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Abstract: Nitrogen is an essential nutrient element required for optimum crop growth and yield. If a
specific amount of nitrogen is not applied to crops, their yield is affected. Estimation of nitrogen level
in crops is momentous to decide the nitrogen fertilization in crops. The amount of nitrogen in crops
is measured through different techniques, including visual inspection of leaf color and texture and
by laboratory analysis of plant leaves. Laboratory analysis-based techniques are more accurate than
visual inspection, but they are costly, time-consuming, and require skilled laboratorian and precise
equipment. Therefore, computer-based systems are required to estimate the amount of nitrogen in
field crops. In this paper, a computer vision-based solution is introduced to solve this problem as
well as to help farmers by providing an easier, cheaper, and faster approach for measuring nitrogen
deficiency in crops. The system takes an image of the crop leaf as input and estimates the amount of
nitrogen in it. The image is captured by placing the leaf on a specially designed slate that contains
the reference green and yellow colors for that crop. The proposed algorithm automatically extracts
the leaf from the image and computes its color similarity with the reference colors. In particular,
we define a green color value (GCV) index from this analysis, which serves as a nitrogen indicator.
We also present an evaluation of different color distance models to find a model able to accurately
capture the color differences. The performance of the proposed system is evaluated on a Spinacia
oleracea dataset. The results of the proposed system and laboratory analysis are highly correlated,
which shows the effectiveness of the proposed system.

Keywords: nitrogen estimation; image processing; leaf contents; crop yield; color distance models

1. Introduction

After water, nitrogen (N) is one of the most important macronutrients in plants [1],
as it is associated with proteins that are directly involved in plant metabolic processes.
Therefore, to get higher crop production and to improve food quality, an adequate supply
of nitrogen is required by plants. It plays a fundamental role in enhancing the yield and
productivity [2]. Nitrogen deficiency is characterized by poor plant growth and pale yellow
leaves due to insufficient chlorophyll content and some environmental stresses [3].

Nitrogen is a key component of the chlorophyll that intensifies photosynthesis in
crops [4–7], and plant yield is affected by irregularity in nitrogen content [8–10]. The
amount of nitrogen required for each crop varies [11–14]. Leaf color is an indicator of
many plants’ nutrients status especially the chlorophyll content in the leaf [15]. The color
and texture of the leaf determine the nitrogen status in the crop as the nitrogen deficiency
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changes the color of the leaf [16,17]. If the color of the leaf is green, it means that the leaf is
healthy, and it tends to be yellow if the plant suffers from nitrogen deficiency.

Chlorosis or leaf yellowing in plant leaves mainly occurs due to interference in the
production of chlorophyll contents of the plant. Yellowing in leaves may appear for
different reasons, e.g., improper irrigation, poor drainage, root damage or compacted roots,
improper soil pH, and lack of proper nutrients. Improper nutrient supply is the major
cause of depigmentation and lowers chlorophyll contents in leaves. However, causes can
be differentiated based on other symptoms that accompanied pigmentation and some
special characteristics of pigmentation. For instance, in the case of nitrogen deficiency, a
general yellowing has been observed [18]. Older, inner leaves turn yellow first, and as it
progresses, yellowing moves outward, eventually reaching young leaves.

Different techniques are used for nitrogen measurement in plants and crops, includ-
ing chemical analysis of leaves in laboratory, texture analysis, leaf color matching chart,
etc. [19,20]. These techniques are very time-consuming, require skilled manpower, and are
costly, which can lead to economic crisis [21]. Moreover, the traditional methods used for
nitrogen estimation in plants do not enjoy high accuracy because of different environmental
factors and human error during analysis. In this era of automation, the techniques used by
farmers are mostly manual and require some external devices and their experts.

To overcome these challenges, agricultural methods have been becoming automated
for years, and computer vision is proving to help achieve this goal. Most computer-aided
systems examine the leaf images taken by cameras and apply different image processing
techniques to estimate the nutrients or chlorophyll content in the leaves. Some of these
systems require an external hardware device to operate them [4,22], and others require a
specific camera to capture these images [23]. Many methods using RGB-based segmentation
are centered on agronomic plants [24–31]; thus, they are restricted in tropical trees study.
The existing systems work in a specific environment with controlled illumination and
fixed parameters. A major limitation of these existing systems is that they are not easily
accessible, and they are also expensive. It is difficult for farmers to develop a controlled
environment or take images with specific cameras.

The major contribution of this research is the proposal of an image processing frame-
work for nitrogen nutrient (n-nutrient) estimation in field crops and plants. The proposed
framework is fully automated and requires minimum human assistance, limited to captur-
ing the plant leaf images. Moreover, the proposed framework is customizable for image
color models and leaf color analysis methods. Finally, we present an efficient method
to estimate the N nutrients in plants. In the proposed method, a crop leaf is placed in a
specially designed slat, and its image is captured with any normal camera, including the
smartphone camera. The leaf image is processed to extract the leaf and the reference colors
from the image. Various statistical properties of these colors are computed and analyzed to
predict the nitrogen content in the leaf. We also evaluated different existing color distance
models to find the best model that accurately captures the difference between the leaf color
and reference colors. In the present study, the performance of the proposed system is tested
on Spinacia oleracea leaves, and the results are found to be favorable.

2. Review of Existing Methods

Nitrogen measurement in plants is carried out by four manual methods: chemical test,
normalized vegetation index, leaf color chart, and SPAD meter [32]. the Kjeldahl-digestion
method is a popular chemical analysis-based method for nitrogen nutrition estimation. The
method was developed by Johan Kjeldahl [33], and it works in three steps. First, sample
leaf powder is mixed in a Kjeldahl flask with concentrated acid in a specific ratio. To
evolve the CO2, the mixture is heated at high flame, and the end product is an ammonium
sulfate solution. Second, to get ammonia from ammonium ion (present in ammonium
sulfate), sodium hydroxide is added into the mixture. Ammonia gas is evolved by heating
the solution, which is trapped in the solution of boric acid and standard acid in the flask.
In the final step, titration is used for ammonia estimation in the sample; the ammonia
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concentration is proportional to the nitrogen content. The reagents used in this process are
analyzed in the study [34]. This method gives quite accurate results, but it is very tedious
and time-consuming [32].

Soil–Plant Analysis Development (SPAD) is one of the optimal methods for the cal-
culation of plant chlorophyll content. The SPAD meter does not give accurate values but
a unitless relative chlorophyll value which can be converted into nitrogen quantity [35].
However, SPAD gives more accurate results for small samples, especially in ornamental
plants as it is sensitive to chemical changes in leaves [36].

The leaf color chart is another means to estimate n-nutrition status in plants. This
chart has different shades of green, which are matched to the leaf color to get an estimate of
nitrogen content in the leaf. Every crop has its leaf color chart with different shades of green
according to its possible leaf colors [37]. This method is simple but not very accurate [21].

All the above-mentioned methods are manual and very time-consuming, and some
of them also require skilled staff. Recently, computer-aided design (CAD) for nitrogen
estimation has attracted significant research efforts. In particular, image processing, optical,
and multi-spectral based nitrogen estimation techniques have been proposed for different
crops and vegetables, e.g., [4,13,20–22,24,28,30]. Normalized difference vegetation index
(NDVI) is a remote sensing technique for vegetation, which has been used for quite some
time now [38]. To determine the live green vegetation of the crop, NDVI uses the visible and
near-infrared band of the spectrum. This method, however, is expensive and is not suitable
for nitrogen estimation in a small area of crops [21]. Numerous methods e.g., [29–31]
exploit the red–green–blue (RGB) color model for chlorophyll estimation and nitrogen
content in the plants and crops.

The chlorophyll meter was the very first tool introduced for the measurement of the
chlorophyll contents in plants. The leaf chlorophyll has the property of absorbing the
red frequency, but infrared cannot be absorbed in it. Therefore the chlorophyll meter
emits the red and infrared frequencies of light and uses the difference in absorption of
both frequencies. Based on this differences, the meter estimates the chlorophyll content
in the leaf [39]. The studies in [11,40] use reflectance and absorbance in tropical tree areas
to estimate nitrogen in plants. Kawashima et al. [23] proposed a system for measuring
chlorophyll content in crops. They use a digital camera to capture leaf images and calculate
the ratios of different combinations of red (R), green (G), and blue (B) colors. The research
concluded that the ratio of the red and blue channels gives the best correlation with
the chlorophyll content. The nitrogen estimation algorithms presented in [20,41,42] also
use color image analysis. The system in [43] uses three-wavelength diffuse reflectance
for nitrogen estimation in plants. Similarly, systems proposed in [44] used the CIE-LAB
color system to estimate nitrogen content in leaves. The system proposed in [4] presents a
manually operated trolley by which images of crop leaves were captured to predict nitrogen
amount in a specific field. The system consists of a camera to capture an image, four lights
for proper lighting, and a laptop for system processing. The system was semi-automated
and required an operator to handle and operate it properly. The image processing-based
system proposed in [45] estimates the leaf chlorophyll content at a canopy scale. It presented
a triangular greenness Index (TGI) and other spectral indices for a low-cost indicator of
fertilizer requirement in various crops.

The study presented in [46] analyzed various image processing techniques and con-
cluded that color model-based techniques give the most accurate results of nitrogen mea-
surement in plants. The system in [47] uses an artificial neural network to predict the
leaf color chart (LCC) panel of the leaf. The system correctly classified the LCC chart
cum SPAD meter with good accuracy for rice leaves. The system proposed in [48] also
uses a digital camera to calculate nitrogen measurement in cotton plants. The method
presented in [49] uses three color models for estimating nitrogen in rice crops. After image
segmentation, 13 color indices were calculated from three color models (i.e., RGB, Lab, and
HSV). The values were compared with plant nitrogen status, and a significant correlation
was found. The algorithm proposed in [50] uses an optical method for the measurement



Agriculture 2021, 11, 766 4 of 19

of chlorophyll content in crops. The method in [1] also uses the RGB color image analysis
nitrogen estimation in crops. The study presented in [51] used nursery plants seedlings
of five tropical trees, and 10 different indexes of RGB were calculated and correlated with
SPAD results.

3. Methodology

The amount of nitrogen nutrient in plants is estimated by analyzing the color of the
leaves. In most crops, the leaf color shows the level of nitrogen in the plants and crops; the
crop is healthy if the color is lush green but gets pale-yellow with a deficiency of nitrogen in
the absence of biotic and abiotic stresses. Like many other image-processing-based systems,
the proposed method also exploits this basic phenomenon to estimate the n-nutrient in
crops. The proposed method has three steps. First, the image of the selected leaf is captured
using any ordinary camera and a specially designed leaf board, also known as slate. The
leaf board is white in color with two reference green and yellow-colored circles. Second,
the leaf and the reference color circles are automatically segmented from the image using
different image processing techniques. Third, the average color of the leaf is computed and
compared with the reference colors to estimate the green color value (GCV) index, which is
found to be highly correlated with the chlorophyll content in the plants. Moreover, we also
evaluate many existing color based methods for n-nutrient estimation and compare their
performance with the proposed method using various statistical tools.

3.1. Image Processing
3.1.1. Image Acquisition

The first step in any computer-based algorithm for n-nutrient estimation is leaf image
acquisition. This is a critical step as the quality of the image can affect the accuracy of the
later processing steps. The lighting conditions can affect the leaf color in the image. For
example, if the image is taken in bright light, the RGB values are higher than the original
leaf color and the image becomes brighter. Conversely, when the image is taken in low light,
the RGB values are lesser than the original colors, so it becomes darker than the original.
Therefore, it is important to control the illumination and other factors that can impact
the color of the leaf and hence the accuracy of the method. Some existing systems use a
digital camera, e.g., [25,28,31,52], others use smartphone camera [29,53], and still other use
scanners [27,30,54] or hyperspectral imaging systems [55] for image acquisition. Many
existing systems capture images in a specially controlled environment, e.g., [4,26,28,29].

In order to overcome the above-mentioned problems, the proposed system obtains
the reference colors from the same leaf image. To ensure accurate results in both dark and
bright environments, a special slate was made having a green and a yellow color circle on
it. These circles are used as reference colors in the n-nutrient estimation. The designed slate
and a sample leaf image are shown in Figure 1. Leaves were placed on the above-mentioned
slates and images were captured by using an ordinary smartphone camera.

3.1.2. Region of Interest Detection

To analyze the leaf color with the reference green and yellow colors, the leaf and the
two reference color circles must be identified and extracted from the image. For object
detection, the bounding box method is used, which identifies each object as one bounding
box. The process starts by converting the image into grayscale, and then Otsu’s method
is applied to obtain its global threshold for converting the grayscale image to a binary
image. Finally, all the bounding boxes in that image are detected. Let I be a leaf image
of size M× N and BW be its the binary image. Each pixel BW(i, j) of the binary image is
picked, and its 8-connected pixels are checked by voting technique. The connected pixels
with a value of 1 correspond to a region and are considered as one bounding box. Let
b1, b2, b3, · · · , bn, be the n bounding boxes detected in image I. For each bounding box, four
attributes are computed, namely xb, yb, wb, and hb, representing starting x value, starting y
value, width, and height of the box, respectively. Some of the detected bounding boxes are
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too small, and a few are very large, covering the whole page. Figure 2a shows the results of
detecting the bounding boxes on the image shown in Figure 1b, and the detected bounding
boxes are highlighted in red color.

(a) (b)

Figure 1. (a) Slate being used to capture the plant leaf image, (b) a sample spinach leaf image
captured with a smartphone camera using the slate in (a).

(a) (b)

Figure 2. Objects detection. (a) All objects detected in the image (Figure 1b) using the bounding box
algorithm, (b) the detected three regions of interests containing the reference color circles and the leaf
using the proposed strategy.

From all the detected bounding boxes, we are concerned only with the boxes contain-
ing the reference circles, which may appear in oval or elliptical shape due to change in
camera orientation while capturing the image. We devise a method using the ratio between
the width and the height of the boxes to efficiently identify the objects of interests. Let rw
be the ratio of box width to height and let rh be the ratio of box height to width.
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rw =
wb
hb

, (1)

rh =
hb
wb

(2)

The boxes containing the reference color circles appear as (nearly) square, and they
can be detected by the ratio rw and rh. Since they are almost square, these ratio should
be close to 1. From the experiments, we found that the following limits serve the best in
detecting the reference color circles.

0.9 ≤ {rw, rh} ≤ 1.1 (3)

It is observed that sometimes the whole page is detected as a square or elliptical box.
Obviously it can not be the circle we are interested in, and such cases are rectified by
confirming that the ratio of the the box height to the image height is not large; it should be
less than 0.6; that is, a valid reference color box should satisfy the following relation:

0.1 ≤ hb
N
≤ 0.6 (4)

where hb is the box height and N is image height. With the help of (3) and (4), the two
boxes containing the green and the yellow reference circles are detected and extracted from
the original image; that is, a bounding box bi contains the reference circles if

bi is an ROI =

{
if 0.9 ≤ {rw, rh} ≤ 1.1 and

if 0.1 ≤ hb
N ≤ 0.6

The remaining image contains only the leaf, which is extracted by background removal
using the Gaussian mixture model that is explained in the following Section 3.1.3.

In Figure 2, the results of the proposed object detection strategy are presented.
Figure 2a shows the objects detected in the image (Figure 1b) using the bounding box
algorithm. Figure 3 shows the detected regions of interests containing the reference color
circles (Figure 3a,b. The rest of the image, excluding the circles’ region, is shown in
Figure 3c. These regions containing the green and yellow color circles are referred to as Ig
and Iy, respectively and the remaining image containing the leaf is denoted as Il in the rest
of the text.

(a) (b) (c)

Figure 3. The extracted regions of interest in Figure 2b: (a) Ig, (b) Iy, (c) Il .

3.1.3. Background Removal

In order to accurately calculate the color, the background of the circles and the leaf
must be removed. It can be achieved by color-based thresholding techniques but from
experiments, we found that such techniques are not very accurate. Therefore, to ensure that
only green and yellow colors are used in the analysis for reference color, the backgrounds
of both images (Ig, Iy) was removed by applying different rules based on the distance of
pixels from radius. For each region, Ig and Iy, their centers (xc, yc) are estimated,
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(xc, yc) = (
wIg

2
,

hIg

2
) (5)

where wIg and hIg represent the width and the height of image Ig, respectively. Since the

circle is inscribed in the square box, its radius is half the width or height (i.e., rIg =
wIg

2 ) of
the box. The pixels with distance greater than the radius rIg lie outside the circle and are
removed. For each pixel location (i, j), its value is updated according to the following rule.

Ig(i, j) =

{
Ig(i, j) if d(i, j) < rIg

0 otherwise
(6)

where d(i, j) is the distance of the pixel (i, j) from the center of the box (xc, yc), calculated
as,

d(i, j) =
√
(i− xc)2 + (j− yc)2 (7)

The background of the other circle (Iy) is removed analogously. However, since the
leaf image may contain complex structures, e.g., veins and different colors, it is difficult to
obtain an accurate segmentation using simple color-based thresholding. The background
of the leaf image (Il) is removed by using Gaussian Mixture Model (GMM). It divides the
image into two clusters, and pixels are characterized in RGB space by their intensity [56,57].
Each pixel in the image is modeled into Gaussian distribution. The likelihood of a pixel in
the image (Xt) at time t of each cluster is calculated.

P(Xt) =
K

∑
i=1

ωi,t.η(Xt, µi,t, Σi,t) (8)

where K is the number of clusters (here assumed as two, i.e., foreground and background),
ωi,t is a weight associated with the ith Gaussian in image at t with mean µi,t and standard
deviation Σi,t:

η(Xt, ui,t, Σi,t) =
1

(2π)
n
2 |Σ| 12

e−
1
2 (Xt−µ)Σ−1(Xt−µ) (9)

Since the background is dominant in the images, the background pixels are expected
to have more weight and less variance. Therefore, the first b Gaussian distributions having
weights greater than the designated threshold T are background pixels; therefore, the pixels
are classified as background pixels (B) by the following rule, and the rest is foreground.

B = arg min
b

(
b

∑
i=1

ωi,t > T) (10)

If a pixel matches with a K-Gaussian, the values of ω, µ, and σ are updated; otherwise,
only ω’s value is updated. Using the above-mentioned model, the leaf pixels were sepa-
rated from the background, turning the background pixels into black and keeping the leaf
pixels unchanged.

It is observed that even after applying the GMM, some background pixels may still
appear as foreground. To resolve this issue, the image is converted into HSI space, with
HI l , SI l , and II l representing the hue, saturation, and intensity, respectively. We observed
that the leaf pixels always has hue and saturation components greater than 0.5 and 0.3,
respectively. Therefore, any non-leaf pixel incorrectly marked as leaf is removed by holding
these two conditions. That is,

Il(x, y) =

{
Il(x, y) if HI l > 0.5

0 otherwise
(11)
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and

Il(x, y) =

{
Il(x, y) if SI l > 0.3

0.3 otherwise
(12)

Figure 4 shows the results of the proposed method applied on the images shown in
Figure 3.

(a) (b) (c)

Figure 4. The reference color circles and the leaf image after background removal: (a) Ig, (b) Iy, (c) Il .

3.1.4. Nitrogen Estimation

After removing the background, we have both the reference circles and the leaf. The
mean color value of the three objects is computed for each color channel, red, green, and
blue denoted, as µr, µg and µb, respectively.

µIg = [µr, µg, µb] (13)

The mean color values of the reference yellow circle (µIy ) and the leaf (µIl ) are also
calculated analogously. The green color value (GCV) index of the leaf is now computed by
calculating the distance of the leaf mean color from the reference green and yellow colors.
Let d1 be the distance of the leaf from the green reference color and d2 be the distance of
the leaf from the yellow reference color computed using any color distance model. The
GCV is then computed as the percentage of their ratio.

GCV = 100×
(

1− d1

d1 + d2

)
(14)

The value of GCV represents the n-nutrient percentage present in the leaf. There exist
numerous ways to compute the color differences d1 and d2, which are briefly explained in
the following section.

3.2. Model Development

Numerous color distance models are available that can be used to compute the leaf
color difference from the reference colors. We evaluated these models to find the most
suitable model for the problem at hand. These models are briefly introduced in the
following sections.

3.2.1. Euclidean Distance

The simplest method of finding distance between two colors within a RGB color space
is the Euclidean distance. It computes the distance between two colors C1(R1, G1, B1) and
C2(R2, G2, B2) as

d =
√

∆R2 + ∆G2 + ∆B2 (15)

where ∆R = R2 − R1, ∆G = G2 − G1, and ∆B = B2 − B1.
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3.2.2. Color Approximation Distance

The perception of brightness in the human eye is non-linear. From the experiments, it
appears that the curve for this non-linearity is not the same for each color [58,59]. Therefore,
there have been many attempts to weight RGB values to better fit human perception, where
the components are commonly weighted. The color approximation distance between two
colors C1(R1, G1, B1) and C2(R2, G2, B2) is calculated as:

d =

√(
2 +

r
256

)
∆R2 + 4∆G2 +

(
2 +

255− r
256

)
∆B2 (16)

where r = R1+R2
2 .

3.2.3. CIEXYZ

The RGB color space is not visualized clearly. Since the human eye has three types
of color sensors that correspond to different wavelengths, a full plot of visible color is
three-dimensional color. The CIE XYZ [60] color space includes all the colors that are
visible to a human eye. Therefore, in order to obtain more precise results, the color values
were first converted into CIE XYZ color space and then their distance was calculated. The
following transformation is used to convert mean values into the CIE XYZ color space.X

Y
Z

 =

0.431 0.342 0.178
0.222 0.707 0.071
0.020 0.130 0.939

×
R

G
B

 (17)

The normalized tristimulus values x, y, and z were calculated from X, Y, and Z, and
the difference between two colors in xy-chromaticity space is computed by the simple
distance formula:

d =
√
(x2 − x1)2 + (y2 − y1)2 (18)

The position of the reference colors and the leaf is shown in the Figure 5. The distance
to the leaf from both reference colors is shown as d1 and d2.

Figure 5. CIEXYZ Chromaticity Diagram.

3.2.4. CIE76

The CIELAB (L*a*b*) color space was introduced in 1076, which was said to be
a uniform color-space [61]. In any uniform color space, the color difference is easily
calculated by Euclidean formula and expressed as a straight line. The difference between
two colors C1(L1, a1, b1) and C2(L2, a2, b2) in CIELAB color space is calculated by following
formula.
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d =
√
(∆L∗)2 + (∆a∗)2 + (∆b∗)2 (19)

where ∆L∗ = L1 − L2, ∆a∗ = a1 − a2, and ∆b∗ = b1 − b2.

3.2.5. CIE94

Different color distance models have been explored to address the non-uniformities by
retaining the CIELAB color space. These methods are generally more accurate for human
perception to colors differences. ∆E∗94 was defined in Lch color space with differences in
lightness, chroma, and hue calculated from Lab-coordinates [62,63]. The difference between
two colors C1(L1, a1, b1) and C2(L2, a2, b2) is computed as

d =

√(
∆L∗

kLSL

)2
+

(
∆C∗ab
kCSC

)2

+

(
∆H∗ab
kHSH

)2

(20)

where C∗1 =
√

a2
1 + b2

1 , C∗2 =
√

a2
2 + b2

2. The further details of the model can be found
in [62].

3.2.6. CIEDE2000

The CIE organization decided to fix the lightness inaccuracies by introducing ∆E∗00. It is
currently the most complicated, CIE color difference algorithm, yet it is accurate [64–66]. The
difference between two colors is calculated in ∆E∗00 as follows.

d =

√(
∆L′

kLSL

)2

+

(
∆C′

kCSC

)2

+

(
∆H′

kHSH

)2

+ RT
∆C′

kCSC

∆H′

kHSH
(21)

A comprehensive description of the model and its computation can be found in [65].

3.2.7. CMC l:c

Since the human eye is sensitive to chroma, the difference of colors can be visualized
more clearly in LCh color space [66]. ∆E∗CMC calculates the color difference in LCh color
space. It has two parameters, lightness (l) and chroma (c), allowing the users to weight the
difference based on the ratio of l : c that is deemed appropriate for the application. The
distance between two colors C1(L1, C1, h1) and C2(L2, C2, H2) is found as:

d =

√(
L2 − L1

lSL

)2
+

(
C2 − C1

cSC

)2
+

(
∆H∗ab

SH

)2

(22)

where SL, SC, and SH are computed from the l and c components, as explained in [66].

4. Evaluation of Dataset

In this section, we introduce the dataset used to test the performance of the proposed
nitrogen estimation method. In the second part of the section, we present the various
statistical metrics and tools used to evaluate the performance the proposed method.

4.1. Sample Collection and Processing

To evaluate the performance of the proposed method, a set of 15 spinach leaves were
collected from the field. They were not grown under controlled conditions. The choice of
plants was done in such a way that the dataset contains samples with different n-nutrient
contents. One leaf from each selected plant was taken for experiment. The leaves were
placed one by one on the designed slate and images were captured by using a simple
mobile phone camera. To test the robustness of the system, the leaf was placed in different
locations on the slate, confirming all four positions of the circles, i.e., circles on the left,
right, top, and bottom of the leaf. It may be noted that leaves have different orientations
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and shape, making the dataset challenging for accurate leaf and reference circle detection.
The amount of nitrogen in each leaf was calculated by KJeldahl’s method (discussed in
Section 2), which serves as the ground truth for the test dataset.

4.2. Performance Evaluation Parameters

We evaluated the performance of the proposed algorithm and compared the results
with various existing color-based n-nutrient estimation algorithms. For each test image,
the leaf n-nutrient in terms of GCV is computed. For test leaves in the dataset, their
nitrogen values were calculated in the laboratory by the KJeldahl method and are used
as ground truth in this analysis. The objective scores computed by the proposed method
were compared with the corresponding ground truth to estimate different correlations to
assess its accuracy. We used the logistic function for non-linear mapping outlined in [67]
of nitrogen values with the proposed system results and other compared methods before
computing the performance parameters.

Different correlations between the objective scores and the ground truths are computed
to evaluate the performance of the proposed method. In addition to the conventionally
used coefficient of determination, also known as R-squared (R2), we used various other
statistical metrics in performance evaluation. These include Pearson linear correlation
coefficient, Spearman rank correlation coefficient, Kendall rank correlation coefficient, and
root mean square error.

The coefficient of determination, also known as R-squared (R2), measures the degree
of variability of one variable that can be caused by its relationship to another related
variable. Its value varies between 0 and 1, and a higher value indicates a better fit for the
observations.

R2 =
∑i(ŷi − y)2

∑i(ŷi − y)2 + ∑i(yi − ŷi)2 (23)

where ŷ are the fitted (predicted) values against the actual values y and y is the mean of
the y values.

The Pearson linear correlation coefficient (PLCC) is the most common measure of
correlation. It shows the linear relationship between two sets of data. It is a normalized
measure of covariance, such that it gives results between −1 and 1. If the result is 0, there
is no correlation between points. A positive result shows a positive correlation, and a
negative resultant value shows a negative correlation between data points.

PLCC =
∑i(xi − x)(yi − y)√

∑i(xi − x)2
√

∑i(yi − y)2
(24)

where x and y are the mean values of x and y values.
The Spearman’s rank correlation coefficient (SROCC) is a non-parametric version of

PLCC measuring the direction and strength of both ranked values association. It assesses
how well the relationship between two data points can be described using a monotonic
function. If the rank between the two data values is similar, the SROCC has high values;
otherwise, if the data values are not (or less) similar, its value is low. We therefore correlate
the proposed values with ground truth in order to get the similarity measure between them
using the monotonic function.

SROCC = 1− 6 ∑(xi − yi)
2

n(n2 − 1)
(25)

where n is number of observations.
Kendall rank correlation coefficient (KROCC) is also a non-parametric measure to

determine the strength of dependence between two data points on an ordinal scale. It
measures the similarity of the orderings of the data when ranked by each of the quantities
and tells us that how many the data points are dependent on each other.
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KROCC =
nc − nd

1
2 n(n− 1)

(26)

where nc is the number of concordant and nd is the number of discordant.
Root mean square error (RMSE) is the commonly used measure of difference between

predicted and the actual values. It is the standard deviation of residual (prediction error).
It measures the error between the predicted and actual values. Lower values mean there is
less difference in both values; i.e., if the correlation coefficient is 1, the RMSE is 0. Since the
errors are squared before taking average, RMSE is high in large errors. Therefore, it is more
useful when dealing with large errors.

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(27)

5. Results and Discussion

In this section, we report the experiments performed to evaluate the performance of
the proposed method and also compare it with the performance of existing similar methods
introduced to estimate the nitrogen in plants. Moreover, numerous experiments were also
performed to test the performance of different color distance models to find the best-suited
model for the nitrogen estimation.

In the first experiment, we evaluate the performance of the proposed system with
different color distance models, introduced in Section 3.2. The proposed method with each
color distance model was executed on the whole test dataset, and nitrogen percentage was
computed. The performance parameters were computed with the obtained scores and the
ground truth values. The results of these experiments are presented in Table 1.

Table 1. Performance of different methods used for nitrogen calculation. The best results are marked
in bold.

Method R2 PLCC SROCC KROCC RMSE

Euclidean 0.6571 0.8107 0.6143 0.4286 0.1058
∆C 0.6617 0.8140 0.4893 0.3524 0.1245
CIEXYZ 0.1275 0.8156 0.5536 0.3714 0.1556
CIE76 0.6644 0.4299 0.3539 0.2488 0.1140
CIE94 0.6373 0.7996 0.4379 0.3636 0.1283
CIEDE2000 0.9198 0.9590 0.7643 0.6190 0.0845
CMC l:c 0.1138 0.3374 0.1679 0.1238 0.1657

The RGB color-space -based distance models showed more than 65% R2, performing
better than the CIEXYZ, and CMC l:c models, which achieved less than 12% R2. The
performance of CIE76 and CIE94 models are similar to the RGB color-space-based distance
models, achieving R2 of 66% and 63%, respectively. The results show that the CIEDE2000
model performs the best, with more than 91% R2. The results in terms of PLCC are similar
to R2. For example, the RGB color-space-based distance models show more than 80% PLCC,
performing better than the CIEXYZ and CMC l:c, based models, which achieved less than
43% PLCC. The best results were found by using CIEDE2000 distance calculation method,
showing the PLCC of more than 95%. A similar trend can be observed with SROCC
and KROCC measures and RMSE. Therefore, in the proposed algorithm, we choose the
CIEDE2000 model for measuring the difference between the leaf and the reference colors.

Scatter plots are typically used to show the agreement between two or more variables
of data. A scatter plot is a type of plot or mathematical diagram using Cartesian coordinates
to display values for typically two variables for a set of data. We use this plot to show how
well the nitrogen content in the leaves correlates with the values extracted from the pictures.
Figure 6 shows the scatter plot where the x-axis represents the values (%) estimated by the
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proposed system, and the y-axis represents the ground truth nitrogen percentage. The plot
shows that the straight line comfortably fits the data, showing a strong positive correlation
between the estimated and the ground truth values. The figure also shows the variation in
the selected dataset as the nitrogen estimates vary from approximately 0.17% to 0.80%.

Figure 6. Scatter plot between the nitrogen estimate by the proposed method and the corresponding
ground truth values.

To further investigate the performance of the proposed method, its results are com-
pared with different RGB color-space-based n-nutrient estimation metrics. These metrics
have been proposed in different studies, e.g., [24–31,51]. These algorithms compute dif-
ferent ratios of red (R), green (G), and blue (B) components of the leaf color. For ease of
reference, these are labeled as M1, M2, · · · , and M17 in this study and are briefly described
in Table 2.

Table 2. List of leaf color-analysis-based nitrogen estimation metrics used in performance comparison.

Method Description Method Description

M1 R: average red component. M10
R− G
R + G

M2 G: average green component. M11
R− B
R + B

M3 B: average blue component. M12
G− B
G + B

M4
R

R + G + B
M13

R− G
R + G + B

M5
G

R + G + B
M14

R− B
R + G + B

M6
B

R + G + B
M15

G− B
R + G + B

M7 R− G M16
2R(G− B)

G + B

M8 R− B M17
2G(R− B)

R + B
M9 G− B

The research presented in [23] evaluated different RGB color-space-based methods
and reported that metric M11 performs the best. The metric M5 was proposed as optimal
in [24,48]. In [51], the metrics M16 and M17 achieved good correlation with the nitrogen
value in grape leaves. Moreover, the study in [68] proposed that the red color (R) is the most
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accurate predictor of nitrogen. In the proposed system, all these methods were calculated,
and the correlation with nitrogen value showed the best results with the proposed system.
All the compared methods, M1 to M17, were executed on the whole dataset, and the
performance parameters were computed. The results are presented in Table 3. These
results show that the proposed method outperforms all the competing methods, achieving
0.9198 R2, 0.9590 PLCC, 0.7643 SROCC, and 0.6190 KROCC, with the minimum root mean
square error of 0.08.

Table 3. Performance of the proposed and the compared methods on the whole test dataset. The best
results are marked in bold and the second-best in italic.

Method R2 PLCC SROCC KROCC RMSE

M1 0.4625 0.6801 0.5143 0.4095 0.1568
M2 0.3863 0.6215 0.4893 0.3905 0.1097
M3 0.6918 0.8318 −0.0357 −0.0095 0.1392
M4 0.1729 0.4158 0.4179 0.2762 0.1569
M5 0.4128 0.6425 0.3893 0.2571 0.1856
M6 0.1531 0.3913 0.1179 0.1238 0.1850
M7 0.3192 0.5650 0.3429 0.2952 0.1635
M8 0.3107 0.5574 0.4429 0.3524 0.1754
M9 0.2036 0.4512 0.4786 0.3333 0.1644
M10 0.1743 0.4175 0.2500 0.2190 0.1629
M11 0.3206 0.5662 0.5286 0.3143 0.1414
M12 0.3652 0.6043 0.4643 0.3143 0.1305
M13 0.0456 0.2135 0.3357 0.2190 0.1671
M14 0.3386 0.5819 0.4786 0.2952 0.1489
M15 0.3868 0.6220 0.5321 0.3524 0.1330
M16 0.3389 0.5821 0.4357 0.3333 0.1646
M17 0.3070 0.5541 0.5214 0.3905 0.1558

Proposed 0.9198 0.9590 0.7643 0.6190 0.0845

We also compare the performance of the proposed method with numerous existing
vision-based plant-N nutrition estimation methods. These methods include [23,69–76], and
their performance comparison is presented in Table 4. In [69], Liu et al. investigated the
use of SPAD-502 (Minolta, Japan) for nitrogen estimation in spinach plants. Their results
showed that the accuracy of using SPAD-502 for N-nutrient estimation in spinach is 0.89.
The study presented by Muchecheti et al. [70] also explored the efficacy of SPAD-502 for
N-nutrient estimation in spinach plants. They achieved R2 values of 0.84, 0.89, and 0.91 for
different datasets, and on the whole dataset, the coefficient of determination was 0.89. A
vision-based method was developed in [71] for assessing the n-nutrition status of barley
plants. Their method applies the principal component analysis (PCA) to digital images and
computed a greenness index using RGB components of the color image. They evaluated
the greenness index with the SPAD-502 readings and found a correlation between 0.60 to
0.95 for different sample sets. Agarwal et al. [72] computed different features of plant leaf
images and evaluated their correlation with the SPAD readings. Their dark-green color
index (DGCI) achieved a high correlation of 0.80 with the SPAD reported readings.

The study presented in [73] by Tafolla et al. used SPAD-502 and atLeaf meters to
calculate the nitrogen content in romaine lettuce. The SPAD achieved a 0.90 correlation
with the laboratory results, and atLeaf showed a correlation of 0.91 with laboratory results.
Kawashima et al. [23] proposed an image-processing-based algorithm to assess the chloro-
phyll content in leaves using a video camera. Their method proposed a function of red and
blue components of the leaf image as an N-nutrient indicator and showed a 0.81 correlation
with the SPAD-502 readings. In [74], Noh et al. studied the correlation between reflectance
from individual channels of the images captured with a multi-spectral sensor and the
SPAD readings. They found that the ratio of near-infrared (NIR) band and green compo-
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nent (G) showed a stronger correlation, 0.86, with the SPAD readings. The vision-based
method presented by Borhan et al. in [75] computes different image features to estimate
the chlorophyll content in potato leaves. Their method showed a 0.88 correlation with the
SPAD-502 readings. In [76], Graeff et al. proposed an image-processing-based method for
nitrogen level estimation in broccoli plants. They converted the image into La∗b∗ color
space and proposed using the b∗ component as an n-nutrient estimate. Their method
showed a correlation of 0.82 with the laboratory results. The results of the proposed and
the compared methods presented in Table 4 show that the proposed vision-based method
for N-nutrient estimation is reliable and achieves appreciable accuracy.

Table 4. Performance comparison of the proposed method with existing vision-based approaches for
n-content estimation in plants.

Method R2

Liu [69] 0.89
Muchecheti [70] 0.89
Pagola [71] 0.60–0.95
DGCI [72] 0.80
Tafolla M1 [73] 0.90
Tafolla M2 [73] 0.91
Kawashima [23] 0.81
Noh [74] 0.86
Borhan [75] 0.88
Graeff [76] 0.82
Proposed 0.92

The leaf color-based assessment of nitrogen status in plants is very accurate and
reliable. Numerous handheld devices and meters have been introduced in recent times
to assess the nitrogen content in the plant by analyzing the leaf color. Some popular and
widely used devices include SPAD-502, CCM-200, Dualex-4, atLeaf, and GreenSeeker.
We compare the performance of the proposed method with these devices, the results
are presented in Table 5. Although this comparison would not be equitable or well-
earned, as the datasets used in these evaluations are different, it can provide a glance
at the effectiveness of the proposed method. The study presented in [77] evaluated the
performance SPAD-502, CCM-200, and Dualex-4 for measurement of leaf chlorophyll
concentration in four different crops. They achieved 0.90, 0.81, and 0.69 coefficient of
determination for corn crop, respectively. GreenSeeker and atLeaf are also popular devices
to estimate the nitrogen in leaves. The studies in [73,78] evaluated the GreenSeeker and
atLeaf devices, respectively. The GreenSeeker achieved a correlation of 0.73 and atLeaf
showed a strong correlation of 0.91 with the laboratory results.

Table 5. Performance comparison of handheld chlorophyll meters and the proposed vision-
based method.

Device R2

SPAD-502 0.90
CCM-200-CCI 0.81
Dualex-4-Chl 0.69
GreenSeeker 0.73
atLeaf [73] 0.91
Proposed 0.92

We observed that the superior performance of the proposed method over the existing
similar techniques is due to many factors. First, in the proposed system, we use reference
to green and yellow colors for healthy and nitrogen-deficient leaves, respectively, in a
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specially designed slate where the crop leaf image is placed for image acquisition. This
helps in canceling the illumination changes that may occur due to different reasons such as
the time the image is being captured, the weather conditions, the quality of the camera,
etc. That means if there is any change in the leaf color due to lighting effects, the reference
colors are equally affected in the image, thus canceling the effect. Second, the novel color
distance formula used in the proposed method is able to accurately capture the color
differences between the leaf and the reference colors. In particular, a large number of
available color distance models are evaluated, and the results favored the CIEDE2000
model for the proposed algorithm. Third, the proposed reference color circle detection
and the GMM-based leaf extraction produce accurate segmentation, which is momentous
for true color analysis. All these factors enhance the system’s performance and make it a
reliable tool for estimating the n-nutrient in plants.

6. Conclusions and Future Research Directions

This paper presents a vision-based fully automated system to estimate nitrogen content
in crops and plants. The system can be used by a common person as no specific camera
or controlled environment is required to capture the images. Leaf images can be captured
using any type of camera, including smartphone cameras. The system takes a leaf image
and uses the leaf color to calculate its nitrogen content. The proposed algorithm uses
different feature detection and background removal techniques to accurately segment
the leaf and the reference colors from the image. Moreover, numerous color distance
models were evaluated to find the best model for the problem under investigation. The
experimental evaluations were performed on the spinach crop leaves dataset, which
comprises images captured with a normal smartphone camera. The performance was
measured using different parameters, revealing that the proposed algorithm is highly
correlated (0.9198 R2 and 95.9% PLCC) with the nitrogen amount calculated by Kjeldahl
method in the laboratory, which proves its effectiveness. A software release of the proposed
vision-based framework for N-nutrient estimation in crops is made publicly available on
the project website: http://faculty.pucit.edu.pk/~farid/Research/GCV.html, accessed on
8 June 2021.

In the future, we plan to investigate the performance of the proposed system for
other crops and plants. Studying the impact of color models for different crops is another
interesting future research direction. In the dataset used in the performance evaluation of
the proposed method, images were of different resolutions and the proposed leaf detection,
and reference color circle extraction worked accurately. However, building a dataset
consisting of leaf images captured with different cameras and under different illumination
conditions with the varying resolution is important to truly assess the performance of the
N-nutrient estimation algorithms.
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