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Abstract: Wilt disease affecting pomegranate crops results in rapid soil-nutrient depletion, reduced
or complete loss in yield, and crop destruction. There are limited studies on the phytopathogen
Fusarium oxysporum prevalence and associated genomic information with respect to Fusarium wilt
in pomegranate. In this study, soil samples from the rhizosphere of different pomegranate plants
showing early stage symptoms of wilt infection to an advanced stage were collected from an orchard
situated in Karnataka, India. A whole metagenome sequencing approach was employed to gain
insights into the adaptations of the causative pathogen F. oxysporum. Physicochemical results showed
a drop in the pH levels, N, Fe, and Mn, and increase in electrical conductivity, B, Zn, Cl, Cu was
observed in the early and intermediate stage samples. Comparative abundance analysis of the
experimental samples ESI and ISI revealed an abundance of Proteobacteria phyla Achromobacter sp.
2789STDY5608625, Achromobacter sp. K91, and Achromobacter aegrifaciens and Eukaryota namely As-
pergillus arachidicola, Aspergillus candidus, and Aspergillus campestris. Functional pathway predictions
implied carbohydrate binding to be significant (p < 0.05) among the three experimental samples. Mi-
crobiological examination and whole microbiome analysis confirmed the prevalence of F. oxysporum
in the soil samples. Variant analysis of F. oxysporum revealed multiple mutations in the 3IPD gene
with high impact effects. 3-Isopropylmalate dehydratase and carbohydrate-active enzymes could
be good targets for the development of antifungals that could aid in biocontrol of F. oxysporum. The
present study demonstrates the capabilities of the whole metagenome sequencing approach for rapid
identification of potential key players of wilt disease pathogenesis wherein the symptomatology
is complex.

Keywords: microbiomics; soil metagenomics; DNA sequencing; wilt; rot; Punica granatum

1. Introduction

Pomegranate is a widely cultivated fruit crop with its origins traced to Turkey and
Iran. The crop is extensively cultivated in various parts of India and India has emerged
as the leading producer of pomegranate globally [1–3]. There are extensive reports on the
medicinal properties of the pomegranate viz it’s antimicrobial [4], antihyperglycemic [5],
anticancerous [6,7], its nutraceutical [8], pharmaceutical [9], and cosmeceutical [10] appli-
cations due to the presence of a wide range of nutrients, secondary metabolites such as
alkaloids and flavonoids [2]. There are also reports of anti-inflammatory properties and the
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potential of the pomegranate juice and peel against various disorders [2,3,11–13] and protec-
tion from UV photodamage [14]. However, cultivating the crop has been challenging due to
its susceptibility to diseases and pest infestations which results in a drastic reduction in the
yield and quality of the fruit. Major diseases are caused as a result of bacterial and fungal
infections. Some of the fungal pathogens reported are Colletotrichum acutatum [15] Tricho-
derma spp., Botrytis cinerea, Aspergillus niger, Penicillium spp., Alternaria spp., Colletotrichum
gloeosporioides, Pestalotia brevista, and Pilidiella granati [16–19] anthracnose disease of the
flower. The infection results in the abortion of the flower leading to a reduction in the
yield [15]. The manifestations of infection caused by Pilidiella granati are crown rot, twig
blight, and dieback with common symptoms of necrosis in fruits and twigs respectively
during the early stage of infection [15,19]. Among the bacterial diseases, blight disease is
one of the serious challenges faced by farmers in India. The causative organism has been
identified as Xanthomonas campestris. pv. punicae. Yield loss of up to 80% has been reported
in Bangalore, Karnataka as a result of an epidemic outbreak. The pathogen infects the
entire plant. Epidemic outbreaks are also reported in Andhra Pradesh, Maharashtra, and
Delhi [20]. The detection of the fungal and bacterial pathogens is generally done through
the isolation of the organism followed by culturing them. The identification is done based
on the morphological characters and physiological and biochemical tests. These methods
are highly labor-intensive, time-consuming, need expertise [21] and only the cultivable or-
ganisms can be identified. These limitations were later overcome by PCR based diagnostic
method. The identification and detection of P. granati were carried out through the nested
PCR method. Species-specific primers were designed and the method could effectively
detect the pathogen in the fruits of pomegranate [22]. In another study, the phytopathogen
Xanthomonas campestris pv. punicae, causing blight disease in pomegranate was detected
using ERIC-PCR-Generated genomic fingerprints. A relationship was established between
the fingerprints and virulence pattern of the blight-causing pathogen [20]. These methods
have limitations with respect to specificity as they are not based on DNA sequencing.

16S rRNA gene sequencing is an excellent approach to reveal the identity of the
pathogen as they are signature specific sequences in bacterial species with higher accu-
racy. Bacterial wilt disease in Cucurbita maxima in China caused by Ralstonia solanacearum
was identified by 16S rRNA gene sequencing of the isolates obtained from the plants
infected with wilt. Pathogenicity analysis revealed that all the isolates belonged to Ralstonia
solanacearum [23]. Investigations on determining the microbiota associated with symp-
tomatic and non-symptomatic bacterial wilt-diseased banana plants were also done using
16S rRNA metagenome sequencing. Illumina MiSeq platform was used for sequencing.
The results revealed the predominance of Ralstonia in the pseudostem of the symptomatic
diseased plant compared to non-symptomatic [24]. The findings could also throw light
on the role of endophytic microbes revealed through sequencing studies in conferring
tolerance to the disease. Many successful studies have been carried out in fruit crops and
vegetables, where 16S rRNA gene sequencing has emerged as an excellent tool for the de-
tection of the associated plant pathogens. Another newly reported disease in pomegranate
is the Bacterial root-bark necrosis disease and wilt in pomegranate, which was found to
affect the plant entirely. A recent study by Ajaysree and Borkar, 2018, shed light on the
symptomatology of the disease that includes symptoms of wilt disease on the leaves and
stem such as yellowing of leaves, followed by leaf fall and wilting of branches. The study
reports complete death of the plant with no recovery in a period of 2–3 months. On the
other hand, reports suggest that the roots of plants show symptoms of root-bark necrosis.
16S rRNA sequencing facilitated the identification of the pathogenic bacterium Klebsiella
pneumoniae [25].

To explore the correlation between monocropping followed in banana and the Fusar-
ium wilt incidence, the soil samples from such fields were subjected to sequencing of 16S
rRNA genes for bacteria and internal transcribed spacer using the MiSeq platform for
fungal identification. The findings led to the conclusion that monocropping significantly
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increased the incidence of Fusarium wilt [26], with the help of 16S metagenomics the role
of the cropping system in disease management.

16S rRNA sequencing using the 454 platforms could accurately reveal the bacteria
associated with the nematodes infesting pine trees. This association is responsible for the
wilt disease of pine. 25 Operational Taxonomic Units could be analyzed based on 97% of
similarity in the sequences of the library. The microbial diversity revealed Alphaproteobac-
teria, Betaproteobacteria, Gammaproteobacteria, and Bacteroidetes [27]. These findings are
vital for adopting the proper control measures for wilt disease as it is influenced by the
nematodes as well as the associated microbiota establishing a unique ecosystem.

However, despite all the benefits of employing the 16S metagenomics approach,
there are certain limitations to consider prior to planning a soil metagenomics study.
Firstly, soil microbial diversity is vast, and exploring the soil communities with a targeted
approach that considers quantifying relative abundances of taxa may remain incomplete in
terms of its functional potential. Secondly, the resolution is dependent on the databases
employed. There are large scale efforts put towards developing database and tools to
improve classification of bacterial communities and their diversity [28–30] The emergence
of long read platforms have offered potential solutions to help sequence the entire 16S rRNA
using the Nanopore or PacBio platforms. Some studies have reported higher microbial
identification and taxonomic resolution as compared to the short amplicon sequencing
despite the higher depth from platforms such as Illumina [31]. To specifically identify
fungi, the gene cluster within the 18S ribosomal RNA is considered and the repetitive
internal transcribed spacer (ITS) sequences are used. Furthermore, 18S rRNA sequencing
comes with its limitations particularly with extraction methods showing biased results [32],
primer-biases in PCR resulting in amplification of certain taxa preferentially [33], the
copy numbers of the small subunit (SSU) rRNA genes [34], sequencing errors [35,36] and
remnant DNA amplification [37].

The whole metagenome sequencing approach has helped address some of these lim-
itations pertaining to targeted metagenome approaches. Microbe-pest-host associations
are complex and their adaptations remain elusive. The whole metagenome approach is a
powerful method to not only screen microbes but also facilitate understanding of plant-
microbe-soil interactions and the disease pathogenesis in plants. The advanced Illumina
Novaseq 6000 (Illumina) offers a unique possibility to perform soil microbial characteriza-
tion [38,39]. Despite the large data outputs from these platforms, bioinformatics analysis of
the data employing server and cloud-based analytics services have enhanced the speed
and efficiency of analysis [40]. There are limited studies on the phytopathogen Fusarium
oxysporum prevalence and associated genomic information with respect to Fusarium wilt
in pomegranate. In the present study, we demonstrate the implementation of shotgun
sequencing using the whole metagenome approach to study the pathogenomics of wilt
disease in Punica granatum caused by Fusarium, wherein the symptomatology is complex.

2. Materials and Methods

The present study involved screening the physiochemical parameters of the soil
samples from the rhizosphere of the infected plants. The total microbial counts were
estimated. Employing conventional microbiological methods the soil samples were plated
on specialized media to confirm the presence of the pathogen Fusarium oxysporum and
Aspergillus niger. Following which genomic DNA was isolated from soil samples and the
quality control of the samples was performed. Whole metagenome shotgun sequencing
was carried out. Thereafter, the data was subject to bioinformatics analysis to estimate
the relative abundances of the microbes, and the functional predictions were performed.
Finally, variant analysis was carried out to screening for possible targets that could provide
key leads to understand the adaptations of the pathogen. An overview of the methodology
adapted in the study is provided in Figure 1.
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Figure 1. Overview of the experimental workflow from sample collection to identifying key players in microbial adaptation.
The figure depicts the wet laboratory and dry laboratory methods employed in the present study.

2.1. Site Description and Sampling

Soil samples were collected from a pomegranate orchard close to Chikkaballapur
(13.3907◦ N, 77.6880◦ E) from Karnataka, India. The orchard has been used for cultivating
the crop over a span of 5 years and the farmer suffered huge losses due to the reducing
fruit yield attributed to severe pest infestations. In the past year alone, the farmer suffered
a loss in fruit yield by over 36%. The land was surveyed and post-harvest, without the
application of any pesticides or antibacterial or antifungal agents, samples were collected
in December 2019 from the rhizosphere of 5 plants from each category showing similar
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symptoms. The symptoms were categorized as early signs of infection, moderate signs of
infection, on and severe infections, in triplicates and pooled (Figure 1). The plants were
identified as early-stage infection (ESI) with early symptoms of wilt, intermediate stage of
infection (ISI), and advanced stage of infection (ASI) on the basis of physical examination
of the leaves, stem, fruits, and roots (Figure 2).
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Figure 2. Physical symptoms of the plants, figures depict the physical symptoms of the infected
plants—ESI; Early-stage infection, ISI; Intermediate stage infection, and ASI; Advanced stage infection
(a–d). Other wilt-associated symptoms such as yellowing of leaves and root knots observed (e),
rotting of fruit (g), complete defoliation (f), brown decay, and sporulation (h) observed are depicted.

2.2. Physicochemical Characterization and Total Microbial Count Estimation

All the physical and chemical characterizations were carried out based on the proce-
dures provided by [41]. pH values, electrical conductivity, were estimated by the electro-
metric method [41]. The total microbial counts were estimated using the protocols provided
in IS 5402 and IS 5403 for the total bacterial and total fungal count respectively [42,43].
Each reading was collected in duplicates.

2.3. Isolation of Fusarium oxysporum, Aspergillus niger from Soil Samples

39 g of potato dextrose agar powder (catalog no. M096, HiMedia) was added in 1 L
sterile water and it was thoroughly mixed. The media was autoclaved at 15 psi pressure at
121 ◦C for 15 min. Test Samples (1 mL) were 10-fold diluted in 9 mL of water (10−1). From
that sample was serially diluted up to (10−2) and (10−3). All three dilutions were plated
on Selective media by spread plate technique. The plates were incubated in both aerobic
chambers at 37 ◦C for 24–48 h for bacteria and 27 ◦C for 48–72 h. After 24–48 h incubation
colonies were observed and recorded [42] (Tables S1 and S2).
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2.4. DNA Extraction and Quality Control

DNA extraction was carried out based on the protocol by Amorim et al. [44]. Nanodrop
was used initially to test the purity of DNA (OD260/OD280) (NanoDrop, Wilmington,
DE, USA). Agarose Gel Electrophoresis was performed to assess DNA degradation and
potential contaminations (Figure S1) and finally, Qubit 2.0 was used to quantify the DNA
concentration precisely.

2.5. Library Construction and Quality Control

Qualified DNA was cut into fragments by the restriction enzyme. The construction of
the DNA libraries is through the processes of end repairing, adding A to tails, purification,
PCR amplification, and Libraries were sequenced by Illumina high-throughput sequencer
with paired-end sequencing strategy. The libraries, that passed the QC, were then fed
into sequencers after pooling according to their effective concentration and expected data
volume.

2.6. Whole Meta-Genome Sequencing

The qualified libraries are fed into sequencer Illumina Novaseq 6000 (sequencing
facility of Novogene Co. Ltd., Beijing, China) after pooling according to its effective concen-
tration and expected data volume. The detailed protocol is provided in the supplementary
data, Table S3.

2.7. Data Analysis

Raw Data QC of individual samples was conducted using FastQC (parameters: de-
fault) (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/; accessed on 10 Jan-
uary 2020, Table S4). FastQ Screen v0.14.0 (https://www.bioinformatics.babraham.ac.uk/
projects/fastq_screen/; accessed on 11 January 2020) was employed to screen the host
genome sequences (References: GCF_007655135.1, GCA_002837095.1, GCA_002864125.1,
GCA_002201585.1) from the raw data (parameters: –tag –filter ‘00000’; configured with
bowtie2-2.3.5.1 and default Adapters). Host screened data was further validated using
fastq-pair v1.0 and then assembled using metaSPAdes v3.13.0 (parameters: default) [45],
metagenomic classification and visualizations using Kraken2 (parameters: –use-names
–paired –gzip-compressed; database: built on 12 November 2020) [46] and pavian (https:
//github.com/fbreitwieser/pavian/; accessed on 10 January 2020) respectively. SPAdes
assembled genome was subjected to gene prediction using MetaGeneMark (parameters: -f
3 -a -d -k -v -m MetaGeneMark_v1.mod) [47]. The predicted nucleotides were searched
against NCBI NR database (Downloaded in March 2020) using Diamond v0.9.30 (pa-
rameters: -k 1) BlastX. Annotations were further meganized (parameters: default) using
MEGAN v6 (relevant database were Downloaded in March 2020) [48].

Genome resolved metagenomics of Individual samples was performed using the
SqueezeMeta pipeline v1.3.0 in sequential mode with MegaHIT assembler (default parame-
ters). Short contigs (<200 bps) were removed and contig statistics were estimated using prin-
seq. RNAs were predicted using Barrnap. 16S rRNA sequences were taxonomically classi-
fied using the RDP classifier. tRNA/tmRNA sequences were predicted using Aragorn [49].
ORFs were predicted using Prodigal. Similarity searches for GenBank, eggNOG, KEGG,
were done using Diamond HMM homology searches were done by HMMER3 [50] for the
Pfam database. Read mapping against contigs was performed using Bowtie2. Binning was
done using MaxBin2 [51] and Metabat2 [52]. A combination of binning results was per-
formed using the DAS Tool [53]. Bin statistics were computed using CheckM. Bins with at
least 50% completeness and <20% contamination were selected and subjected to annotation
using enrichM’s annotation module (https://github.com/geronimp/enrichM, accessed
on 20 May 2021) against KO, PFAM, EC, and CAZY databases. The generated annotation
matrices were subjected to enrichment using enrichM’s enrich module. Alternatively,
functional analysis of the metagenomic samples was also done using MG-RAST online
server (https://www.mg-rast.org/; accessed on 22 January 2020) with default parameters.

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/
https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/
https://github.com/fbreitwieser/pavian/
https://github.com/fbreitwieser/pavian/
https://github.com/geronimp/enrichM
https://www.mg-rast.org/
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2.8. Prediction of Protein Functions

Processed FASTQ reads of individual samples were used to search most popular
databases that include protein databases, protein databases with functional hierarchy
information, and ribosomal RNA databases namely RefSeq, IMG, TrEMBL, Subsystems,
KEGG, GenBank, SwissProt, PATRIC, eggNOC, KO, GO, COG, RDP, LSU, SSU and NOG
as a part of the MG-RAST analysis.

2.9. Variant Analysis

Based on the analysis of the processed reads and the resultant assemblies obtained
from metaspades, the organisms Fusarium oxysporum and Aspergillus niger were used from
the samples ESI and ISI respectively. BWA [53] was utilized for indexing (parameters: index)
and mapping (parameters: mem) the pre-processed reads to A. niger CBS 513.88 (NCBI
Accession: GCF_000002855.3), and F. oxysporum f. sp. lycopersici 4287 (NCBI Accession:
GCF_000149955.1) reference genomes. Then the aligned reads were converted to bam and
sorted using Samtools v.1.6 [54] (parameters: sort -l 9) and duplicate reads were marked
using GATK MarkDuplicates v.4.1.9.0 [55], followed by adding and replacing the read
groups using GATK AddOrReplaceReadGroups. The reference dictionary was created
for the genome using Samtools (parameters: dict) and the reference genome was also
indexed using Samtools (parameters: faidx) to aid the variant calling process. GATK
HaplotypeCaller (parameters: -ERC GVCF -GQB 50) and GATK GenotypeVCFs to generate
known variants for base quality score recalibration using GATK BaseRecalibrator, followed
by GATK ApplyBQSR. Furthermore, the recalibrated alignments were again run through
GATK HaplotypeCaller (parameters: -ERC GVCF -GQB 50) and GATK GenotypeVCFs to
identify the variants, followed by selecting identified SNPs and INDELs separately using
GATK SelectVariants (parameters: –select-type-to-include SNP) (Parameters: –select-type-to-
include INDEL) and extracted SNPs were further masked using GATK VariantFiltration
(parameters: -mask -mask-extension 5 –mask-name “INDEL”) to tag the SNPs identified in
and around INDELs. Finally, the masked SNPs and filtered INDELs were merged using
GATK MergeVcfs [56]. In order to predict the variant effects, reference genomes were
prepared using snpEff v.5.0d [57] (parameters: build-genbank) and variant summary and
effect predictions were obtained.

2.10. Statistical Analysis

Output from MEGAN in. SPF format was used for statistical analysis and was per-
formed using STAMP 2.1.3 (http://kiwi.cs.dal.ca/Software/STAMP; accessed on 10 Jan-
uary 2020, [58]). The one-sided G-test (w/Yates’ + Fisher’s) with asymptomatic confidence
intervals (0.95) using the Benjamini–Hochberg FDR method was implemented [59].

3. Results
3.1. Physical Examination

Physical examination of the pomegranate plants, with respect to their, roots, leaves,
stems, and fruits showed symptoms of wilt were considered for the study. Examination of
the fruits showed the presence of rot disease was deemed for study.

Considering the ESI plant sample, few leaves showed mild yellowing (Figure 2b,e)
and on examination of the roots, root knots were observed (Figure 2e). A few of the fruits
showed black spots with mild discoloration. In the ISI, the dark brown coloration of the
stem was observed, the fruits were darkly colored irregular spots with cracking (Figure 2f)
and leaves showed yellowing, presence of moist, dark-colored irregular spots (Figure 2b).
The ASI sample showed complete defoliation (Figure 2c) fruits that had completely turned
dry with dark-brown pigmentation (Figure 2h), the root systems were dry and reduced
with elongated galls, and dark brown coloration of the stem which has turned completely
dry was observed (Figure 2f). ASI sample had complete yield reduction with no recovery
(Figure 2).

http://kiwi.cs.dal.ca/Software/STAMP
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3.2. Physiochemical Properties

The pH of the ESI sample was found to be 7.73 and electrical conductivity was
estimated to be 135 µs/cm. Macronutrient and micronutrient analysis of ESI revealed
0.20% of total nitrogen (N), 0.0084% Phosphorous (P), 0.011% Potassium (K), 0.92% organic
Carbon (C), 15 ppm Chloride(Cl), 0.98% Iron (Fe), 9.5 ppm Manganese (Mn), 26.9 ppm
Copper (Cu), 24.8 ppm Zinc (Zn), and 3.4 ppm Boron (B). The pH and electrical conductivity
of the ISI sample were estimated to be 6.35 and 139 µs/cm, respectively. In ISI samples
the total N was calculated to be 0.19%, followed by P (0.010%), K (0.011%), C (0.93%), Cl
(18 ppm), Fe (0.93%), Mn (9.1 ppm), Cu (29.4 ppm), Zn (30.9 ppm), B (4.1 ppm). The pH
of the ASI sample was found to be 6.63 and electrical conductivity was estimated to be
180 µs/cm, followed by total N (0.20%), P (0.011%), K (0.014%), C (0.97%), Cl (21 ppm), Fe
(0.98%), Mn (9.6 ppm), Cu (31.4 ppm), Zn (33.2 ppm), B (4.3 ppm). The pH was found to be
altered in the ISI sample (6.35) and ASI sample (6.63) as compared to that of the ESI sample
(7.73). Furthermore, reduced levels of N, Fe, and Mn micronutrients were reported in the
ISI sample as compared to the ESI sample. Whereas, the micronutrients B, Zn, Cl, Cu, were
found to be higher in the ISI sample when compared to the ESI sample (Tables 1 and S5).

Table 1. Physicochemical Characteristics and total microbial count of the soil samples.

Sample pH
EC N P K OC Cl Fe Cu Mn Zn B Microbial Count/g

(µs/cm) % ppm Bacterial
(cfu)

Fungal
(cfu)

ESI 7.73 135 0.20 0.0084 0.011 0.92 15 0.98 26.9 9.5 24.8 3.4 1968 154
ISI 6.35 139 0.191 0.010 0.011 0.93 18 0.93 29.4 9.1 30.9 4.1 2240 170
ASI 6.63 180 0.20 0.011 0.014 0.97 21 0.98 31.4 9.6 33.2 4.3 2126 154

EC—Electrical conductivity.

3.3. Total Microbial Counts

The total bacterial counts and total fungal were estimated to be 1968 g/cfu, 2240 g/cfu
and 2126 g/cfu for the ESI, ISI, and ASI, respectively. The total bacterial counts in the
ISI sample showed a significant increase as compared to ESI and ASI. Similarly, the total
fungal counts showed a significant increase in the ISI sample, which was estimated to be
170 g/cfu, as compared to ESI (154 g/cfu) and ASI (154 g/cfu) (Tables 1 and S5).

3.4. Sequence Information

13 GB of high-quality raw data per sample for ESI, ISI, and ASI was generated using
the Illumina Novaseq 6000 sequencer. The complete protocol information and sequenc-
ing results are tabulated in Tables 2 and S4. The BioProject Id is PRJNA701747. The
BioSample Ids for the samples ESI, ISI, and ASI are SAMN17910186, SAMN17910187, and
SAMN17910188, respectively. The rarefaction curve of the experimental data sets ESI, ISI
and ASI are provided in Figure S2.

Table 2. Sequence Information.

Sample Raw Reads Raw Data (Gb) Sequence Count BioProject BioSample SRA

ESI 44869321 13.5 5,924,482
PRJNA701747

SAMN17910186 SRR13705840
ISI 44773336 13.4 5,165,924 SAMN17910187 SRR13705839
ASI 44063752 13.2 5,379,446 SAMN17910188 SRR13705838

3.5. Microbial Abundance Analysis

Table 3 shows an overview of the taxonomic hits distribution in all three samples of ESI,
ISI, and ASI. The ESI sample showed early symptoms of wilt disease. Employing the MG-
Rast server, authors obtained maximum reads that mapped to Bacteria—2,076,360 (96.54%),
followed by Eukaryota—63,248 (2.94%), Archaea—8979 (0.42%), unclassified sequences
1311 (0.06%), and Viruses 935 (0.04%) at the kingdom level. Actinobacteria 1,026,641
(57.52%), Proteobacteria 450,739 (25.25%), Planctomycetes 55,347 (3.10%), Ascomycota
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52,339 (2.93%), Chloroflexi 37,935 (2.13%), Bacteroidetes 33,727 (1.89%), Firmicutes 29,671
(1.66%), Verrucomicrobia 21,659 (1.21%), Acidobacteria 20,072 (1.12%), Cyanobacteria
11,919 (0.67%), unclassified (derived from Bacteria) 7962 (0.45%), Gemmatimonadetes 7030
(0.39%), Deinococcus-Thermus 4694 (0.26%) and Euryarchaeota 4231 (0.24%) were mapped
at the phylum level.

Table 3. Taxonomic hits distribution.

Taxonomic Hits Distribution
Domain Level Microbial Abundance

ESI
Percent of Reads

ISI
Percent of Reads

ASI
Percent of Reads

Bacteria 2,076,360 (96.54%) 2,192,380 (96.08%) 2,348,985 (97.61%)
Eukaryota 63,248 (2.94%) 79,978 (3.50%) 43,462 (1.81%)
Archaea 8979 (0.42%) 7089 (0.31%) 10,928 (0.45%)

Unclassified sequences 1311 (0.06%) 1496 (0.07%) 2003 (0.08%)
Viruses 935 (0.04%) 939 (0.04%) 1001 (0.04%)

Phylum level Microbial Abundance

Actinobacteria 1,026,641 (57.52%) 995,904 (52.92%) 955,903 (49.62%)
Proteobacteria 450,739 (25.25%) 517,416 (27.49%) 562,154 (29.18%)
Plantomycetes 55,347 (3.10%) 72,331 (3.84%) 102,778 (5.34%)
Ascomycota 52,339 (2.93%) 69,904 (3.71%) 34,814 (1.81%)
Chloroflexi 37,935 (2.13%) 39,681 (2.11%) 54,360 (2.82%)

Bacteroidetes 33,727 (1.89%) 38,024 (2.02%) 36,944 (1.92%)
Firmicutes 29,671 (1.66%), 33,232 (1.77%) 37,538 (1.95%)

Verrucomicrobia 21,659 (1.21%) 28,599 (1.52%) 33,042 (1.72%)
Acidobacteria 20,072 (1.12%) 25,715 (1.37%) 33,599 (1.74%)
Cyanobacteria 11,919 (0.67%) 13,685 (0.73%) 18,085 (0.94%)

Unclassified (from Bacteria) 7962 (0.45%) 9248 (0.49%) 11,289 (0.59%)
Gemmatimonadetes 7030 (0.39%), 9358 (0.50%) 8945 (0.46%)

Deinococcus-Thermus 4694 (0.26%) 4978 (0.26%) 6399 (0.33%)
Euryarchaeota 4231 (0.24%). 4290 (0.23%) 5509 (0.29%)

The ISI sample showed further symptoms of wilt disease and maximum reads from
this sample also mapped to Bacteria—2,192,380 (96.08%), followed by Eukaryota—79,978
(3.50%), Archaea—7089 (0.31%), unclassified sequences—1496 (0.07%) and Viruses—939 (0.04%)
at the kingdom level. At the phylum level the mapped reads revealed Actinobacteria—995,904
(52.92%), Proteobacteria—517,416 (27.49%), Planctomycetes—72,331 (3.84%), Ascomycota—
69,904 (3.71%), Chloroflexi—39,681 (2.11%), Bacteroidetes—38,024 (2.02%), Firmicutes—33,232
(1.77%), Verrucomicrobia—28,599 (1.52%), Acidobacteria—25,715 (1.37%), Cyanobacteria—
13,685 (0.73%), Gemmatimonadetes—9358 (0.50%), unclassified (derived from Bacteria)—
9248 (0.49%), Deinococcus-Thermus—4978 (0.26%), and Euryarchaeota—4290 (0.23%). The
all major symptoms of wilt disease were seen in ASI sample. Our analysis revealed that
the most reads were mapped to Bacteria 2,348,985 (97.61%), followed by Eukaryota 43,462
(1.81%), Archaea 10,928 (0.45%), unclassified sequences 2003 (0.08%) and Viruses 1001
(0.04%) at the kingdom level. Furthermore, at the phylum level, Actinobacteria 955,903
(49.62%), Proteobacteria 562,154 (29.18%), Planctomycetes 102,778 (5.34%), Chloroflexi
54,360 (2.82%), Firmicutes 37,538 (1.95%), Bacteroidetes 36,944 (1.92%), Ascomycota 34,814
(1.81%), Acidobacteria 33,599 (1.74%), Verrucomicrobia 33,042 (1.72%), Cyanobacteria
18,085 (0.94%), unclassified (derived from Bacteria) 11,289 (0.59%), Gemmatimonadetes
8945 (0.46%), Deinococcus-Thermus 6399 (0.33%), and Euryarchaeota 5509 (0.29%) were
identified. The alpha diversity for ESI was 351, ISI was 367 and ASI was 401 species.

Comparative statistical analysis of the samples ESI and ISI revealed 35,554 features
in all after filtering out unclassified reads, of which 29,747 mapped to Bacteria, 4582 to
Eukaryota, 1214 to Archaea, 1 to none. From the total number of features, 79 were found to
be significant with corrected q-value =< 0.05 (Figure 3b). Considering which of the microbes
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were more abundant in the ESI sample, the top differentially abundant microbes belonged
to Proteobacteria phyla Achromobacter sp. 2789STDY5608625 with a count of 299 in ESI
and 8 in ISI samples. Achromobacter sp. K91 from the phyla Proteobacteria followed by the
Achromobacter sp. 2789STDY5608625 with 236 (ESI) and 4 (ISI). Achromobacter aegrifaciens
followed the two Proteobacteria phyla members with 23. The parent sequence count 2975
(ESI) and 588 (ISI). Microbacterium sp. SUBG005 from phyla Actinobacteria and Agrobac-
terium larrymoorei from the Proteobacteria phyla were the subsequently most abundant
bacteria (Table 4). Furthermore, comparing the ISI and ASI samples, Streptomyces sp. Fx-
anaC1, Streptomyces sp. F12 and Rhizobium sp. NFACC06-2 was estimated as being the top
three differentially abundant species. Amongst the Eukaryota, the Aspergillus arachidicola
was found to be differentially abundant, followed by Aspergillus candidus and Aspergillus
campestris all from the phyla Ascomycota. With the ISI and ASI comparison, Aspergillus
nomius and Aspergillus ochraceoroseus were found to be species that were prevalent in the
ISI sample and significantly lower in the ASI sample (Tables 4 and S6).
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Table 4. Relative Abundance of Microbial species.

Species Parent Sequence Count Relative Frequency % p-Values Effect Size

ESI ISI ESI ISI ESI ISI PVal corrected
Achromobacter sp.
2789STDY5608625 299 8 2975 588 10.05 1.36 5.90 × 10−16 3.00 × 10−12 8.69

Achromobacter sp. K91 236 4 2975 588 7.93 0.68 9.17 × 10−15 3.62 × 10−11 7.25
Achromobacter aegrifaciens 233 5 2975 588 7.83 0.85 1.33 × 10−13 3.94 × 10−10 6.98
Microbacterium sp. SUBG005 196 6 19,463 13,719 1.01 0.04 1.22 × 10−37 2.17 × 10−33 0.96
Agrobacterium larrymoorei 174 14 691 741 25.18 1.89 6.24 × 10−44 2.22 × 10−39 23.29
Curtobacterium sp.
MR_MD2014 153 6 2534 695 6.04 0.86 8.66 × 10−11 1.62 × 10−7 5.17

Pseudomonas sp. T 140 7 4318 3374 3.24 0.21 2.75 × 10−27 1.63 × 10−23 3.03
Moraxella osloensis 132 9 146 26 90.41 34.62 2.90 × 10−9 4.69 × 10−6 55.80

The Figure 3 depicts an overview of the kingdoms and corresponding microbes. The
heatmap in the outer circle represents the prevalence among the three experimental samples
as per the scale provided (a). The top-ranked microbes at the phylum level are depicted
along with a comparison between ESI (blue) and ISI (purple) (b) and, ISI and ASI (pink) (c)
depict the top-ranked microbes and the proportions and difference between the proportions
with 95% confidence intervals along with the q-value (corrected) (q value < 0.001).

3.6. Pathway Predictions

The output files from MEGAN were used to search the InterPro2GO, a resource of
protein information [60], under the Molecular functions category. The top hits included
catalytic activity—oxidoreductase activity, transferase activity, and hydrolase activity. The
other major functions were transporter activity, ion binding, and nucleotide binding. Under
biological process, the top hits were mapped to Metabolic processes, transport, DNA, and
RNA metabolic processes. Under cellular component, the intrinsic component of membrane
and membrane functions were highlighted (Figure 4). eggNOC, a database for functional
annotations, orthology, and gene evolution [61] revealed the major pathways related to
metabolism, information storage, and processing, cellular processing, and signaling. The
major pathways in metabolism included amino acid metabolism and transport, energy
production and conversion, and carbohydrate metabolism and transport, inorganic ion
and transport, lipid transport and metabolism, secondary metabolites biosynthesis, trans-
port and catabolism, coenzyme transport and metabolism, and nucleotide transport and
metabolism. In information storage and processing, the major pathways were transcription,
replication, recombination and repair, and translation, ribosomal structure, and biogenesis.
Under the cellular processes and signaling category, the pathways were signal transduction
and mechanisms, cell wall/membrane/envelope biogenesis, Post-translational modifica-
tions, protein turnover, chaperones, and defense mechanisms. SEED functional annotation
using SEED [62] highlighted Metabolism and stress response, defense, and virulence.
Under metabolism, the predictions showed fatty acids, lipids, and isoprenoids mainly
indicating acyl carrier protein (Figure S3). Statistical analysis of the predicted pathways
revealed significant hits obtained from the InterPro2GO database. Carbohydrate binding
was found to be significant (p < 0.05) between ESI and ISI. Kyoto Encyclopedia of Genes
and Genomes (KEGG) [63] hits included K03088; RNA polymerase sigma-70 factor ECF
sub-family, K12132; Eukaryotic-like serine/threonine protein kinase and K01990; ABC-2
type transport system ATP-binding protein (Tables 5, S7 and S8).



Agriculture 2021, 11, 831 12 of 17

Agriculture 2021, 11, 831 12 of 17 
 

 

pathways were transcription, replication, recombination and repair, and translation, ribo-
somal structure, and biogenesis. Under the cellular processes and signaling category, the 
pathways were signal transduction and mechanisms, cell wall/membrane/envelope bio-
genesis, Post-translational modifications, protein turnover, chaperones, and defense 
mechanisms. SEED functional annotation using SEED [62] highlighted Metabolism and 
stress response, defense, and virulence. Under metabolism, the predictions showed fatty 
acids, lipids, and isoprenoids mainly indicating acyl carrier protein (Figure S3). Statistical 
analysis of the predicted pathways revealed significant hits obtained from the In-
terPro2GO database. Carbohydrate binding was found to be significant (p < 0.05) between 
ESI and ISI. Kyoto Encyclopedia of Genes and Genomes (KEGG) [63] hits included 
K03088; RNA polymerase sigma-70 factor ECF sub-family, K12132; Eukaryotic-like ser-
ine/threonine protein kinase and K01990; ABC-2 type transport system ATP-binding pro-
tein (Tables 5, S7 and S8). 

 

Figure 4. Pathway hits from InterPro2GO, databases. The top-ranked pathways are represented as per the color scheme—
three samples ESI (blue), ISI (purple), and ASI (pink) (a). The top-ranked pathways are represented (a). A comparison be-
tween ESI (blue) and ISI (purple) (b) and, Significant hits represented show the top-ranked pathways along with the propor-
tions and difference between the proportions with 95% confidence intervals considering a q-value (corrected) (p < 0.05). 

Table 5. Pathway predictions. The top hits from the most popular databases have been furnished in the table below. 

Pathway Predictions 
InterPro2GO [60] KEGG [63] SEED [62] COG [64] Pfam [65] eggNOC [61] 

GO: 0030246; Carbo-
hydrate binding. 
GO: 0046906; 
Tetrapyrrole binding. 
GO: 0030170; Pyri-
doxal phosphate bind-
ing. 

K03088; RNA polymer-
ase sigma-70 factor 
ECF sub-family. 
K12132; Eukaryotic-
like serine/threonine 
Protein kinase. 
K01990; ABC-2 type 
transport system ATP-
binding protein. 

Acyl carrier 
protein. 
Stress re-
sponse, de-
fense viru-
lence. 

ENOG410XNMH; Histi-
dine kinase. 
COG1012; NAD-de-
pendent aldehyde dehy-
drogenases. 
COG1960; Acyl-CoA De-
hydrogenases. 
COG0515; Serine/threo-
nine Protein kinase. 

PF00005; ABC trans-
porter. 
PF07690; Major Facil-
itator superfamily. 
PF00528; Binding 
protein-dependent 
Transport system In-
ner membrane com-
ponent. 

ISP *: Transcription. 
Replication, recombi-
nation, and repair. 
CSP +: Cell wall/Mem-
brane/Envelope bio-
genesis, signal trans-
duction mechanisms. 
Metabolism: Amino 
acid transport and me-
tabolism, carbohydrate 
transport and metabo-
lism, energy produc-
tion and conversion. 

* Information storage and processing; +Cellular processes and signaling. 

Figure 4. Pathway hits from InterPro2GO, databases. The top-ranked pathways are represented as per the color scheme—
three samples ESI (blue), ISI (purple), and ASI (pink) (a). The top-ranked pathways are represented (a). A comparison
between ESI (blue) and ISI (purple) (b) and, Significant hits represented show the top-ranked pathways along with
the proportions and difference between the proportions with 95% confidence intervals considering a q-value (corrected)
(p < 0.05).

Table 5. Pathway predictions. The top hits from the most popular databases have been furnished in the table below.

Pathway Predictions
InterPro2GO [60] KEGG [63] SEED [62] COG [64] Pfam [65] eggNOC [61]

GO: 0030246;
Carbohydrate binding.
GO: 0046906;
Tetrapyrrole binding.
GO: 0030170; Pyridoxal
phosphate binding.

K03088; RNA
polymerase sigma-70
factor ECF sub-family.
K12132; Eukaryotic-like
serine/threonine
Protein kinase.
K01990; ABC-2 type
transport system
ATP-binding protein.

Acyl carrier
protein.
Stress response,
defense
virulence.

ENOG410XNMH;
Histidine kinase.
COG1012;
NAD-dependent
aldehyde
dehydrogenases.
COG1960; Acyl-CoA
Dehydrogenases.
COG0515;
Serine/threonine
Protein kinase.

PF00005; ABC
transporter.
PF07690; Major
Facilitator superfamily.
PF00528; Binding
protein-dependent
Transport system Inner
membrane component.

ISP *: Transcription.
Replication, recombination,
and repair.
CSP +: Cell
wall/Membrane/Envelope
biogenesis, signal transduction
mechanisms.
Metabolism: Amino acid
transport and metabolism,
carbohydrate transport and
metabolism, energy production
and conversion.

* Information storage and processing; +Cellular processes and signaling.

3.7. Genome Resolved Metagenomics

Following confirmation with microbiological methods, normalized read counts ob-
tained for F. oxysporum in the ESI were found to be 209, in ISI it was 120 and 94 in ASI. Using
the SqueezMeta pipeline, a total of 13, 8, and 5 genome bins were recovered from samples
ISI, ASI, and ESI respectively. Based on CheckM analysis, 4, 4, 2 bins from samples ISI,
ASI, and ESI were found to be at least 50% complete and with less than 15%. Significantly
enriched terms (Mann–Whitney U test; p value < 0.05) of these bins against KO, PFAM,
and other databases are shown in Table 5 and complete enrichment results are provided as
Supplementary Figures S4–S6; Tables S7 and S8.

3.8. Variant Analysis

F. oxysporum genome in the sample ESI was analyzed to screening for variants using
the GCF_000149955.1 as reference (Tables S9 and S10). The variant analysis showed 81
SNPs out of which multiple mutations were observed in the 3-Isopropylmalate dehydratase
(IPMD) predicted as high impact effects, which is required for fungal pathogenicity [66].
IPMD is encoded by LEU2 and involved in the leucine biosynthetic pathway.
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Variant Analysis of A. niger genome from the ISI sample with reference (GCF_00000285
5.3) showed three genes mutated with high impact names histidine kinase J7, MFS trans-
porter, and NADH-ubiquinone oxidoreductase subunit. While two of the genes, histidine
kinase and the MFS transporter gene, showed multiple mutations with high impact vari-
ations namely frameshift mutations, NADH-ubiquinone oxidoreductase subunit gene
showed one variation leading to a frameshift mutation.

ANI_1_1000064|histidine kinase J7 showed an insertion at position 1764099 of A/ACG
AGT. The other high-impact variant was a deletion at 1764101 GTCCTT/G. Predictions
revealed three high-impact variants in the ANI_1_2008144|MFS transporter gene. The first
one was an insertion at 1799089 position A/ACGCGCTTC, the second one was again an
insertion at position 1799092 G/GTGCGT and the third one was an insertion at position
1799094 C/CG. In the ANI_1_742164|NADH-ubiquinone oxidoreductase subunit a large in-
sertion was found at the position 1286777 T/TCGAGAACTCGAAGTTCGGACCCTCGACG
ATGGCATCGACC.

4. Discussion

Pomegranate has been used for a wide range of health benefits making it a commer-
cially important crop. India is the leading producer of pomegranate with Maharashtra,
Karnataka, Odisha, Tamil Nadu, Gujarat, Rajasthan, Chattisgarh, Telangana, and Naga-
land states contributing to India’s major producer of the fruit crop. Karnataka, which is
the second-largest contributor of fruit produce to India, faces a number of challenges in
crop management due to wilt, anthracnose, bacterial blight, and heart rot. In the present
study, we explored the soil samples from an Orchard in the Chikkaballapur district of
Karnataka. Wilt infection in the orchard resulted in a 36% yield loss to the farmer. A
shotgun metagenomics approach was employed and the microbial communities in soil
samples were screened.

Comparative analysis of the samples ESI and ISI revealed 35,554 features in all after
filtering out unclassified reads, of which the majority of the features mapped to Bacteria (29,
747), followed by Eukaryota (4582) and Archaea (1214). In our analysis, we reported 79 fea-
tures to be significant (corrected q-value =< 0.05). The top differentially abundant microbes
prevalent in the ESI sample to Proteobacteria phyla Achromobacter sp. 2789STDY5608625,
ESI (299), and ISI (8) samples. Achromobacter sp. 2789STDY5608625 was followed member
of the sample phyla, Achromobacter sp. K91, ESI (236), and ISI (4). Achromobacter aegrifaciens
followed the two Proteobacteria phyla members with 23. Microbacterium sp. SUBG005
from phyla Actinobacteria and Agrobacterium larrymoorei from the Proteobacteria phyla
were the subsequently most abundant bacteria. There have been reports of members of the
genus Achromobacter employed as biocontrol agents against Fusarium oxysporum causing
wilt in other plants [67,68]. The role of the microbes from this genus could be explored for
their biocontrol potential against F. oxysporum. Furthermore, comparing the ISI and ASI
samples, Streptomyces sp. FxanaC1, Streptomyces sp. F12 and Rhizobium sp. NFACC06-2 was
estimated as being the top three differentially abundant species. Amongst the Eukaryota,
the Aspergillus arachidicola was found to be differentially abundant, followed by Aspergillus
candidus and Aspergillus campestris all from the phyla Ascomycota. With the ISI and ASI
comparison, Aspergillus nomius and Aspergillus ochraceoroseus were found to be species that
were prevalent in the ISI sample and significantly lower in the ASI sample.

We particularly screened F. oxysporum as a causative pathogen for Wilt disease in
pomegranate after assessing the physical symptoms of the plant. The presence of F. oxys-
porum was confirmed both with microbial isolation and metagenomics validation. The
presence of early symptoms of Wilt was reported in the ESI sample in our study. Further-
more, the fruits showed early symptoms of rot disease. The sample was screened for A.
niger the causative pathogen for rot disease. The plant with more noticeable symptoms
of the disease in our study was the ISI sample. In the rhizospheric samples of the ISI
sample, we reported an abundance of A. niger with a decrease in F. oxysporum. A decline
in Fusarium species with an increase in Aspergillus species was observed in the plants
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from ESI and ISI samples respectively. Variant analysis of F. oxysporum showed multiple
high-impact mutations on the IPMD gene. IPMD has been reported in other studies for
its role in fungal pathogenesis. IPMD is encoded by LEU2 and involved in the cataly-
sis of leucine biosynthesis particularly in the conversion of 3-isopropylmalate (3-IPPM)
to 2-ketoisocaproate (2-KIC). Intriguingly, another important finding from this study is
with respect to the carbohydrate binding pathway which is one of the significant hits.
Phytopathogens are known to synthesize carbohydrate-active enzymes (CAZymes) also
known as plant cell wall degrading enzymes (PCWDE) [69], which can also function as
Carbohydrate binding modules (CBM). CAZymes are required for pathogenesis as well as
growth [70,71]. It may be reasonable to assume that targeting IPMD and CAZymes could
be a good strategy for the development of antifungals which could aid in biocontrol of F.
oxysporum.

The present study took advantage of the current state-of-the-art sequencing platform,
the Illumina Novaseq 6000 platform that provides higher resolution in screening and
identification microbial communities. The approach aided in the identification of certain
key targets that are linked to the pathogenicity of Fusarium. However, further research
is being carried out to particularly validate the key findings of this study. In this study,
we demonstrate the capabilities of the whole metagenome sequencing approach in identi-
fying potential key players of wilt disease affecting the pomegranate plant, wherein the
symptomatology is complex.
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