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Abstract: In the Mediterranean basin, edaphic salinization, sodification and alkalinization related to
anthropic pressures and climatic changes may hinder the ecosystem sustainability. It is pertinent to
study the mid and long-term variability of these soil characteristics in face off the macro agricultural
system in use (i.e., irrigation or rain-fed). Four irrigated soils from the Caia Irrigation Perimeter
(Portugal), Fluvisols, Luvisols, Calcisols and Cambisols were analysed in the mid-term, from 2002
to 2012, for its available Ca2+, Mg2+, K+ and Na+ content. Overall, Ca2+, K+ and Na+ significantly
increased during the period of this study by 25%, 8% and 7%, respectively. Soil organic matter (SOM)
and pH for the irrigated soils in the area were already assessed in previous studies with the overall
SOM remaining constant (p ≥ 0.05) and pH increasing (p < 0.01) by 5%. We provide the predictive
maps for Na+ and the CROSS predictive & HotSpot evolution map from 2002 to 2012. Rain-fed soils
were analysed in the long-term, from 1965 to 2012, for their SOM, pH and non-acid cations (Ca2+,
Mg2+, K+ and Na+) content. While SOM, pH and the exchangeable Ca2+, Mg2+ and K+ significantly
increased (p < 0.01) by 23%, 8%, 60%, 21% and 193%, respectively, exchangeable Na+ significantly
decreased (p < 0.01) by 50%. These results may be related to the local climate changes as, according
to the Thornthwaite classification, it went from sub-humid with great water excess (C1B2s2b4) in
the climate normal 1951/1980 to sub-humid with moderate water excess (C1B2sb4) in 1981/2010
to semi-arid with little to none water excess (DB2db4) in 1991/2020. The irrigated areas in this
Mediterranean region are slowly departing from sustainable goals of soil conservation and better
edaphic management and conservation practices, that address the registered climatic changes in the
area, could be adopted.

Keywords: soil degradation; anthropic pressure; mediterranean basin; semi-arid; desertification

1. Introduction

As usually practiced today, agricultural intensification has a double-link effect across
the ecosystem, with soils losing their richest layer to the sea through accelerated erosion
created by anthropogenic weathering, such as tillage, plowing, harrowing or scarifica-
tion [1], primary causes responsible for the continuous decline in soil organic matter (SOM)
levels and edaphic compaction [2–5]. Also, there is also an increased salinity in soils due
the higher amounts of fertilizers in irrigation water [6–8]. Salt accumulation leads, above
all, to low agricultural production, soil erosion, decreased permeability and infiltration
rate of the soil, low groundwater recharge, compacting, crusting and invariably to low
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economic returns [9]. The degradation of the Mediterranean basin soils [10,11] is but a
particular example of the ecosystem unsustainability with ever growing desertification
hotspots due to the global and local climate change and inadequate local practices with
the soils becoming more alkaline, saline, and deprived of SOM [1,4,12–14] exposing the
importance of adopting a multidimensional approach for agricultural sustainability in
the Mediterranean basin, as demonstrated in the studies of Stagnari et al. [15], Pagnani
et al. [16] and Farooq et al. [17]. The growing problem of saline and sodic soils already
affects a quarter of all agricultural soils degrading the soil structure by means of clay
swelling and dispersion and is more present in areas experiencing desertification whether
they are arid or semi-arid [18–20]. Alkalinization is another main cause of degradation
occurring in the Mediterranean basin soils [8,14,21] that go hand in hand with saliniza-
tion and sodification in the semi-arid regions [22] and that, according to Laraus [23] may
eventually lead to the abandonment of the lands.

Calcium, magnesium, sodium and potassium tend to accumulate in semi-arid and arid
regions as the amount of precipitation in the basin is not sufficient to leach the chlorides
and sulfates salts even when these soils are under irrigation [24] and, thus, the primary and
secondary salinity in the Mediterranean basin seems to be unavoidable with this condition
only worsening due to the general thin layers, poorer drainage capacity of these soils and
dry climate [1,25]. Where the precipitation, or precipitation plus irrigation water, is less than
the potential evapotranspiration (ET0) the cations released, be it by mineral weathering
or anthropically added [6], accumulate as there is not enough precipitation to thoroughly
leach them away leading to the alkalinization of the soils depending on the equilibrium
between the acid (H+, Al3+) and non-acid cations (Ca2+, Mg2+, K+ and Na+) in the soil
colloids and the equilibrium between H+ and OH- in the soil solution, both controlled by
the nature of the soil colloids. Because the deflocculating monovalent ions Na+ and K+

are not leached from the soils of the dry regions, the type of clays dominating in alkaline
soils tend to deflocculate or disperse which furthers the reduced macroporosity, aeration,
water percolation and sealing of the soil surface. In our opinion, the edaphic impact of
these ions is well described in the ‘cation ratio of soil structural stability’ (CROSS) equation
(Equation (1)) as it considers the different effects of Na+ and K+ in deflocculating, and that
of Mg2+ and Ca2+ in flocculating, soil clays that parameterize the structural effects in the
soil solution better than the Sodium Adsorption Ratio (SAR) or the Potassium Adsorption
Ratio (PAR) as demonstrated by Rengasamy and Marchuk [26] and that is being adopted
by the scientific community for the last decade [27–30].

The present study aims to improve the knowledge on how some edaphic parameters
evolve in traditional agriculture performed in rain-fed sites and in intensive agriculture
via irrigation in a semi-arid region of the Mediterranean basin. Specifically, this study
focuses on the variations of (a) the available Ca2+, Mg2+, K+ and Na+ in irrigated sites in
the mid-term and (b) the non-acid cations in rain-fed sites in the long-term, in the evidence
of local climatic changes in real agricultural conditions instead of the more controlled field
experiments conducted in small plots as in Di Matteo et al. [31] or González et al. [32] or
remote sensing as in Attwa et al. [33], or González-Zamora et al. [34].

CROSS =
Na + 0.56K√[

(Ca+0.6Mg)
2

] (1)

2. Materials and Methods
2.1. Study Area

The study area is positioned in the Alentejo region (NUTS II) between Campo Maior
and Elvas in the borderline between Portugal and Spain, at the junction of the rivers Guadi-
ana and Caia, in the Mediterranean basin region with a total area of 14,852 ha. The average
annual rainfall is 483 mm, falling from October to March. The geology is heterogeneous
and mainly consisting of hyperalkaline and basic rocks. The most important crops in the
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study area are: Olea europea L., Zea mays L., Lycopersicon esculentum Mill. and Allium sativum
L. with a preponderance of 35%, 20%, 15% and 15%, respectively. The irrigation water is
classified by FAO as C1S1 (i.e., with the lowest levels of salinity and sodicity, water of very
good quality) [35]. According to the FAO Soil Resource (WRB) [36] there are 4 Reference
Soil Groups (RSG) present, Cambisols, Luvisols, Fluvisols and Calcisols, which are in
accordance with what is expected for the Mediterranean ecosystems [25,35,37]. None of
the soils were presented to extended irrigation practices since 1965 and, so, soil evolution
in rain-fed systems was obtained by comparing the exchange bases Ca2+, Mg2+, K+ and
Na+ from that year to 2012. Since 1969 some of the soils were under irrigation practice with
the start of operations of the Caia Irrigation Perimeter and the irrigated soil evolution was
obtained comparing Ca2+, Mg2+, K+ and Na+ from the soil solution for the sample years
2002 and 2012. Laboratory method analysis that quantify the exchange cations applied
in the 2002 samples are different from the methods applied in the 1969 and 2012 samples
invalidating its comparison but, recurring to the ‘Ratio Law’ [38] that states that the cations
adsorbed in the soil exchange complex (SEC) are in balance with the cations in soil solution
at any given time, we analyze the ions in the soil solution and extrapolate these findings
to the soil complex. We followed the general methodology presented in Figure 1. Please
refer to Nunes [35] and Figures 1 and 2 of Telo da Gama et al. [5] for more details on the
study area.
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2.2. Soil Data

Cardoso in a study performed in the same area in 1965 [39], classified the soils using
the dated Portuguese Soil Classification system. We related the samples taken by Cardoso
with our study area soils via Geographic Information Systems (GIS) software where the
predominant parameter of classification was considered as the key factor to soil classifica-
tion (e.g., a ‘Pag/Pac’ was treated as a Pag) were we performed weighted arithmetic means
so that the final equations reflect the average weight of each soil. Assuming that the data
from 1965 represents the mean values for a specific soil type is a flaw in this study. See
Auxiliary data #1.

All samples were correlated, compared and analyzed with physical soil attributes
such as land cover percentage, physiographic position, soil useful depth, hydromorphic
symptoms, water table distance, stoniness and crop. The tables concerning these results
are not shown in this paper (please refer to the Auxiliary data #2) and will be presented in
the paper with a parentheses enclosed asterisk “(*)”.

Soil data for the 2002 and 2012 samples was obtained according to the methodology
presented in Telo da Gama et al. [5], please refer to this paper to obtain a detailed edaphic
description of the study area.

2.3. Climatic Data

Three climate normals were considered so that the year of the analyzed sample data
were the closest possible to its average (i.e., for the 2012 data we considered the climate
normal 1991/2020, for the 2002 the 1981/2010 and for the 1965 the 1951/1980 climate
normal was considered). Aridity indexes (i.e., the precipitation-to-evaporation ratio) were
obtained dividing the precipitation by the ET0 (Equation (2)).

Aridty Index =
precipitation

ET0
(2)

The normal climatic data from:

• 1951/1980 (Table 1) was obtained from the book O clima de Portugal [40] that gathered
data from the Elvas meteorological station.

• 1981/2010 (Table 2) and 1991/2020 (Table 3) was calculated from monthly data (rang-
ing from 1969 to 2020) gathered in the meteorological station of the study area. The
evapotranspiration (ET0) was determined with the unadjusted Hargreaves equation
(Equation (3)). The Portuguese Institute of the Sea and the Atmosphere (IPMA) pro-
vided the radiation (Ra) values. The homogeneity of the data is guaranteed as logistics
in climatic observations remained constant.

ET0 = a + b× 1
λ
× 0.0023×

(
Tmax + Tmin

2
+ 17.8

)
×
√

Tmax− Tmin× Ra (3)

Parameters a (mm d−1) = 0, b = λ = 1; Ra (MJ m−2 d−1): extra-terrestrial solar radiation;
Tmin (◦C): minimum daily air temperature; Tmax (◦C): maximum daily air temperature.

2.4. CROSS

The cation ratio of soil structural stability (CROSS) was determined as presented in
the Equation (1) and we assess the evolution of soil dispersion through it as the CROSS
reflects the theoretical and empirical observations that the K+ ion has a dispersion power
0.560 times lower than that of Na+ and that the Mg2+ ion has a flocculation power 0.6 times
lower than that of Ca2+ as demonstrated by Rengasamy and Marchuk [26].
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Table 1. Climate normal 1951/1980 [40].

Month Aver. Temp
(◦C)

Max. Temp.
(◦C)

Min. Temp.
(◦C)

Prec.
(mm)

ET0
(mm)

Aridity
Index

January 8.6 13.2 4.0 80.8 16.9 4.78
February 9.6 14.5 4.8 82.0 24.0 3.42

March 11.6 16.9 6.2 80.2 47.2 1.70
April 13.8 19.9 7.7 47.7 56.8 0.84
May 17.5 24.4 10.6 37.6 92.1 0.41
June 21.5 29.0 13.9 25.0 125.0 0.20
July 24.6 33.2 16.0 3.6 140.0 0.03

August 24.3 32.9 15.8 4.4 118.3 0.04
September 21.8 29.2 14.3 27.3 75.0 0.36

October 17.1 23.0 11.2 60.0 36.5 1.64
November 12.0 17.0 6.9 75.1 22.1 3.40
December 8.9 13.5 4.3 77.9 17.1 4.56

year 15.9 22.2 9.6 601.6 771.0 0.78

Table 2. Climate normal 1981/2010 (data registered in the study area meteorological station).

Month Aver. Temp
(◦C)

Max. Temp.
(◦C)

Min. Temp.
(◦C)

Prec.
(mm)

ET0
(mm)

Aridity
Index

January 8.8 13.4 4.1 55.9 18.7 2.99
February 10.3 15.2 5.5 47.1 24.5 1.92

March 12.6 18.3 6.9 34.8 50.6 0.69
April 14.3 20.1 8.6 47.7 61.4 0.78
May 17.7 24.1 11.3 37.2 89.1 0.42
June 22.0 29.6 14.4 17.8 123.6 0.14
July 25.3 33.8 16.9 5.8 148.9 0.04

August 25.4 33.9 16.9 4.2 128.9 0.03
September 22.8 29.7 16.0 26.8 79.7 0.34

October 18.0 23.3 12.6 55.5 40.7 1.36
November 13.0 17.9 8.2 73.3 26.7 2.75
December 9.6 13.8 5.5 75.8 14.5 5.23

year 16.7 22.8 10.6 483.7 807.4 0.59

Table 3. Climate normal 1991/2020 (data registered in the study area meteorological station).

Month Aver. Temp
(◦C)

Max. Temp.
(◦C)

Min. Temp.
(◦C)

Prec.
(mm)

ET0
(mm)

Aridity
Index

January 9.0 13.7 4.5 49.5 18.5 2.68
February 10.4 15.4 5.4 38.4 24.4 1.57

March 13.3 19.0 7.8 44.1 51.1 0.86
April 15.4 21.2 9.5 45.0 62.6 0.72
May 19.2 25.9 12.5 41.8 94.0 0.44
June 22.6 30.0 15.1 10.1 123.9 0.08
July 26.3 34.7 17.6 2.1 151.0 0.01

August 26.3 34.9 17.7 4.3 130.1 0.03
September 23.3 30.0 16.5 25.0 77.7 0.32

October 18.6 24.0 13.1 68.6 39.9 1.71
November 12.9 17.4 8.5 70.7 24.8 2.85
December 10.0 14.4 5.8 58.0 15.3 3.80

year 17.3 23.4 11.2 457.4 813.2 0.56

2.5. Analytical Methods

The pH (water) for all data samples was determined in a 1:5 (v/v) solution via poten-
tiometric method in an MTROHM 692 pH/Ion Meter [41]. SOM was obtained by the wet
oxidation method with potassium dichromate, with a dosing of the excess dichromate by
titration with ferrous sulfate following [41–43].
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Available Ca2+ and Mg2+ for the 2012 sample data were extracted with an ammonium
acetate solution buffered at pH 7.0 where 10% of lanthanum chloride solution was added
and its determinations were obtained by atomic absorption spectrophotometry with flame
atomization on a Perkin Elmer Analyzer A300 apparatus [42,44].

Available K+ and Na+ for the 2012 sample data were extracted with an ammonium
lactate and acetic acid solution buffered at pH 3.65–3.75 [45] and its determinations were
obtained by atomic absorption spectrophotometry with flame atomization on a Perkin
Elmer Analyzer A300 apparatus.

The exchangeable cations for the 1965 and 2012 soil samples were extracted with an
Ammonium acetate solution (1 N NH4OAc) buffered at pH 7.0 [46].

2.6. Statistical Analysis

Statistical analyses were performed using the software package SPSS (v.25) where
tests of normality (by Shapiro-Wilk) [47,48], inspection of kurtosis, skewness and standard
errors [49–51] and visual inspection of the histograms, normal Q-Q plots and box plots were
performed in the climatic, 2002 and 2012 sample data in order to assess if it was normally
distributed. Tests for homogeneity of variances (Levene’s) [52,53] were also performed in
this subset in order to assess its homoscedasticity/heteroscedasticity. In the 2002 and 2012
irrigation sample data we performed, on all normally distributed with homogeneity of
variances data, Independent Sample T-Tests and we applied the Central Limit Theorem
where we have more than 30 samples per subgroup on our non-normally distributed,
but with homogeneity of variances, data. Data that showed non-normal distribution and
with no homogeneity of variances was directly analyzed by Mean Rank (MR) through the
Mann-Whitney U Test (U) or the Kruskal-Wallis H test (H). One sample T-tests (T) were
applied to compare rain-fed soil data from the 2012 samples with the means from 1965
and also to compare the means in climatic data from the climate normal of 1951/1980 to
the registered data since 1969. All null hypothesis was rejected for a p < 0.05. Geographic
information system analysis were performed in ArcGIS v 10.5 software package and the
predictive maps created with an Ordinary Kriging interpolation which was adjusted for
a logarithmic factor equation and, when available, aided by ancillary variables [54–62].
We also performed Getis-Ord Gi HotSpot analysis where the conceptualization of spatial
relationships was achieved by inverse distance squared. Non-predictive maps were created
with the software package QGIS 2.18.27 ‘Las Palmas’ [63].

3. Results
3.1. Climate

Since the climate normal of 1951/1980 the precipitation has declined approximately
24% and the ET0 has increased 6% in the studied area (Tables 1–3). One sample T-tests
reveal that the decrease in precipitation and the increase in ET0 were statistically significant
between the climate normal 1951/1980 and 1981/2010 (p < 0.01) and between the climate
normal 1981/2010 and 1991/2020 (p < 0.01) but it was not significantly different (p > 0.05)
when comparing the climate normals 1981/2010 and 1991/2020 (Table 4), probably because
of the slow variability of the parameters in such short time span, although a boxplot
comparison with a confidence interval of 95% reveals that, indeed, the aridity index
average is ever becoming closer to the 0.50 mark (Figure 2), having decreased from an
average of 0.78 in 1951/1980 to 0.56 in 1991/2020 (Table 4) with polarized values as high as
0.98 and as low as 0.30.

The annual average rainfall is 465.8 mm, falling mostly from October to March. When
compared with the official IPMA climate normal [64] the average monthly temperature of
the coolest month continues to be January and that of the hottest month changed from July
to August. The most recent climate normal was already presented in Table 3. Even when
considering a simple linear projection approach, the aridity index in the study area will,
most probably, surpass the 0.50 mark till 2050 (Figure 3).
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Table 4. Precipitation, ET0 and aridity index comparisons between climate normals.

Variable Climate Normal Mean N Test p

Precipitation

1951–1980 601.6 1
T(29): −5.337 0.0001981–2010 483.7 30

1951–1980 601.6 1
T(29): −6.865 0.0001991–2020 457.5 30

1981–2010 483.7 30
T(58): 0.859 0.3941991–2020 457.5 30

ET0

1951–1980 771.0 1
T(29): 5.728 0.0001981–2010 817.7 30

1951–1980 771.0 1
T(29): 5.464 0.0001991–2020 820.8 30

1981–2010 817.7 30
T(58): −0.247 0.8061991–2020 820.8 30

Aridity Index

1951–1980 0.78 1
T(29): −6.617 0.0001981–2010 0.59 30

1951–1980 0.78 1
T(29): −7.521 0.0001991–2020 0.56 30

1981–2010 0.59 30
IT(58): 0.770 0.4451991–2020 0.56 30

T: One-sample T-test; U: Mann-Whitney U test; IT: Two-sample T-test; p: p value.
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3.2. Irrigated Soils

An increase of 24.9% (Table 5a; p < 0.01) is observed in the levels of available Ca2+ from
2002 to 2012. This increase is related to tomato crops where Ca2+ increased 75% from 2002
(2348.44 mg kg−1) to 2012 (4119.79 mg kg−1) (*). Although all the studied RSG revealed
an increase in available Ca2+ (Table 5b) only the Fluvisols showed a significant increase of
28% (p < 0.01) in the parameter between sampled years while the Luvisols, Calcisols and
Cambisols revealed no statistically significant difference between sampled years (p > 0.05).
The RSG with the greatest available Ca2+ content are the Calcisols with an average, in 2012,
of 5717.39 mg kg−1.

The available Mg2+ soil content is stable in the mid-term and the parameter didn’t
revealed any statistically significant difference between sampled years (Table 5a; p > 0.05)
presenting an average content of 271 mg kg−1. Not even an overall and broad correlation
between crop and Mg2+ could be found but an RSG specific correlation did revealed that it
increased significantly by 18% (p < 0.05) in corn grown Luvisols from 2002 to 2012 (N 2002:
78; N 2012: 57; Average 2002: 306 mg kg−1; Average 2012: 361 mg kg−1; Test T (133):
−2.008, p = 0.047) supporting the result shown in the Table 5b for the specific Luvisol RSG
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that presented a significant increase of 13% (p < 0.05). All other RSG revealed no statistically
significant differences for this parameter.

Table 5. Mid-term evolution (2002 to 2012) of selected soil parameters in irrigated soils.

Parameter Year RSG Mean N Test p

(a)

Ca2+

(mg kg−1)
2002

Overall

2195 677
U: 222,236.000 0.0002012 2741 784

Mg2+

(mg kg−1)
2002 263 677

T (1.458): −1.205 0.2282012 279 783

K+

(mg kg−1)
2002 204 677

T(1.459): −2.672 0.0082012 223 784

Na+

(mg kg−1)
2002 44.3 677

U: 146,232.000 0.0042012 47.2 765

(b)

Ca2+

(mg kg−1)

2002
Fluvisols

1279 394
U: 70,675.000 0.0002012 1640 430

2002
Luvisols

3200 160
T(346): −1.532 0.1262012 3567 188

2002
Calcisols

5402 85
T(213): −1.227 0.2212012 5816 130

2002
Cambisols

1155 36
T(70): −1.551 0.1252012 1665 36

Mg2+

(mg kg−1)

2002
Fluvisols

234 394
U: 79,545.500 0.1302012 243 430

2002
Luvisols

315 160
T(345): −2.110 0.0362012 356 187

2002
Calcisols

297 85
T(213): 1.606 0.1102012 271 130

2002
Cambisols

271 36
T(70): −1.459 0.1492012 352 36

K+

(mg kg−1)

2002
Fluvisols

182
201

394
430

T(822): −1.981 0.0482012

2002
Luvisols

230
248

160
188

T(346): −1.713 0.0882012

2002
Calcisols

292
266

85
130

T(213): 1.467 0.1442012

2002
Cambisols 158

217
36
36

U: 464.000 0.0382012

Na+

(mg kg−1)

2002
Fluvisols

43.6 394
U: 76,685.500 0.0632012 44.7 421

2002
Luvisols

45.7 160
T(339): −1.663 0.0972012 51.3 181

2002
Calcisols

48.2 85
U: 5206.500 0.5332012 49.7 129

2002
Cambisols

36.6 36
T(68): −1.575 0.1192012 47.3 34

Ca2+: available calcium; Mg+: available magnesium; K+: available potassium; Na+: available sodium; T: Two-
sample T-test; U: Mann-Whitney U test; p: p value.

There was a significant increase (p < 0.05) in available K+ in the irrigated areas between
sample periods with the parameter increasing 9% from 2002 to 2012 (Table 5a) with a more
detailed analysis (Table 5b) revealing that the increase occurred in the irrigated Fluvisols
(p < 0.05) and Cambisols (p < 0.05), presenting these RSG a 10% and 37% increase from
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2002 to 2012, respectively, where in the Luvisols and Calcisols subjected to irrigation, the
assimilable K+ content did not offer significant variations (p > 0.05) in the mid-term. Also,
the available K+ distribution is the same across the different categories of Physiographic
position (p > 0.05) but is different across soil texture, with the light textures having less
potassium than the medium and heavy ones (p < 0.05) (*). As expected, a correlation
analyses revealed that the parameter is crop related both in 2002 (p < 0.01) and 2012
(p < 0.01). For 2002 the Potassium/crop correlation was only significant in the RSG Fluvisols
(p < 0.05) and in 2012 this correlation was significant in the RSG Fluvisols (p < 0.05) and
Luvisols (p < 0.01) for olive and corn crops (*).

Considering the available Na+ in the irrigated soils of the study area we registered
a significant increase (p < 0.05) from 2002 to 2012 of 7% (Table 5a). A more in-depth
analysis reveals that this increase isn’t related with a particular RSG (Table 5b) as the
available Na+ levels do not undergo statistically significant changes (p > 0.05). Therefore,
the mid-term increase in available Na+ in irrigated soils is generalized, and not specific
to a particular RSG, and was significantly correlated with soils that present good natural
drainage (p < 0.05), useful depth > 0.100 m (p < 0.01), medium to heavy texture (p < 0.01)
and crop (p < 0.01). The three crops causing the greatest accumulation of available sodium
in the studied area are corn (15% increase), cereals (36% increase) and olive (34% increase),
all for a p < 0.05 (*), with these increases occurring mainly in the Fluvisols and Luvisols RSG.
The great CEC of the Luvisols (as presented in Telo da Gama et al. [5]) where corn crop was
grown, and the general increase in ET0, provided that the sodium content augmented by
98% during the period of this study in the aforementioned RSG as the error bar (Figure 4)
and predictive map analysis (Figure 5) confirm.
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3.3. CROSS

The CROSS values of irrigated soils in 2002 and 2012 were significantly higher (35.5%
and 12.7%, respectively) than the values of rain-fed soils (Table 6).

Table 6. CROSS evolution when comparing rain-fed and irrigation sites from 2002 to 2012.

Parameter Year CS Mean N Test p

CROSS
(cmol (+) kg−1)

2002
Rain-fed 0.215 620

T (1293): 4.440 0.000Irrigation 0.291 675

2012
Rain-fed 0.165 508

T (1271): 3.150 0.002Irrigation 0.186 765
CROSS: cation ration of soil structural stability; CS: cultural system; T: Two Sample T-test; p: p value.

When considering each RSG separately (Table 7, Figure 6), we note that while in 2002
the CROSS increased in Fluvisols, Luvisols, Calcisols and Cambisols (all for a p < 0.01) by
25.4%, 20.7%, 20.7% and 35.7%, respectively, in 2012 the CROSS only increased in Luvisols
(by 26.1%; p < 0.01), remaining constant in the other RSGs (p > 0.05).

In areas where Na+ and K+ are gaining preponderance over Ca2+ and Mg2+, the CROSS
is increasing and, in areas where Mg2+, and especially Ca2+, are gaining preponderance
over Na+ and K+, it is decreasing as shown in the predictive + Hot Spot analysis map
(Figure 7) where yellow to red spots depict the areas where the CROSS is augmenting,
(i.e., where Na+ and K+ ions are gaining preponderance over Ca2+ and Mg2+ ions) and the
greenish to green spots depicts the areas where it is diminishing (i.e., where Mg2+ and,
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above all, Ca2+ are gaining preponderance over Na+ and K+). Note that the different colors
represent varying levels of confidence.

Table 7. CROSS evolution from 2002 to 2012.

Parameter Year RSG CS Mean N Test p

CROSS
(cmol (+) kg−1)

2002

Fluvisols
Rain-fed 0.268 222

U: 31,422.000 0.000Irrigation 0.336 394

Luvisols
Rain-fed 0.198 194

T (352): 3.569 0.000Irrigation 0.239 160

Calcisols
Rain-fed 0.155 143

T (226): 2.805 0.005Irrigation 0.187 85

Cambisols
Rain-fed 0.244 61

T (95): 3.724 0.000Irrigation 0.331 36

2012

Fluvisols
Rain-fed 0.208 194

T (604): 0.281 0.779Irrigation 0.213 412

Luvisols
Rain-fed 0.134 152

T (338): 4.349 0.000Irrigation 0.169 188

Calcisols
Rain-fed 0.110 99

T (227): 0.963 0.336Irrigation 0.120 130

Cambisols
Rain-fed 0.206 63

U: 1076.000 0.844Irrigation 0.219 35
CROSS: cation ration of soil structural stability; CS: cultural system; U: Mann-Whitney U test; T: Two Sample
T-test; p: p value.
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Other comparisons revealed that CROSS variations were correlated to crop, physio-
graphic position, useful depth, texture, ET0 and RSG (p < 0.01) (*). The CROSS increases in
the Luvisols RSG where crops such as cereals and corn are grown and remained constant
where tomato and olive (Figure 8a) are present. In the Fluvisols RSG only the soils where
corn crops are grown had a significant increase in CROSS with other crops such as grains
and olive maintaining the CROSS averages constant. In the soils where crops like tomato
are present, the CROSS mean values have diminished from 2002 to 2012 (Figure 8b).

3.4. Rain-Fed

The average SOM, pH, exchangeable Ca2+, Mg2+ and K+ content have increased by
23%, 8%, 60%, 21% and 193% (p < 0.01), respectively, while the exchangeable Na+ has
decreased by 50% (p < 0.01) since the parameters were first assessed in 1965 (Table 8).
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Table 8. Long-term evolution (1965 to 2012) of selected soil parameters in rain-fed soils.

Parameter Year Mean N Test p

SOM
(%)

1965 1.26 1
T(524): 9.809 0.0002012 1.55 525

pH 1965 6.43 1
T(525): 10.819 0.0002012 6.92 526

Ca2+

(cmol(+) kg−1)
1965 9.66 1

T(525): 10.316 0.0002012 15.45 526

Mg2+

(cmol(+) kg−1)
1965 2.25 1

T(525): 5.797 0.0002012 2.73 526

K+

(cmol(+) kg−1)
1965 0.15 1

T(525): 24.982 0.0002012 0.44 526

Na+

(cmol(+) kg−1)
1965 0.32 1

T(520): −32.653 0.0002012 0.16 521

Ca2+: exchangeable calcium; Mg2+: exchangeable magnesium; K+: exchangeable potassium; Na+: exchangeable
sodium; T: One-sample T-test; U: Mann-Whitney U test; p: p value.

4. Discussion

The local climate changes detected between 1951/1980 and the subsequent climate
normals is due to the increase in the mean values of the temperature and the decrease in
soil moisture that lead to an increase in the ET0, which is accordance with the many studies
that analyze the Mediterranean basin climate variability [65–69]. The United Nations
Environment Programme [70] only considers a semi-arid climate where the aridity index
< 0.50, but the UNCCD [71] states that areas with an aridity index ranging from 0.03 to
0.65 are susceptible to desertification (i.e., drylands). Thornthwaites’ climate classification
system states that the climate in the study area in 1951/1980 was considered “mesothermal
climate (sub-humid) with large excess water in the winter and a summer of (very) low
thermal efficiency” (i.e., with the key C1B2s2b4) and that it changed, in 1981/2010, to
“mesothermal (sub-humid) with moderate excess of water in the winter and a summer
of (very) low thermal efficiency” (i.e., C1B2sb4), and changing again, in 1991/2020, to
“mesothermal (semiarid) climate with a winter of little to none excess of water and a
summer of very low thermal efficiency” (i.e., DB2db4). Salt-affected soils are commonly
distributed in areas where the aridity index is equal or below to 0.75 according to Brady &
Weil [38]. With the registered decrease in precipitation and the increase in temperature in
the region, arid sites are emerging at merely 100 km in a straight line from the studied area
as reported by Verslype et al. [72].

The overall increase in available calcium from 2002 to 2012 can be explained by (a) the
excessive use of the element in this cultivation system or (b) edaphic chemical reactions,
once that, in the irrigated soils, intensive crops such as Lycopersicon esculentum Mill. are
produced whose rooting covers a large part of the soil, as shown by Valles et al. [73]
and Avilés et al. [74], increasing the edaphic CO2 concentration which, catalyzed by the
irrigation water, solubilizes carbonates (mainly CaCO3) by the reaction of Equation (4),
releasing Ca2+ in the soil and accumulating (as reported in the results section, a significant
increase in Ca2+ was detected for this crop). Calcium in the soils of the studied area occurs,
above all, in the primary minerals Ca carbonates and is usually present as calcite (CaCO3),
dolomite [CaMg(CO3)2] or even gypsum (CaSO4·2H2O) being the most abundant cation of
the SEC [64] playing a critical role in counteracting soil acidification by reducing Aluminum
and Hydrogen saturation.

CaCO3 + CO2 + H2O → Ca(HCO3)2 → Ca2+ + 2HCO−3 (4)

The available calcium increase in the RSG Fluvisols may be related to the cultural in-
tensification practiced in these soils and the cation release according to the aforementioned
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Equation (4). However, since this RSG corresponds to the soils of the study area where
irrigation has been longer practiced (e.g., 40 years more than Calcisols) [5], the leaching
effect should have caused losses of this element. This observed accumulation in Ca2+ may
occur due to the element being added to the soil. It could also be that the sum of the
irrigation water and precipitation were not enough to cause the leaching of this element
and, indeed, an increase in the ET0 in the long term was already reported in the results
section of this paper, a fact that is also correlated with the study of Brinkman [75]. As for the
Calcisols RSG it is no surprise that this RSG presents the greatest concentration of available
calcium as is expected for a soil with considering accumulation of secondary carbonates
associated with highly calcareous parent materials, which aligns with the studies of Aranda
et al. [76] and Wang et al. [77].

Magnesium in the soils of the studied area occur primarily as the Mg carbonate
Dolomite (MgCO3·CaCO3) and is only second to Calcium as the most abundant cation of
the SEC and soil solution of the area as reported by Loures et al. [64] and, like calcium, plays
a critical role in counteracting soil acidification by reducing Aluminum and Hydrogen satu-
ration. This cation is usually provided to high valued cash crops sensible to Mg2+ deficiency
such as tomato, corn, or olive, therefore, the reported increase in the RSG Luvisols may
occur due to its possible addition through fertilization, or by the dissolution of dolomite or,
also, because the amount of irrigation water plus precipitation, was not enough to leach
the element from the soil. Our analysis reveals that the available magnesium content is
at the very least being maintained but because of the thick water mantle surrounding it,
it is being less tightly adsorbed to soil colloids than calcium and, thus, being more easily
leached which causes its non-accumulation in the soils. Also, in the Mediterranean basin,
magnesium precipitation as dolomite acts as a contributor for this result, as demonstrated
in the study by Días-Hernandez et al. [78].

The overall increase in available potassium in the mid-term for the irrigated soils
shows the excessive use of this element in this cultivation system. Potassium is a common
input as fertilizer to cash crops as the quantity held in an easily exchangeable condition,
at any given time, may be very small as most of the soil K+ content is present in minerals
and nonexchangeable forms being the mineral weathering rates that primarily influence its
behavior, as demonstrated in the studies of Sanghamitra et al. [79] and Abd El–Mageed
et al. [80] and so the tendency is to its content to increase in irrigated soils as was already
proved in the past by Keeley and Quin [81] or Bernal et al. [82]. We believe that the
registered increase in the Fluvisols occurs because this RSG is geographically positioned
near most of the irrigation points and rivers, that have the longest exposition to irrigation
practice and, thus, the increase in available potassium was expected. Overall, soil contents
are medium/high in the Fluvisol RSG. We believe that the increase in K+ in the Cambisols
RSG is due to the intensified irrigation practice, since 2002, that these soils underwent,
particularly with corn being intensively grown in the RSG as was already discussed
in Telo da Gama et al. [5]. The fact that neither the Fluvisols nor Cambisols presented
significant differences in the mid-term for the irrigation system could be explained by
the already very high concentrations in 2002 in these RSGs because, as stated in the
Portuguese manual for crop fertilization [83], most of the crops in soils with an available
content of potassium above 200 mg kg−1 don’t have the need to be fertilized with this
nutrient and, most likely, only maintenance amounts of it are being provided to these soils,
causing its stability, which is in accordance with most of the studies already mentioned.
Also, the heavier textures presented higher potassium amounts which we believe occur
because of the greater natural capacity of these textures to retain ions in the SEC and soil
solution.

The overall increase in available sodium was expected as the dry, hot climate condi-
tions present in the summer of the Mediterranean basin countries must be counteracted by
copious applications of freshwater (e.g., a typical endowment for corn in the basin ranges
from 800–900 mm ha−1 year−1) that, even when of good quality, the applied volume to
grow cash crops is so high that sodium accumulates relentlessly, which is in accordance
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with the vast majority of authors that study soil salinity in the Mediterranean basin. The
presented results in Figures 4 and 5 are very interesting as even in soils with good internal
drainage and useful depth, the available Na+ is accumulating. The registered intensifica-
tion in olive orchards, as demonstrated by Siebert [84], in the Mediterranean basin with
increased outputs and also increased inputs in the form of irrigation endowments and
fertilization caused the marked accumulation of Sodium in this RSG. As already presented
in Telo da Gama et al. [5], there was a 1000% increase in the area this crop occupies since
the beginning of this study. Soils with medium texture, good natural drainage and moder-
ately developed are the ones irrigated for the longest period and so this correlation with
increased Sodium was expected. It is latent that irrigation increases the levels of available
sodium in the soils of the study area. The accumulation of this element would be related to
the scarcity of rainfall, which would hinder its loss by leaching, and that is in accordance
with the results already presented and the studies by Pilatti and Buyatti [24] and Gonçalves
and Martins [85]. These results are also in line with those obtained by Badia [18], Calvo-
Polanco et al. [19], Shrivastava and Kumar [20] and Telo da Gama et al. [5], who concluded
that the primary and secondary salinity in the soils of the Mediterranean basin seems to be
inevitable, since the amount of precipitation is not enough to leach the salts.

The CROSS results point towards a generalized dispersion of soil clay when cultural
systems are compared, which is related to the significantly higher concentrations, under
irrigation, of exchangeable Na+, and with the balance of the remaining bases as mentioned
by Smith et al. [28]. From the presented results we also conclude that the preponderance
with which the CROSS increased is very different when comparing the cultural systems
in 2002 and in 2012 as, in 10 years, its preponderance decreased by 64%. This result is
related to the increase in the preponderance of exchangeable Ca2+ and the decrease in
exchangeable Na+ between the sampled years, which led to a decrease in the dispersant
capacity of irrigated soils, which is in line with the study of Markgraf et al. [27] and
implying that the dispersion of soil colloids is decreasing in the mid-term. We believe that
this occurs due to the marked decrease in leaching and drainage of most of the soils in the
study area, the highest ET0 recorded, the dissolution of calcite (CaCO3) and the increase in
HCO3

− in the irrigation water (discussed in Telo da Gama et al. [5]). Therefore, the overall
and significant increase in Na+ and K+ ions, which facilitate the dispersion of clay particles,
is offset by the general and significant increase in Ca2+, which promotes flocculation of
said particles as confirmed in the study of Zaker and Emami [30].

As for the rain-fed soils, analysed in the long term, the SOM, pH and exchangeable
bases variability are, above all, related to environmental conditions, edaphic parent ma-
terial and the quality of added residues. The SOM increases, probably, because little to
none soil disturbance causes, by edaphic hypoxia, the preservation of microbial and plant
compounds, tending to its accumulation (when the microbial oxidation of humus is com-
pensated by enough constant addiction of plant residues) as indicated in the studies of
Teixeira et al. [86] and Francaviglia et al. [87]. The increase in pH is related to the greater
preponderance in the increase in non-acid cations (Ca2+, Mg2+, K+ Na+) than the acidic
ones (Al3+, H+), whose origin would be associated with the irrigation water, fertilizers,
liming and bedrock weathering, accumulating said bases as a result of the increasing ET0
(as already discussed, the precipitation water is not enough to cause the cations leaching,
which increases the CEC of the soil by the increase in free negative charges present in the
clays and humus) [6]. Mineral weathering, fertilization, liming and the irrigation water
floods the soil solution and, therefore, the soil exchange complex, with non-acid cations,
where Ca2+, Mg2+ and K+ accumulate. The exchangeable Na+ is decreasing, probably,
because this cation is less tightly held than Ca2+, Mg2+ and K+ due to its larger hydrated
radius and also because it is not being applied to the soil as fertilizer as discussed in Loures
et al. [64] and Telo da Gama et al. [5].
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5. Conclusions

As a conclusion of this multi-year study, it is of concern the registered increase in
available sodium and calcium (that may imply edaphic salinization, sodification and alka-
linization), that the intensification of agricultural soils through the practice of irrigation is
showing in the mid-term in the Mediterranean basin. Rain-fed systems are more sustain-
able in the long term with increasing levels of SOM and decreasing levels of exchangeable
Na+, even though the exchangeable calcium also significantly increases in this cultural
system. These are important results as they align with the registered alterations in local
climate since 1951/1980, with the ET0 increasing and precipitation decreasing, causing
the accumulation of non-acid cations and the decrease in the aridity index, so that it is
ever closer to 0.50 where an arid area is officially declared. These results are but one more
account of the effect that climatic changes perpetrates in the soils of the basin, increasing
its desertification. The extent to which our results are consistent with those of other au-
thors [5,64,76,88–91] that study the Mediterranean Basin edaphic-climatic conditions serve
as an important check on the validity of our conclusions.
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