.45 852.43 1252.13 790.91
0.23 1264.22 938.44 1328.83 899.61 879.01 717.31 384.24 805.91 674.99 428.77

OMC

0.03 0.69 0.64 3.65 1.78 0.76 0.48 0.53 2.96 1.78 0.53
0.07 1.78 1.83 1.7 2.51 1.37 1.36 1.32 1.01 2.15 1.24
0.11 0.49 1.37 0.97 1.52 1.14 0.45 1.02 0.8 1.41 0.88
0.15 1.69 1.86 3.28 1.98 1.97 0.84 1.35 2.13 1.69 1.21
0.19 1.7 1.45 2.19 2 2.07 0.92 1.06 1.32 1.8 1.37
0.23 1.35 1.4 2.75 1.7 1.58 0.91 1.06 1.64 1.63 1.1

PO

0.03 0.005 0.101 0.18 0.077 0.002 0.005 0.061 0.128 0.059 0.002
0.07 0.017 0.077 0.057 0.088 0.011 0.013 0.059 0.051 0.072 0.005
0.11 0.01 0.074 0.083 0.074 0.004 0.008 0.064 0.075 0.064 0.004
0.15 0.023 0.199 0.088 0.09 0.016 0.014 0.117 0.062 0.065 0.011
0.19 0.015 0.065 0.13 0.065 0.019 0.013 0.056 0.097 0.051 0.012
0.23 0.008 0.056 0.131 0.057 0.007 0.007 0.046 0.103 0.045 0.004

PD

0.03 0.09 0.1 0.17 0.03 0.02 0.07 0.07 0.16 0.02 0.02
0.07 0.09 0.05 0.22 0.06 0.03 0.06 0.04 0.19 0.05 0.02
0.11 0.06 0.05 0.13 0.11 0.02 0.05 0.04 0.1 0.06 0.02
0.15 0.2 0.2 0.25 0.21 0.1 0.11 0.12 0.17 0.12 0.05
0.19 0.06 0.05 0.26 0.07 0.08 0.05 0.04 0.22 0.05 0.05
0.23 0.05 0.08 0.24 0.09 0.03 0.05 0.06 0.19 0.07 0.02
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Figure 10. RMSEs and MAEs for soil properties after imputation: (a) DU; (b) DL; (c) pH; (d) SHC; (e) OMC; (f) PO; (g) PD.



Agriculture 2021, 11, 727 15 of 28

7.2. Qualitative Measures for Dataset II

After imputing missing values in dataset II, we took the features (or independent
variables) DU, DL, pH, SHC, OMC, PO, and PD as the x-axis variables, and the label (or
dependent variable) BD as the y-axis variable. We also assumed that XXR referred to the
feature after RF imputation, XXS to the feature after SVR imputation, XXA to the feature
after ANN imputation, XXM to the feature after mean imputation, XXMI to the feature
after MI imputation, and XXO to the feature before imputation (i.e., the raw data).

Figure 11 shows the distributions of DU, DL, pH, SHC, OMC, PO, and PD before and
after imputation. The results demonstrate that the data for each feature were distributed well
in the major quadrants after RF, SVR, ANN, mean, and MI, indicating that these imputation
methods are feasible. The sample size, minimum value, maximum value, mean value,
standard deviation, and standard error; and the median, skewness, kurtosis, coefficient of
variation, and variance of each feature before and after imputation are listed in Table 5. The
mean value was computed from the sample data. It should be noted that the standard
deviation differs from the standard error: the standard deviation indicates approximately how
far individuals are from the mean values, whereas the standard error estimates the variability
of the sample mean—i.e., approximately how far it is from the population mean [65].

Table 5. The basic information of the features before and after imputation.

Feature Name Sample
Size

Min Max Mean Standard
Deviation

Standard
Error

Median Kurtosis Skewness Coefficient of
Variation

Variance

DU

DUO 659 0 325 41.231 40.316 1.57 30 3.517 1.357 97.78% 1625.378
DUR 762 0 325 39.736 37.752 1.368 30 4.562 1.541 95.01% 1425.22
DUS 762 0 325 40.704 37.85 1.371 33.205 4.348 1.473 92.99% 1432.658
DUA 762 0 325 41.234 37.936 1.374 35 4.258 1.441 92.00% 1439.103
DUM 762 0 325 41.231 37.488 1.358 40 4.532 1.459 90.92% 1405.386
DUMI 762 0 325 41.701 38.497 1.395 33 3.79 1.351 92.32% 1482.011

DL

DLO 659 6 3000 72.466 124.601 4.854 56 464.535 19.855 171.94% 15,525.368
DLR 762 6 3000 70.533 116.087 4.205 57.21 534.314 21.27 164.59% 13,476.125
DLS 762 6 3000 70.87 116.049 4.204 55.284 534.77 21.283 163.75% 13,467.300
DLA 762 6 3000 79.92 155.859 5.646 60 213.387 13.278 195.02% 24,291.898
DLM 762 6 3000 72.466 115.862 4.197 65 537.058 21.344 159.89% 13,424.037
DLMI 762 6 3000 71.48 116.176 4.209 59.9 531.973 21.197 162.53% 13,496.809

pH

pHO 279 3.1 8.6 6.259 1.513 0.091 6.7 −1.219 −0.355 24.17% 2.288
pHR 762 3.1 8.6 6.298 1.039 0.038 6.441 0.176 −0.526 16.49% 1.079
pHS 762 3.1 8.6 6.407 1.104 0.04 6.744 0.182 −0.846 17.23% 1.219
pHA 762 2.857 10.413 6.178 1.185 0.043 6.334 −0.056 −0.24 19.19% 1.405
pHM 762 3.1 8.6 6.259 0.914 0.033 6.259 1.884 −0.584 14.61% 0.836
pHMI 762 3.1 8.6 6.29 1.064 0.039 6.36 0.027 −0.484 16.91% 1.131

SHC

SHCO 425 0.019 27,648 613.559 1935.074 93.865 95.9 97.723 8.448 315.39% 3,744,509.62
SHCR 762 0.019 27,648 540.376 1472.962 53.36 229.387 165.31 10.812 272.58% 2,169,617.99
SHCS 762 0.019 27,648 384.797 1467.129 53.148 96.737 172.699 11.23 381.27% 2,152,468.57
SHCA 762 0.019 27,648 501.111 1501.694 54.401 135.307 154.204 10.371 299.67% 2,255,085.69
SHCM 762 0.019 27,648 613.559 1444.402 52.325 613.559 176.677 11.294 235.41% 2,086,297.08
SHCMI 762 0.019 27,648 619.756 1585.248 57.427 207.092 122.024 8.941 255.79% 2,513,012.29

OMC

OMCO 367 0.01 88.4 2.942 9.727 0.508 0.94 50.679 6.976 330.61% 94.611
OMCR 762 0.01 88.4 2.217 7.01 0.254 0.958 96.343 9.395 316.15% 49.147
OMCS 762 −0.732 88.4 1.953 6.864 0.249 0.92 105.92 9.946 351.45% 47.111
OMCA 762 0.01 88.4 2.824 7.794 0.282 1.128 64.553 7.507 276.01% 60.742
OMCM 762 0.01 88.4 2.942 6.746 0.244 2.942 107.704 10.031 229.28% 45.503
OMCMI 762 0.01 88.4 2.48 7.459 0.27 1.116 84.869 8.843 300.78% 55.642

PO

POO 366 0.175 0.915 0.469 0.104 0.005 0.456 3.001 1.298 22.08% 0.011
POR 762 0.175 0.915 0.456 0.091 0.003 0.442 4.52 1.598 20.02% 0.008
POS 762 0.175 0.915 0.464 0.077 0.003 0.458 8.156 1.989 16.66% 0.006
POA 762 0.175 1.008 0.468 0.091 0.003 0.448 5.628 1.8 19.50% 0.008
POM 762 0.175 0.915 0.469 0.072 0.003 0.469 9.445 1.869 15.29% 0.005
POMI 762 0.174 0.915 0.457 0.092 0.003 0.444 4.489 1.593 20.05% 0.008

PD

PDO 395 1.65 2.93 2.642 0.126 0.006 2.65 26.025 −3.401 4.76% 0.016
PDR 762 1.65 2.93 2.644 0.106 0.004 2.652 37.489 −4.462 4.01% 0.011
PDS 762 1.65 2.93 2.642 0.099 0.004 2.648 40.998 −4.4 3.73% 0.01
PDA 762 1.65 2.93 2.639 0.116 0.004 2.65 34.429 −4.43 4.40% 0.013
PDM 762 1.65 2.93 2.642 0.091 0.003 2.642 52.684 −4.716 3.43% 0.008
PDMI 762 1.65 2.93 2.644 0.113 0.004 2.65 36.35 −4.484 4.26% 0.013
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Figure 11. The distributions of the soil properties before and after imputation: (a) DU; (b) DL; (c) pH; (d) SHC; (e) OMC; (f)
PO; (g) PD.
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Table 5 shows that the standard errors of DU, DL, pH, SHC, OMC, PO, and PD
decreased from 1.570, 4.854, 0.091, 93.865, 0.508, 0.005, and 0.006 to 1.368, 4.205, 0.038,
53.360, 0.254, 0.003, and 0.004 after RF imputation; to 1.371, 4.204, 0.040, 53.148, 0.249,
0.003, and 0.004 after SVR imputation; to 1.374, 5.646, 0.043, 54.401, 0.282, 0.003, and 0.004
after ANN imputation, to 1.358, 4.197, 0.033, 52.325, 0.244, 0.003, and 0.003 after mean
imputation; and to 1.395, 4.209, 0.039, 57.427, 0.270, 0.003, and 0.004 after MI imputation,
indicating that the sample means became closer to the population means. The decreased
coefficients of variation and standard deviations indicated that individuals were closer to
the sample mean values.

Table 5 also shows that the maximum values of DUO, DLO, SHCO, and OMCO were
three standard deviations away from the mean values; and the maximum values of DUR,
DUS, DUA, DLR, DLS, DLA, SHCR, SHCS, SHCA, OMCR, OMCS, OMCA, DUM, DLM,
SHCM, OMCM, DUMI, DLMI, SHCMI, and OMCMI were still three standard deviations
away from the mean values, indicating that the raw data fluctuate greatly. To more clearly
visualize this finding, the means, standard deviations, and standard errors for all features
before and after imputation are plotted in Figure 12.
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Figure 12. The means, standard deviations, and standard errors of every feature before and after imputation.

Figure 13 presents the boxplots for the DU, DL, pH, SHC, OMC, PO, and PD before
and after mean, MI, RF, SVR, and ANN imputation. The statistical descriptions indicate
that the same features lay within the same scales. Among them, the SHC still had the
broadest range, i.e., 0.019–27,648, in which the distribution was mostly skewed toward the
low value in the range from 60.415 to 512.541 after RF imputation; 61.836 to 144.250 after
SVR imputation; 22.722 to 455.400 after ANN imputation; 69.600 to 613.559 after mean
imputation; 53.272 to 518.500 after MI imputation. On the other hand, the distribution ratio
of PO had the narrowest range, i.e., 0.174–0.915, which centered in the range of 0.399–0.490
after RF imputation; 0.430–0.480 after SVR imputation; 0.416–0.500 after ANN imputation;
0.458–0.469 after mean imputation; 0.399 to 0.491 after MI imputation. Figure 13 also shows
that mean imputations generated many outliers, such as for pH and PO, which shows
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that the mean imputation cannot be used for pH and PO. It is worth noting that ANN
imputation also generated outliers for DL.
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Figure 13. Boxplots for the soil properties before and after RF, SVR, ANN, mean, and MI methods:
(a) DU; (b) DL; (c) pH; (d) SHC; (e) OMC; (f) PO; (g) PD.
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Skewness measures the relative symmetry of a distribution, and a value of zero
indicates symmetry. The larger the absolute value of skewness, the more asymmetric the
distribution. A positive value indicates a long right tail, and a negative value indicates
a long left tail. By contrast, kurtosis measures the relative peakedness. The values of
skewness and kurtosis for DUO, DUR, DUS, DUA, DUM, DUMI, DLO, DLR, DLS, DLA,
DLM, DLMI, pHO, pHR, pHS, pHA, pHM, pHMI, SHCO, SHCR, SHCS, SCHA, SHCM,
SHCMI, OMCO, OMCR, OMCS, OMCA, OMCM, OMCMI, POO, POR, POS, POA, POM,
POMI, PDO, PDR, PDS, PDA, PDM, and PDMI are also listed in Table 5. All of these
features did not strictly meet the criterion for normality. Therefore, nonparametric tests
rather than ANOVA were used to investigate whether there were differences before and
after imputation, and the results are listed in Table 6.

Table 6 suggests that there were no significant differences before and after imputation,
except for SHCO and SHCR, SHCO and SHCM, SHCO and SHCMI, POO and POR, POO
and POM, POO and POMI, pHO and pHA, pHO and pHM, OMCO and OMCA, OMCO
and OMCM, and OMCO and OMCMI. As discussed above, this result may have been
caused by the raw data. Although there was a difference in SHC and PO before and after
RF imputation, we assume that the RF imputation is still valid based on observations of the
mean and median. The pH and OMC metrics before and after ANN imputation are similar.

After nonparametric tests, we used a multiple linear regression model to quantitatively
determine which imputation method performed better for UNSODA. In the multiple
linear regression model, DU, DL, pH, SHC, OMC, PO, and PD were still considered to
be independent and BD dependent. However, it should be noted that DU and DL are
collinear. Therefore, we should consider only one feature, and DU was used in this study.
For comparison, multiple linear regression was also performed for these features when
missing data were imputed by zero.

The results of multiple linear regression after RF, SVR, ANN, mean, MI, and zero
imputations are presented in Table 7. Table 7 shows that R2 was 0.910 for the RF impu-
tation, which meant that DU, pH, SHC, OMC, PO, and PD could explain 91.0% of the
variation in BD. The model passed the F-test (F = 1273.712, p = 0.000 < 0.05), indicat-
ing that at least one of DU, pH, SHC, OMC, PO, and PD affect BD, and the model’s
formula was: BD = 1.483 + (0.000 × DU) − (0.001 × pH) + (0.000 × SHC) + (0.002
× OMC) − (2.481 × PO) + (0.410 × PD). A test for multicollinearity indicated that all
the variance inflation factor (VIF) values in the model were less than five, which meant
that there was no collinearity problem [66]. The results for SVR, ANN, mean, MI, and
zero imputations were similar to those for RF imputation, but their R2 values (0.639 for
SVR imputation, 0.885 for ANN imputation, 0.594 for mean imputation, 0.902 for MI
method, and 0.379 for zero imputation) were smaller. It should be noted that the R2

value for MI imputation is close to those of the RF imputation method, and the model
also passed the F-test (F = 1154.513, p = 0.000 < 0.05), indicating that the performance
of the MI method was close to that of the RF imputation. We also considered the ef-
fect of discarding missing values, which decreased the number of datasets substantially
(n = 109). The analysis results when missing values were discarded are presented in
Table 7. The R2 value was 0.998, which meant that DU, pH, SHC, OMC, PO, and PD could
explain 99.8% of the variation in BD. This model still passed the F-test (F = 6932.797,
p = 0.000 < 0.05), indicating that at least one of DU, pH, SHC, OMC, PO, and PD affect BD,
and the model’s formula was: BD = 1.069 + (0.000 × DU) − (0.002 × pH) + (0.000 × SHC)
+ (0.002 × OMC) − (2.551 × PO) + (0.581 × PD). Although the R2 values of the RF, SVR,
and ANN imputation were smaller than those obtained after discarding missing values,
the above discussion suggests that these imputation methods are feasible; and RF and MI
methods may be better than SVR, ANN, mean, and zero imputation. The results of the
actual BD and predicted BD are shown in Figure 14.
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Table 6. Nonparametric test results.

Feature Median(Q25,Q75) MannWhitney U MannWhitney z p Feature Median (Q25,Q75) MannWhitney U MannWhitney z p

DU

Raw data (n = 659) RF (n = 762) 250,299.5 −0.101 0.919
SHC

Raw data (n = 425) Mean (n = 762) 116,598.5 −8.098 0.000 **30.000(5.0,61.0) 30.000(15.0,60.0) 95.900(20.8,459.4) 613.559(69.6,613.6)
SVR (n = 762) 247,602.5 −0.453 0.651 MI (n = 762) 135,141.5 −4.73 0.000 **33.205(15.0,60.0) 207.092(53.3,518.5)
ANN (n = 762) 245,348.5 −0.746 0.456

OMC

Raw data (n = 367) RF (n = 762) 137,024 −0.546 0.58535.000(15.0,60.0) 0.940(0.3,2.5) 0.958(0.5,1.9)
Mean (n = 762) 243,611.5 −0.973 0.331 SVR (n = 762) 132,498.5 −1.428 0.15340.000(15.0,60.0) 0.920(0.4,1.5)
MI (n = 762) 245,028 −0.788 0.431 ANN (n = 762) 126,483.5 −2.6 0.009 **33.000(12.0,61.0) 1.128(0.5,2.3)

DL

Raw data (n = 659) RF (n = 762) 250,327.5 −0.097 0.922 Mean (n = 762) 97,759.5 −8.379 0.000 **56.000(30.0,95.0) 57.210(30.0,91.0) 2.942(1.0,2.9)
SVR (n = 762) 249,248.5 −0.237 0.812 MI (n = 762) 127,130.5 −2.474 0.013 *55.284(30.0,91.0) 1.116(0.6,2.1)
ANN (n = 762) 246,019.5 −0.656 0.512

PO

Raw data (n = 366) RF (n = 762) 128,268 −2.182 0.029 *60.000(30.0,93.0) 0.456(0.4,0.5) 0.442(0.4,0.5)
Mean (n = 762) 243,199.5 −1.022 0.307 SVR (n = 762) 137,856 −0.31 0.75665.000(30.0,91.0) 0.458(0.4,0.5)
MI (n = 762) 247,989 −0.401 0.689 ANN (n = 762) 139,339 −0.021 0.98359.900(30.0,92.0) 0.448(0.4,0.5)

pH

Raw data (n = 279) RF (n = 762) 100,975.5 −1.239 0.215 Mean (n = 762) 128,358 −2.213 0.027 *6.700(4.9,7.5) 6.441(5.7,7.0) 0.469(0.5,0.5)
SVR (n = 762) 104,703.5 −0.371 0.71 MI (n = 762) 128,777.5 −2.083 0.037 *6.744(5.8,7.0) 0.444(0.4,0.5)
ANN (n = 762) 97,681.5 −2.006 0.045 *

PD

Raw data (n = 395) RF (n = 762) 140,712 −1.817 0.0696.334(5.4,6.9) 2.650(2.6,2.7) 2.652(2.6,2.7)
Mean (n = 762) 96,880.5 −2.311 0.021 * SVR (n = 762) 148,596.5 −0.353 0.7246.259(6.3,6.3) 2.648(2.6,2.7)
MI (n = 762) 101,044.5 −1.223 0.221 ANN (n = 762) 149,471.5 −0.19 0.8496.360(5.7,7.0) 2.650(2.6,2.7)

SHC

Raw data (n = 425) RF (n = 762) 134,844.5 −4.783 0.000 ** Mean (n = 762) 148,109.5 −0.45 0.65395.900(20.8,459.4) 229.387(60.4,512.5) 2.642(2.6,2.6)
SVR (n = 762) 161,420.5 −0.089 0.929 MI (n = 762) 144,380 −1.136 0.25696.737(61.8,144.3) 2.650(2.6,2.7)
ANN (n = 762) 156,553.5 −0.949 0.343135.307(22.7,455.4)

* p < 0.05 ** p < 0.01.
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Table 7. Multilinear regression analysis results.

Imputation
Method

Independent
Variable

Unstandardized Coefficients
t p VIF R2 Adj R2 F

B Standard Error

RF

Constant 1.483 0.11 13.426 0.000 ** -

0.910 0.909 F(6,755) = 1273.712,
p = 0.000

DU 0 0 2.579 0.010 * 1.055
pH −0.001 0.003 −0.193 0.847 1.052

SHC 0 0 −0.325 0.745 1.035
OMC 0.002 0.001 2.849 0.005 ** 2.899

PO −2.481 0.036 −68.031 0.000 ** 1.472
PD 0.41 0.041 10.106 0.000 ** 2.463

SVR

Constant 1.836 0.223 8.234 0.000 ** -

0.639 0.636
F(6,755) = 223.020,

p = 0.000

DU 0 0 −1.325 0.185 1.121
pH 0.009 0.005 1.811 0.07 1.035

SHC 0 0 0.659 0.51 1.064
OMC −0.003 0.001 −2.62 0.009 ** 2.445

PO −2.322 0.085 −27.477 0.000 ** 1.409
PD 0.242 0.083 2.933 0.003 ** 2.193

ANN

Constant 1.454 0.119 12.245 0.000 ** -

0.885 0.884 F(6,755) = 968.854,
p = 0.000

DU 0 0 −3.34 0.001 ** 1.128
pH 0.011 0.003 3.918 0.000 ** 1.148

SHC 0 0 −2.396 0.017 * 1.057
OMC 0.003 0.001 4.78 0.000 ** 3.123

PO −2.501 0.042 −58.998 0.000 ** 1.554
PD 0.416 0.045 9.319 0.000 ** 2.79
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Table 7. Cont.

Imputation
Method

Independent
Variable

Unstandardized Coefficients
t p VIF R2 Adj R2 F

B Standard Error

Mean

Constant 2.633 0.215 12.226 0.000 ** -

0.594 0.591
F(6,755) = 183.955,

p = 0.000

DU 0 0 3.077 0.002 ** 1.046
pH 0.016 0.006 2.486 0.013 * 1.014

SHC 0 0 −0.462 0.644 1.042
OMC −0.012 0.001 −11.496 0.000 ** 1.376

PO −2.161 0.088 −24.682 0.000 ** 1.159
PD −0.098 0.076 −1.293 0.197 1.382

MI

Constant 1.507 0.11 13.719 0.000** -

0.902 0.901 F(6,755)=1154.513,
p=0.000

DU 0 0 2.252 0.025 * 1.082
pH 0.001 0.003 0.392 0.695 1.079

SHC 0 0 −0.691 0.49 1.044
OMC 0.003 0.001 4.179 0.000 ** 2.772

PO −2.491 0.036 −69.058 0.000 ** 1.325
PD 0.399 0.042 9.59 0.000 ** 2.66

Zero

Constant 1.48 0.013 112.448 0.000 ** -

0.379 0.374 F(6,755) = 76.715,
p = 0.000

DU 0.001 0 4.185 0.000 ** 1.056
pH −0.001 0.002 −0.424 0.672 1.07

SHC 0 0 4.029 0.000 ** 1.021
OMC −0.016 0.001 −14.524 0.000 ** 1.063

PO −0.493 0.049 −10.128 0.000 ** 2.74
PD 0.048 0.009 5.331 0.000 ** 2.738
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Table 7. Cont.

Imputation
Method

Independent
Variable

Unstandardized Coefficients
t p VIF R2 Adj R2 F

B Standard Error

Discarding
missing
values

Constant 1.069 0.04 26.925 0.000 ** -

0.998 0.997
F(6,102) = 6932.797,

p = 0.000

DU 0 0 2.027 0.045 * 1.341
pH −0.002 0.001 −2.084 0.040 * 1.076

SHC 0 0 −2.762 0.007 ** 2.747
OMC 0.002 0.001 3.151 0.002 ** 3.111

PO −2.551 0.019 −133.224 0.000 ** 2.004
PD 0.581 0.015 40.031 0.000 ** 1.665

* p < 0.05 ** p < 0.01. Dependent variable: BD.
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Figure 14. The actual BD and predicted BD: (a) RF imputation; (b) SVR imputation; (c) ANN imputation; (d) MI; (e) mean
imputation; (f) Discarding missing values.

8. Discussion

The reason for using regression to impute the missing values is that the regression
algorithm believes that there is some connection between the Eigen matrix and the label.
That is, we can use features X1, X2, X3, and X4 to predict the label Y. Similarly, we can also
use Y, X2, X3, and X4 to predict X1.

Before imputing the missing values in the original incomplete, Dataset I was simulated
with different missing proportions (e.g., 3%, 7%, 11%, 15%, 19%, and 23%) using an MAR
approach. It should be noted that the maximum simulated missing proportion was 23%,
which is far below the average level of missing data in Dataset II. In fact, it would be
difficult to simulate a high missing proportion considering the sample size of Dataset I.
The main reason is the sample size of Dataset I is insufficient; the ANN imputation fails to
converge with the increase of the missing proportion.

In this study, we mainly focused on the comparison of various methods of handling
missing data in UNSODA. The imputed dataset was not used for modeling and applying
in a case study. It will be more convincing if the quality of a real case study’s results can
be improved after imputing the missing data using the proposed method. By observing
multiple linear regression, we can infer that the data after RF and MI imputation can be used
in a case study. We will use the imputed Dataset II to predict BD in the future according to
PTFs proposed by Yi et al. [12], Curtis and Post [14], Adams [67] and Rawls [68].

In addition, the outliers were not deleted or replaced because of the imputation, which
may have caused the large RMSEs and MAEs for SHC. In a subsequent study, we will
further explore how to predict SHC well.
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9. Conclusions

Three machine learning-based methods, i.e., random forest (RF) regression, support
vector (SVR) regression, and artificial neural network (ANN) regression, and two statistics-
based methods, i.e., mean and multiple imputation (MI) were used to impute the missing
data for DU, DL, pH, SHC, OMC, PO, and PD in UNSODA. Both quantitative and qualita-
tive methods were used to evaluate the feasibility. Based on the results, we can conclude
that:

(1) The RMSEs and MAEs of DU, DL, pH, SHC, OMC, PO, and PD for the complete
dataset indicate that RF, SVR, ANN, mean, and MI methods are appropriate for
imputing the missing values in UNSODA.

(2) The standard error significantly decreased after imputation, indicating that the sample
means had become closer to the population mean. The decreased coefficients of
variation and standard deviations indicate that the individual data points were closer
to the sample mean values.

(3) There were no significant differences before and after imputation for DU, DL, pH,
SHC, OMC, PO, and PD.

(4) DU, pH, SHC, OMC, PO, and PD explained 91.0%, 63.9%, 88.5%, 59.4%, and 90.2% of
the variation in BD after RF, SVR, ANN, mean, and MI imputation, respectively; and
this value was 99.8% when missing values were discarded.

(5) This study suggests that the RF and MI methods may be best for imputing the missing
data in UNSODA.
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BD bulk density
OMC organic matter content
DU upper depth
DL lower depth
WC water content
VIF variance inflation factor
MSE mean square error
MAE mean absolute error
RMSE root mean square error
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