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Abstract: Rice grain yield was estimated from a locally made Thai combine harvester using a specially
developed sensing and monitoring system. The yield monitoring and sensing system, mounted on
the rice combine harvester, collected and logged grain mass flow rate and moisture content, as well
as pertinent information related to field, position and navigation. The developed system comprised
a yield meter, GNSS receiver and a computer installed with customized software, which, when
assembled on a local rice combine, mapped real-time rice yield along with grain moisture content.
The performance of the developed system was evaluated at three neighboring (identically managed)
rice fields. ArcGIS® software was used to create grain yield map with geographical information of
the fields. The average grain yield values recorded were 3.63, 3.84 and 3.60 t ha−1, and grain moisture
contents (w.b.) were 22.42%, 23.50% and 24.71% from the three fields, respectively. Overall average
grain yield was 3.84 t ha−1 (CV = 63.68%) with 578.10 and 7761.58 kg ha−1 as the minimum and
maximum values, respectively. The coefficients of variation in grain yield of the three fields were
57.44%, 63.68% and 60.41%, respectively. The system performance was evaluated at four different
cutter bar heights (0.18, 0.25, 0.35 and 0.40 m) during the test. As expected, the tallest cutter bar
height (0.40 m) offered the least error of 12.50% in yield estimation. The results confirmed that the
developed grain yield sensor could be successfully used with the local rice combine harvester; hence,
offers and ‘up-gradation’ potential in Thai agricultural mechanization.

Keywords: grain flow rate; grain mapping; yield meter; combine harvester; precision agriculture

1. Introduction

Previous researchers [1–10] have successfully employed GIS application mapping
for crop/weed and grain yield recognition and evaluation, and have demonstrated its
potential for small holders. In Thailand, rice is cultivated on nearly 9 million ha of land
with a productivity average of 2.8 t ha−1 (8.9 million ha and 2.831 t ha−1 in 2019) as per
the national statistics [11]. The rice combine harvesters are popular among contractors
and are also used by the groups of progressive farmers. The average annual usage of a
rice combine harvester is 237.92 ha year−1 [11]. The rate of hiring is 164.42 USD ha−1

and the involved revenue average is 13,119 USD year−1 [11]. The obvious popularity
of combine harvesters over manual harvesting amongst the rice farmers in Thailand is
due to better time and economic productivity claimed by the former. On average, rice
combine harvesting requires only 1.69 h against 283.06 h in manual harvesting a hectare of
farm; whereas, it costs 104.78 USD ha−1 as compared to 199.08 USD ha−1 for the manual
harvesting method. Thai farmers are increasingly convinced that the use of combine
harvesters reduces precious time, cost of production and also lowers the grain losses [12].
Similarly, both the farmers and the custom service providers are becoming increasingly
interested in quantifying (mapping) the site-specific grain yield. However, the machine
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hiring rates are increased when a commercially available grain meter is used, and it
is believed to affect the economic attractiveness of the hired machine [13,14]. National
statistics suggest a considerable increase in custom hiring rates of rice combines in Thailand,
mounting to 164.42 USD ha−1 recently (2019), whereas, it was 108.51 USD ha−1 in 2015,
94.13 USD ha−1 in 2010, 76.05 USD ha−1 in 2005, and 61.65 USD ha−1 in 2000 [11]. On the
other hand, the custom service providers are also under pressure to justify the increasing
costs by charging only what they have actually harvested from a given field.

Timely estimation of crop yields has always been of interest from scientific as well as
management viewpoints. A variety of techniques have been tried and tested; including
those that are based on (a) field surveys, (b) remote sensing and (c) crop modelling. Each
of these techniques has its own limitations; these commonly include their high cost, poor
accuracy under uncertain environments, and requirement of higher technical know-how
in order to operate it. The capabilities of an on-ground yield monitoring system can
be enhanced with a low-altitude remote sensing (LARS) platforms using drone-mounted
camera. This combined system measures the mass flow of granular material through a grain
harvester, and plots on geospatial maps for smart management of farms [8,15]. The mass
flow measurement typically occurs in the clean grain elevator on a combine. As the mass
flow measurements are recorded, geographic coordinates are simultaneously acquired from
a global navigation satellite system (GNSS) receiver. Once the data are downloaded from
the yield monitoring system, the farmer can generate a yield map that illustrates the spatial
variability of the crop yield across the farm. Yield map is an extremely popular tool for
management zone determination. Yield monitoring is useful because it allows the farmer
to quickly generate a very dense data set detailing corresponding in-field variability, while
the operating costs are relatively low and non-recurring [1,3]. Methods of yield estimation
using remote-sensing tools usually provide timely and accurate information during the
crop growth period; yet, they often need detailed data at frequent time intervals, as well as
assumptions on proportion of absorbed photosynthetic radiation, radiation use efficiency
and harvest index—which further limit their application over large areas [16]. Whereas,
some studies used dedicated yield monitoring systems for head-feeding combines [15] and
conducted field evaluation [17].

Other studies used load cell for monitoring grain yield at a harvester [18]. Grain
weight was determined by yield sensor in an auxiliary tank located inside the main tank and
showed grain flow rate information over the monitor near operator’s seat. However, these
systems require considerable skill for controlling the harvester, and consumes excessive
non-productive time in clearing the auxiliary tank that eventually limits the harvester’s
field performance. Furthermore, it lacks creation of yield maps during harvesting on
a real-time basis. In some studies, the grain moisture was also determined to precisely
calibrate the yield sensor’s output with its corresponding moisture content [19,20]. In
earlier models of yield meters studied, the grains flow rate was estimated by using a small
load cell similar to that used on head-feeding combine harvesters to measure the impact
force of grain stream as it hits the sensor, and converting this into an electrical signal.

The commercially available fully automated harvesting machines not only require
sound technical understanding but are also expensive to adopt by Thai rice farmers. The
widely used LARSs (e.g., cameras on a drone) for yield monitoring greatly depend on
the surface reflectance of a field, and therefore inherit major limitations to practical use.
Convinced by the growing demand of grain yield mapping along with its corresponding
moisture content, and the investment constraint of acquiring commercially available yield
meters, this research focused on developing a locally adaptive grain yield metering system
for Thai combine harvesters. The developed yield meter continuously monitored field data
and created a yield map during real-time operation. A compatible software for a precision
grain yield sensor is also developed in this research. The developed grain yield meter
system is compatible with any local rice combine harvester (RCH). It was assembled on a
local harvester and tested for its in-field performance.
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2. Materials and Methods
2.1. Experimental Setup and Field Preparation

Experiments were conducted in three different fields of 0.3, 0.4 and 0.5 ha area
(14.16◦ N, 101.49◦ E). In this research a customized yield meter was developed; it consisted
of various sensors such as grain yield flow sensor (Model: Sparkfun FSR406, Pressure
Range: 1.5 psi to 150 psi, Force Range: 1N to 100N, Sparkfun Electronics, Niwot, CO,
USA), humidity sensor (Sparkfun HIH-4030, analog output, voltage supply: 4–5.5 VDC,
Sparkfun Electronics, Niwot, CO, USA), and global navigation satellite system receivers
(Model: LS20031, 5 Hz—66 channel, LOCOSYS Technology, Xizhi, New Taipei, Taiwan).
The calibration setup for the developed yield meter was controlled by a microcontroller
(Model: NI myRIO-1900, Board Xilinx FPGA and dual-core ARM Cortex-A9 processor, 10
analog inputs, 12 bits, 6 analog outputs, 12 bits, National Instruments, Austin, TX, USA) by
varying forward speed and reel index, and by measuring corresponding grain flow rate
(Figure 1). Actual grain flow through the harvester was also recorded. A locally made
self-propelled RCH was used. The calibrated yield meter was installed on the RCH. Grain
flow rates were evaluated for variety of underlying factors. Details of the experimental
setup are presented in Table 1.

Table 1. Details of experimental setup and vital field measurements.

Feature Value

Thai rice combine harvester
Engine type 1/: Diesel engine (Nissan RD 28–100 hp)

Dimensions (length × breadth × height) 1/: 4.8 m × 2.1 m × 2.5 m
Area under tracked layers 1/: 2.4 m2

Track size 1/: 300 × 110 mm2

Total weight without grains 1/: 2.8 tons
Soil compaction under tracked wheel: 18 kPa

Width of cut 1/: 1.85 m
Front auger dimension 1/: ϕ 0.33 m × 1.85 m

Amount of cut 1/: 25 pieces
Dimension of threshing unit 1/: 3 feet

Spacing of spike tooth pattern for axial flow
rice combine harvester 1/: 1 cm

Area of paddy separator 1/: 0.99 m2

Paddy field details
Rice plant height: 116 cm
Rice straw height: 18.7 cm

Rice plant inclination from vertical: 5◦

Total rice yield: 5 t ha−1

Grain moisture content, %w.b.: 23%
System details
Header loss: 10.56 kg ha−1

Grain loss at straw spreader: 11.43 kg ha−1

Total grain loss: 22 kg ha−1

Forward speed: 3.4 km h−1

Field efficiency: 88%
Fuel consumption rate: 18.62 l ha−1

Percent of clean grain: 95%
Custom hiring rate with driver: 93.75 USD ha−1

1/ As claimed by the respective manufacturer.
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Figure 1. Yield meter components.

2.2. Rice Grain Yield Mass Meter

Grain flow rate was recorded by the grain yield flow sensor (impact type) assembled
at elevator (Figure 1). The impact force measuring plate was mounted on a vertical
assembly bracket that was fixed to the elevator body. Analog signals received from the
yield flow sensor were filtered, conditioned and converted into digital signals. The data
were transferred to the bus nodes (FPGA type: Xilinx Z-7010, Xilinx, San Jose, CA, USA).
The microcontroller initialized the system through the bus at start-up phase and read data
packets on the bus along with the GNSS signals via a serial port. Data were displayed in
real time on the monitor as well as stored in a memory card for off-line use. The material
of impact force plate selected was based on the Hall principle.

The yield meter was first calibrated in laboratory (controlled) conditions. GNSS
receiver altitude (with respect to ground), width of combine and its offset position were
determined for the existing harvester. The RCH was operated in a test field with a left-hand
turning loop at the specified engine speed. The speed of operation was calculated by timing
a known distance travelled between two specified points. Discharge of grains from RCH
over a specified area was collected in a sack. Furthermore, grain yield was also determined
from 1 m × 2.5 m frames in adjacent rows.

2.3. Data Acquisition Module Design

National Instruments’ NI® CompactRIO® (Austin, TX, USA) platform was used for
designing this customized data acquisition module. The board contains a proprietary chip
(SoC) technology from Xilinx® (San Jose, CA, USA) consisting of ARM Cortex®-A9 (Cam-
bridge, England) processor and a field-programmable gate array (FPGA)—programmable
logic cells, and powered by the NI® LabVIEW® (Austin, TX, USA) environment. NI®

myRIO® (Austin, TX, USA) was selected as the CPU for data acquisition module of the rice
grain yield flow meter. The module mainly contains a power and A/D converter, signal
acquisition circuit, and LabVIEW® RT® (Austin, TX, USA) bus communication circuit.
Figure 2 outlines the data acquisition module structure. Firstly, yield sensor signal, elevator
sensor signal and GNSS signal were fed into NI® myRIO® (Austin, TX, USA) board, and
then each sensor signal was converted into digital signal. Subsequently, the collected data
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were sent to the terminal output monitor system by FPGA bus communication software for
post-processing and display. The developed data acquisition module was encapsulated in
waterproof and dustproof housing to enhance the robustness and reliability of the system.
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2.4. Rice Grain Yield Flow Sensor Software Design

After the software functional requirement analysis, grain yield monitoring system
software was designed based on the Stream File® and VS® 2010. The created software
included a data display module, FPGA data processing module, data storage module,
and General Packet Radio Service (GPRS) wireless transmission module. The developed
software had the function of revealing sensor detecting state, facilitating sensor output
calibration, displaying output data in real time and indicating information on harvest
storage. The overall structure of created software function is shown in Figure 3.
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2.5. GNSS Receiver

A GNSS receiver (SparkFun model: LS20031 5 Hz—66 channel, Niwot, CO, USA)
collected signals from various satellites accessible on the go to determine the RCH position,
and this information was subsequently used to show the harvester movement. This receiver
was mounted on the harvester cabin.

In order for the harvester to follow the planned route, two factors were controlled:
(a) RCH’s way-point position and (b) heading angle of the RCH. Hence, the control encom-
passed two loops following the articulating process. The first loop controlled the harvester’s
way-point position, where the distance error was calculated by using Equation (1). The
second loop controlled the heading angle of the RCH, for which the error was calculated
by using Equation (2) [21].

Distanceerror =

√(
xre f − xact

)2
+
(

yre f − yact

)2
(1)

Headingerror = tan−1
((

yre f − yact

)
,
(

xre f − xact

))
− θact (2)

where xref and yref are the reference positions of the RCH’s movement route on x- and y-axes,
respectively; xact, yact and θact are the actual position of the harvester on x-axis, y-axis and
actual heading angle, respectively. The distance and heading errors were used as input for
the program. The output signal was expressed as velocity of the driving wheels and the
RCH’s heading angle, which subsequently was the input signal for kinematic model.

2.6. Field Moisture Sensor

Yield and moisture data were needed simultaneously to obtain an accurate yield
estimated. A conductive-shell type sensor (SparkFun Humidity Sensor, HIH-4030, Analog
output, Voltage supply: 4–5.5 VDC, Niwot, CO, USA) was mounted on the rice grain
elevator. As yield rises to the elevator, a small portion flows to the top of the sensor
and moved. This sensor estimated the moisture based on the dielectric properties of the
harvested rice. Seeds with different moisture contents affect the difference of capacity
between two metal surfaces. The sensor was calibrated with the moisture content for the
given rice variety.
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2.7. Data Junction Box

A data recording unit was installed in the junction box that compiled the data from
the rice grain meter, moisture sensor and GNSS. It also collated the information on cutting
width and forward speed of the combine. Cutting width is the constant value for the chosen
RCH model. Plantation information, crop type, reel speed and field-specific correction
factor were keyed in in the junction box. The assembly was securely housed inside an
all-weather container.

2.8. Field Computer

A notebook computer was assembled at the operator’s cabin in RCH and it received
output data from different sensors for displaying and logging for later use. The field
computer also supported various interfaces including the GNSS receiver interface, the
interactive control interface and the graphical user interface. External data storage devices
were plugged into it. This field computer facilitated key functions such as integration and
calibration of various sensors, real-time computation and notification of forward speed and
moisture content, and it also updated the rice grains yield per hectare while the harvester
was in operation at different fields.

2.9. Geostatistical Analysis and Mapping

For geostatistical analysis, the inverse distance weighted (IDW) interpolation algo-
rithm was used to determine cell values using a linearly weighted combination of a set
of sample points. The weight was a function of inverse distance. The surface being
interpolated should be that of a locationally dependent variable.

Field images were acquired by a drone platform along with the GPS output simul-
taneously. The plot-based images taken from the drone camera, obtained manually by
surveying, were combined following the method proposed in [7]. The excess areas beyond
the ground margins were also masked and trimmed, and altitude corrections were per-
formed for the images before they were mapped. The true ground coordinates used for the
reference points were used to combine all of images into a matrix, and a combined image
was constructed. The final land image was then used for further analysis by converting it
into GIS map layers using the ArcGIS software.

2.10. Field Test of the Developed Yield Meter

The RCH, equipped with the developed yield meter, was taken to a farm for harvesting
rice crop. For the initial setup, the width of the cutter bar was adjusted to 1.85 m. In a
field test, the system was fine-tuned until each module/sensor performed as intended.
The specifically created software was installed on the field computer, which displayed
actual rice flow rate (t ha−1) along with grain moisture information (%wet basis) on a
real-time basis. Yield maps were generated and the data of grain yield were saved into the
memory of a hard disk drive. Performance of the created software and the corresponding
hardware was assessed by computing difference between actual yield (obtained manually
by surveying) and the measured yield from the yield meter at different patches of the
farm. The grain flow rate at different locations of the field was mapped using ArcGIS®.
Forward speed (m s−1), reel speed (m s−1) and yield sensor output were monitored at
6.7 kg m−2 average specific rice density, 1500 rpm engine speed, 25% average moisture
content, and 15-degree angle of yield auger. An average cutter bar height (m) and yield
sensor output (kg s−1), at 1.16 m rice crop height with 25% average moisture content, were
also determined.

Administration of various processes by the developed software is summarized with a
flowchart, as shown in Figure 4. Impact sensor of the yield meter sensed the impact pulses
per second and the software used a pre-calibrated model to interpret corresponding grain
flow rate. Speed sensor reported the RCH’s forward motion, which was displayed on a
monitor. During field tests, all hardware and software performed as expected.
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3. Results and Discussion

The developed system included a grain flow rate meter, moisture sensor, GNSS
receiver and computer, which was controlled using a specifically created software. The
system was assembled on a local RCH for determination of real-time grain flow rate related
to moisture content. Major components of the developed system were evaluated during the
field test. The operator could monitor the grain yield in real time. The system also offers
the option to store and map the variability along with geo-spatial attributes of the field.

The developed monitoring system recorded the working rate (ha h−1), specific rice
yield (kg m−2), forward speed (m s−1), yield (t ha−1), overall land coverage (ha), total
weight of storage tank (t), forward linear distance travelled (m), reel speed (m s−1) and
operating speed (m s−1). For calibration, the RCH was positioned on leveled ground.
Empty weight of the grain elevator was noted and used for setting up tare value. The
RCH was operated at different engine speeds. Error value was calculated between derived
weight and reference weight by the grain flow rate measurement, as well as the instanta-
neous yield, which were used for deducing calibration factors. During laboratory trials, the
estimated yield (kg s−1) and angle of yield auger (degree) variations with different grain
flows (kg s−1) were also determined as presented in Table 2.
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Table 2. Effect of yield weight (kg s−1) and angle of yield auger (degree) variability on average grain
flow (kg s−1).

Job
No.

Yield Auger Assembly Total Weights (kg)

Average Grain
Flow Setting

(kg/s)

Angle of
Yield Auger

(◦)

Actual
(kg/s)

Yield Sensor Meter
(kg/s)

Error
(%)

1 0.4
15
30
45

0.40
0.40
0.41

0.333
0.332
0.329

16.8
16.9
17.7

2 0.6
15
30
45

0.60
0.61
0.61

0.487
0.486
0.483

18.8
19.0
19.5

3 0.8
15
30
45

0.81
0.81
0.82

0.641
0.638
0.635

19.8
20.2
20.6

4 1.0
15
30
45

1.02
1.02
1.03

0.789
0.762
0.749

21.1
23.8
25.1

3.1. Performance of the Developed Yield Meter

The deviation between the reference mass flow rate and the derived mass flow rate
from yield meter is regressed against the derived flow rate (Figures 5 and 6). The obtained
model (R2 = 0.878) showed logarithmically increasing error beyond/before a certain flow
rate. Therefore, a dynamic correction factor was used in the software, corresponding to the
sensor output. The error is due to the total weight correction at relatively low flow rates. In
contrast, the maximum flow at 100% is a continuous indicator of rice grain weight.
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Figure 6. Errors between actual cumulative weights and yield meter cumulative weights.

Cumulative rice grains fed (known as input) were compared with grain flow rate
meter output under the test rig. The grain flow rates from the grain hopper were set to the
known average values of 0.4 kg s−1, 0.6 kg s−1, 0.8 kg s−1 and 1.0 kg s−1. The weighing
hopper was averaged for 60 s to determine the grain flow rate. Grain rates evaluated were
0.333 kg s−1, 0.489 kg s−1, 0.655 kg s−1 and 0.759 kg s−1. Dynamic correction factor was
used, and reliability of the yield meter was assessed at different yield values. The grain
flow rate measurement inaccuracies by the grain flow rate meter were noted as 18.78%,
19.83%, 20.12% and 25.58% for each input flow rate, respectively. The result of grain flow
rates of 0.4 kg s−1, 0.6 kg s−1, 0.8 kg s−1 and 1.0 kg s−1 were estimated as 20.16 (kg/s) s−1,
29.88 (kg/s) s−1, 39.12 (kg/s) s−1 and 49.92.16 (kg/s) s−1, respectively.

3.2. Effect of Grain Flow Rate and Yield Auger’s Inclination on Performance of Yield Meter

Performance of the yield meter was assessed by varying grain flow rate at different
inclinations of the yield auger. The grain flow rate from the grain hopper was varied by
setting flow rates from 0.4 to 1.0 kg s−1, at 0.2 kg s−1 intervals. The actual input flow rates,
however, were determined at the outlet itself to account for propagating error due to sensor
uncertainty. The corresponding yield flow rate values were recorded from the yield meter’s
output. Error in the yield measurement was calculated for each combination of known
input and the yield meter’s output. It can be clearly shown that the yield meter performed
consistently at different auger inclinations. However, the error increased with increasing
flow rates (Figure 7).
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3.3. Effect of Machine Setting on Performance of Yield Meter

Performance of the yield meter was evaluated at different machine setting conditions
in the field. Grain loss (%) values obtained for different known grain moisture content feed
(expressed as % wet basis), at two engine speeds (1500 and 1800 rpm). For this test, field
plots of 6.7 kg m−2 crop density were used. As shown in Figure 8, significantly greater
grain loss corresponds to high engine speed. Furthermore, 25% (w.b.) moisture content
resulted in comparatively lower grain loss. Therefore, the RCH was operated at 1500 rpm
engine speed, 25% (w.b.) moisture content and approximate reel index value of 1.2 for
further field trails to assess the developed yield meter performance.
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Figure 8. Effect of grain moisture content on grain loss. Error bars represent ± standard deviation,
n = 3. Means followed by the same letter and font are not significantly different at p < 0.05 according
to Duncan’s Multiple Range Test.
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Similarly, the effect of the cutter bar height (varied between 0.18–0.4 m) on the yield
meter performance was evaluated in field. The RCH was operated at 1500 rpm engine
speed and 1.2 reel index to harvest average 1.16 m tall rice plants having about 25% (w.b.)
average moisture content. The results of percent error from the comparison between actual
grain flow rate and yield sensor meter output are presented in Table 3, at different cutter
bar heights. Cutter bar height of 0.40 m corresponds to a relatively smaller percent error of
12.50% in yield meter performance.

Table 3. Effect of average cutter bar height on yield meter performance.

Job No.
Average Cutter Bar Height

from Ground (m)
Grain Flow Rate (kg s−1) Error

(%)Actual Yield Meter Output

1 0.18 0.45 0.387 a 14.00
2 0.25 0.52 0.411 b 20.96
3 0.35 0.63 0.512 c 18.08
4 0.40 0.84 0.735 d 12.50

Note: At rice height of 1.16 m and average moisture content of 25% (w.b.). Means in a column followed by the
same letter are not significantly different at p < 0.05 according to Duncan’s Multiple Range Test.

3.4. Yield Range and Moisture Content Mapping

Rice grain yield variability along with moisture content information for three rice
farms were processed in GIS application. Rice grain yield (t ha−1) and moisture content
(w.b.) for the three farms (0.3 ha, 0.4 ha and 0.5 ha crop coverage) were measured by using
the developed grain yield meter mounted on the RCH. In-field variability is summarized in
Table 4 and mapped in Figure 9. Interestingly, it can be observed that even for the smallest
field of 0.3 ha, the variability was 1.9 t ha−1. For yield-based custom charges, the tariff
negotiation between the service provider and the farmer would have been on the basis of
simple average (based on few data points on the field); however, with the use of precision
grain yield meter, now a weighted average yield value could be used, making it more
closely represent the field variability. Generally, when the moisture of the cereal decreases,
the combine work efficiency increases, however, the rate of grain loss in the header rises
too [22].

Table 4. Rice grain yield range (kg ha−1) and variability for different fields: 0.3 ha, 0.4 ha and 0.5 ha.

0.3 ha 0.4 ha 0.5 ha

Area kg/ha Area kg/ha Area kg/ha

0.022 1897.6 0.024 578.1 0.025 591.1
0.031 2783.2 0.04 1809.4 0.125 6752.6
0.265 6358.9 0.072 5742.1 0.36 7163.2

0.27 7761.6

Total field area (ha) 0.318 0.406 0. 51

Average yield (weighted) 5701.7 6392.4 6740.4

Yield variability within field (SD) 1928.5 2902.2 3006.0

Average yield (simple) 3679.9 3972.8 4835.6
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3.5. Rice Grain Flow Rate with Moisture Content in Plantation 1

Figure 9 maps the rice grain yield and the moisture content variability within a 0.3 ha
field. Field no.1 (14.06543◦ N, 100.63830◦ E) with 0.3 ha was harvested by RCH equipped
with a grain flow rate meter. About 7% (0.022 ha) produced in the range of 1–2 t ha−1 (grain
flow rate 1.89 t ha−1 and 22.43% average moisture content). About 10% (0.031 ha) area was
in the range of 2–3 t ha−1 (grain flow rate 2.78 t ha−1 and 22.47% average moisture content).
In the category of over 6 t ha−1, there was 83.3% of the field, which produced the maximum
yield with an average grain flow rate range of 6.36 t ha−1 and 22.35% moisture content.
The simple average grain flow rate range in plantation no.1 was 3.68 t ha−1, whereas its
weighted average grain flow rate was 5.70 ± 1.92 t ha−1.

3.6. Rice Grain Flow Rate with Moisture Content in Plantation 2

Rice grain flow rate and moisture content variability within area 0.4 ha are displayed
in Figure 10. Field no.2 (14.07038◦ N, 100.64344◦ E) was harvested by the same RCH with
grain flow rate meter. Below 1000 kg ha−1 grain flow rate range about 6% (0.024 ha) area
yielded 578.10 kg ha−1 at 22.95% average moisture content. About 10% (0.04 ha) area
was in the range of 1000–2000 kg ha−1 with 1809.36 kg ha−1 average grain flow rate and
22.41% moisture content. About 18% (0.072 ha) area produced 5742.15 kg ha−1 at 24.21%
moisture content. For the category of over 6000 kg ha−1, there was 66.5% of the field, which
produced the maximum yield with an average grain flow rate range of 7761.6 kg ha−1 and
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22.35% moisture content. The simple average grain flow rate range in plantation no.2 was
3972.8 kg ha−1, whereas its weighted average grain flow rate was 6392.4 ± 2902 kg ha−1.
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3.7. Rice Grain Flow Rate with Moisture Content in Plantation 3

Rice grain flow rate and moisture content variability within area 0.5 ha (Field no.3
14.07573◦ N, 100.65124◦ E) are displayed in Figure 11. Below 1000 kg ha−1 grain flow rate
of about 5% (0.025 ha) area yielded 591.1 kg ha−1 at 24.58% average moisture content.
About 25% (0.125 ha) area was in the range of having above 6000 kg ha−1 productivity
with 6752.60 kg ha−1 average grain flow rate and 25.36% moisture content. About 70%
(0.36 ha) area produced 7163.2 kg ha−1 at 24.21% moisture content. The simple average
grain flow rate range in plantation no.3 was 4835.6 kg ha−1, whereas its weighted average
grain flow rate was 6740.4 ± 3006 kg ha−1.
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Among various factors causing this variability, the key factors could be rice germi-
nation, variations in harvester speed, cutter bar height and reel index, especially during
setting up the machine, land slope and the size of field. Furthermore, previous researchers
have also conformed the final yield data from combine harvester using the corresponding
satellite images from a vegetation season, and have concluded that the former can be used
to predict yield and to assess site-specific zone productivity [22,23].

4. Conclusions

The commercially available fully automated harvesting machines not only require
sound technical understanding but are also expensive to adopt for Thai rice farmers. The
widely used LARSs (e.g., cameras on drone) for yield monitoring largely depend on the
surface reflectance of a field, and therefore inherit major limitations. The grain yield
sensor for RCH was developed and tested for precise operation of the real-time yield
meter. The developed system, comprising a grain flow rate meter, moisture sensor, GNSS
receiver and computer along with the created software, was assembled on a local RCH for
determination of real-time grain flow rate related to moisture content. All the components
of the developed system performed as intended during the field test. The operator could
monitor the grain yield in real time. The system also offers storing and mapping the
variability along with geo-spatial attributes of the field. The developed grain yield meter
system is compatible with any local RCH. It was assembled on a local harvester and tested
for its in-field performance. In-field variability was notably high when recorded with
the developed grain flow meter, which demonstrated the worth of this system over the
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conventional average yield computation. The field variability increased as expected, with
the field size tested. Grain yield flow measurement technique could be used to increase the
precision of harvesting operation and input management in subsequent cropping cycles.

Major limitations of this system include dependency on the operator’s response time
in adjusting and maneuvering the controls to fine-tune the combine’s operation in response
to the real-time yield prediction. The system could, however, be improved by adding
automatic feedback control of vital combine operating parameters, e.g., reel speed, forward
speed, cutter bar height, etc.
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