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Abstract: Agricultural equipment works poorly under low illumination such as nighttime, and there
is more noise in soybean plant images collected under light constraints, and the reconstructed soybean
plant model cannot fully and accurately represent its growth condition. In this paper, we propose a
low-illumination soybean plant reconstruction and trait perception method. Our method is based on
low-illumination enhancement, using the image enhancement algorithm EnlightenGAN to adjust
soybean plant images in low-illumination environments to improve the performance of the scale-
invariant feature transform (SIFT) algorithm for soybean plant feature detection and matching and
using the motion recovery structure (SFM) algorithm to generate the sparse point cloud of soybean
plants, and the point cloud of the soybean plants is densified by the face slice-based multi-view
stereo (PMVS) algorithm. We demonstrate that the reconstructed soybean plants are close to the
growth conditions of real soybean plants by image enhancement in challenging low-illumination
environments, expanding the application of three-dimensional reconstruction techniques for soybean
plant trait perception, and our approach is aimed toward achieving the accurate perception of current
crop growth conditions by agricultural equipment under low illumination.

Keywords: three-dimensional reconstruction; image enhancement; feature detection and matching;
sparse point cloud; dense point cloud

1. Introduction

As a new direction of current agricultural development, intelligent agriculture [1–4]
not only changes the industrial model that must rely on environmental planting in tradi-
tional agriculture, but also improves the quality of agricultural products, efficiently uses
various agricultural resources, achieves considerable economic and social benefits, and
realizes agricultural refinement, high efficiency, and greening. Crop phenotype [5–7] is a
key link in the analysis of crop growth environment, which is used to comprehensively
evaluate the growth morphology and traits of crops in complex and changeable farm-
land environments. It is an effective way to improve the field operation of agricultural
machinery and equipment. Traditional soybean plant phenotypic [8] measurement and
analysis, and the manual collection of soybean plant information on the farmland are
time-consuming and labor-intensive. The complex and changeable field environment and
the diverse characteristics of soybean plants [9] make it difficult to obtain soybean plant
phenotypic information, which increases the difficulty of accurate identification of soybean
plants [10,11]. In recent years, three-dimensional reconstruction technology [12] has played
an increasingly important role in the study of soybean plant phenotype. Applying three-
dimensional reconstruction to the field operation of agricultural machinery and equipment,
a model closer to the actual soybean plant phenotype is constructed, and the growth mor-
phology and traits of soybean plants are evaluated quickly and efficiently. It provides
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accurate information for agricultural machinery and equipment to accurately identify
soybean plants, effectively solves the problems of the complex production environment in
soybean fields and the diverse characteristics of soybean plants and accurate soybean plant
information, and meets the important needs of refinement and high efficiency of intelligent
agriculture.

The existing crop reconstruction methods mainly use two-dimensional images of crops
taken from different perspectives to match by extracting features, so as to reconstruct the
point cloud model of crops [13]. In practical applications, the two-dimensional images
are easily constrained by illumination during the imaging process. The brightness and
contrast of the acquired images are generally low and there is noise, which reduces the
reconstruction accuracy of the three-dimensional morphological characteristics of crops
and seriously affects the analysis of crop phenotypes. For the reconstruction of crops under
low illumination, it is necessary to increase the brightness of the light. The traditional
illumination brightness enhancement algorithm can be divided into the histogram equal-
ization [14,15]-based method and the Retinex [16] theory-based method. The histogram
equalization method is based on the optimization of a single pixel to achieve overall bright-
ness and contrast enhancement, but it ignores the correlation between regional pixels and
leads to the destruction of detailed information. The method based on the Retinex theory
recovers image brightness and color information from image illumination information and
considers the correlation of image regional features. However, for uneven illumination,
it will cause color distortion and artifacts. With the significant effect of deep learning
in image denoising [17] and image recognition [18], it has also been widely used in im-
age enhancement [19]. Wei et al. [20] proposed a convolutional neural network model
RetinexNet based on Retinex theory. The algorithm decomposes the input low-light image
into a reflection image and an illumination image and then enhances and adjusts the image.
The illumination-enhanced illumination image and the denoised reflectivity image are
recombined to generate a corrected image. Zhang et al. [21] proposed a simple and effective
KinD low-light image enhancement network. The network framework is similar to the
RetinexNet architecture, and the core is to introduce more training loss constraints. Jiang
et al. [22] introduced the GAN algorithm into image enhancement and proposed an effi-
cient unsupervised generative adversarial network EnlightenGAN algorithm, which can be
directly applied to network training without using low-light illumination or normal image
blocks, with a better generalization effect. Marco Tulio Ribeiro et al. [23] proposed the LIME
algorithm, which estimates the illumination of each pixel by finding the maximum value in
the three channels of the RGB image. A structural prior is then applied to refine the initial
image as the final illumination map to generate the final enhanced image. Lv et al. [24]
proposed the MBLLEN algorithm, which is a multi-branch low-light image enhancement
network. By extracting rich image features from different levels for enhancement and
fusing the output images generated by multiple branches, the image quality is improved
from different directions.

At present, the three-dimensional reconstruction method based on SFM (structure
from motion) [25] and MVS (multi-view stereo) [26] is used to obtain the three-dimensional
data of the whole crop. GUAN et al. [27], using an RGB camera and a photon mixing
detector (PMD), carried out three-dimensional reconstruction of soybean plants with color
information and used a density-based spatial clustering algorithm (DBSCAN) to extract
canopy information from the original three-dimensional point cloud. Then, principal com-
ponent analysis (PCA) and an iterative closest point (ICP) algorithm were used to register
multi-source images to complete the three-dimensional reconstruction of soybean plants.
WANG et al. [28] constructed soybeans at different growth stages through a multi-image
acquisition system based on the Kinect sensor and generated comprehensive point cloud
data of soybeans from three perspectives. Conditional filtering and K-nearest neighbor
filtering (KNN) algorithms were used to preprocess the original three-dimensional point
cloud. Finally, random sample consensus (RANSAC) and iterative closest point (ICP) algo-
rithms were used to complete point cloud matching and fusion. SU et al. [29] developed a
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plant localization technology based on systematic crop signals for the weeds that cannot be
controlled by the existing cultivation techniques in the crop row and are highly competitive
with the early stage of soybean growth. By applying different concentrations of a signal
compound with a unique fluorescent appearance to soybeans in different periods, the
automatic detection of soybean appearance is realized, and the fluorescence images of
multiple plant views are analyzed. A three-dimensional plant localization algorithm is
established to accurately determine the position of soybeans in the field, which helps to
perform automatic weeding tasks in weeding machines. Under low-illumination condi-
tions, it is difficult to complete the reconstruction task by using the SFM method for the
three-dimensional reconstruction of crops. When the input crop image is constrained by
illumination, it will produce incorrect spatial point cloud shape estimation, inaccurate cam-
era trajectory, and in some scenes, there is no detection of real features or pseudo-features
that cannot be matched with features in other images. Aiming at the accurate phenotypic
information of soybean plants obtained by agricultural machinery and equipment in the
environment of insufficient illumination, this paper proposes the reconstruction and trait
perception of soybean plants under low illumination. With soybean plants as the center,
the camera is used to collect the images of soybean plants under low illumination in an
orderly manner. Through the EnlightenGAN image enhancement network, the illumina-
tion brightness conditions of the soybean plant images are adjusted, and the image noise
and color distortion are removed, so as to improve the accuracy of soybean plant feature
detection and matching under low illumination and reduce the feature mismatch. The
spatial point cloud information and camera pose are obtained by combining the internal
and external parameters of the camera. The problem of inaccurate estimation of spatial
point cloud shape and inaccurate camera pose caused by illumination constraints is solved.
Finally, the SFM algorithm and the PMVS (the patch-based MVS algorithm) [30] algorithm
are used to reconstruct the three-dimensional soybean plant, so as to realize the perception
of soybean plant growth environment in low-illumination working environment.

In this paper on low-illumination soybean plant reconstruction and trait perception,
the following main contributions are provided:

(1) The soybean plant image under low illumination is adjusted by the EnlightenGAN
image enhancement network to remove the image noise and color distortion. The
enhanced soybean plant image is closer to the actual illumination brightness, and
the color is real. It highlights the contour structure, feature points, and boundary
information of the soybean plants in the image, which is conducive to the subsequent
image analysis and processing such as feature point extraction and matching.

(2) The soybean plant image after the illumination brightness enhancement can detect
a large number of fine soybean plant feature points, including more abundant and
detailed plant information, which solves the problem of the detection of the soybean
plant feature points in low illumination environment being less and the corresponding
relationship between soybean plants under different perspectives being difficult to
establish and the color of the reconstructed point cloud model being singular. A large
number of fine soybean plant feature points are matched to optimize the reconstructed
soybean plant model.

(3) A large number of fine soybean plant feature points can reduce the mismatch of
soybean plant feature points and construct a point cloud model close to the actual
soybean plant. The recovery of soybean plant phenotypic structure is very excellent,
and the texture is rich and colorful. Detailed soybean plant phenotypic analysis is
conducive to evaluating soybean plant morphology and traits and accurately sensing
soybean plant growth information.

2. Three Dimensional Reconstruction of Soybean Plants under Low Illumination

During the operation of farmland, the complex production environment of a soy-
bean field, the diversity of soybean plants, and how to obtain accurate information on
those soybean plants have caused troubles for the operation of agricultural machinery and
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equipment. Agricultural machinery and equipment can easily cause irreparable damage
to soybean plants during the collection of soybean growth information. In addition, the
complex and changeable field environment and the diversity of soybean plants make it im-
possible for agricultural machinery and equipment to monitor the growth status of soybean
crops in real time, which increases the difficulty of collecting information on soybean plants.
By applying three-dimensional reconstruction technology to the perception process of
agricultural machinery and equipment on soybean plants, a three-dimensional model close
to the actual soybean plants was constructed to generate fine soybean plant phenotypes, to
achieve non-contact collection of more comprehensive and specific accurate information
of soybean plants, to quickly and efficiently evaluate the growth status of soybean plants,
and to provide accurate information for agricultural machinery and equipment to carry
out field soybean plant operations. In the reconstruction of a soybean plant model under
low illumination, as shown in Figure 1, through the EnlightenGAN image enhancement
network for the collected multi-view samples of soybean plants under low illumination,
the brightness-enhanced soybean plant image is obtained by illumination adjustment. The
SIFT (scale-invariant feature transform) [31] algorithm is used for image feature detection.
The feature points are different from other ordinary pixels on the image. It contains more
key information needed for three-dimensional reconstruction. The quality of feature point
detection directly determines the accuracy of the three-dimensional reconstruction model.
The effective and low error rate feature points are used to match the feature points of
images from different perspectives. According to the paired matching feature points, the
SFM algorithm is used to determine the three-dimensional structure of soybean plants, and
the sparse point cloud of soybean plants [32] is generated. The dense three-dimensional
point cloud of soybean plants is restored by the patch-based PMVS algorithm, and a
three-dimensional model close to the actual soybean plants is reconstructed.

Figure 1. Reconstruction diagram of soybean plant model under low illumination.

2.1. Soybean Plant Image Acquisition

The definition of low illumination in this paper is that the illumination of the camera
when shooting soybeans makes the output video signal level lower than the specified
brightness value of the soybean image, so that the light intensity of the soybean is relatively
low and the brightness is relatively dark. In this light condition, the camera can vaguely
see the available image of the soybean contour under the condition of a certain degree of
darkness, and the illumination is used as the measurement unit of the light brightness. If
the brightness value of the soybean image is lower than the minimum illumination of the
camera, the amplitude of the output video signal will not reach the specified brightness
value of the soybean image. The collected soybean image is dark and it is difficult to
distinguish the contour level of the soybean. Even if the method of this paper is used
to enhance the brightness of the image to reconstruct the soybean plant, the soybean
information is inaccurate and partially missing, so that the three-dimensional model of the
soybean plant cannot be reconstructed.

In this paper, the three-dimensional soybean plant model is reconstructed. When
collecting the required soybean plant image data set, it is recommended to take the soybean
plant grown for about two months as the shooting object. Because the soybean plant
structure at this stage is obvious and the contour is clear, it is convenient to compare and
analyze before and after the experimental treatment. Moreover, when shooting soybean
plants, the three-dimensional model of soybean plants reconstructed by selecting farmland
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scenes with small plant density and dense plant scenes to evaluate the growth status of the
current plants will be affected by adjacent plants. In order to meet the actual application
environment, the soybean shooting process was selected in the farmland environment
at night, and the environment brightness was set by controlling the input current of the
adjustable LED lamp to simulate the soybean growth environment under low illumination.
Through the Intel Realsense D435i camera, the multi-view shooting is carried out with
the center of the soybean plant to be reconstructed under low illumination. The low-
illumination soybean image is collected around the soybean plant in an orderly manner.
During the collection process, the soybean is collected as far as possible from the near and
far distance perspectives. In this way, a large number of low-illumination soybean plant
images collected contain different height information, which is conducive to the accurate
reconstruction of soybean plants. When shooting soybean plants, the camera captures an
image every 10 degrees per revolution and retains more of the same soybean plant structure
in the adjacent image, which is not only beneficial to completing the image stitching of
soybean plants, but also makes the soybean plant reconstruction rich in details and reduces
the time spent on image matching. A total of 826 multi-view images of soybean plants
under low illumination were collected in the experiment. The number of point clouds
obtained from each angle should not be less than 10. If the number of point clouds is
too small, the images of adjacent frames cannot be matched. The experiment obtained
9166 point clouds of soybean plants. In addition, the experiment carried out data collection
under a normal lighting environment, and 796 soybean images were collected. About
3200 point clouds could be obtained from each angle. There were 2,623,616 soybean plant
point clouds collected under the normal lighting environment. As shown in Figure 2, some
images under normal light collected in the experiment can clearly observe the fine knot
structure and rich texture of the soybean in the image of the soybean plant under normal
light as shown below, while the light brightness of the soybean plant image under low light
is very low and fuzzy, which makes it difficult to observe the shape and character of the
soybean plant, and the captured value information of the soybean plant is very limited. It is
not easy to reconstruct a 3D model close to the real soybean plant, which greatly improves
the difficulty of environmental perception of the current growth state of soybean plants.

Figure 2. Soybean plant images collected in the experiment.

2.2. Low-Illumination Soybean Plant Image Enhancement

When agricultural machinery and equipment are working at night, the collected
images of soybean plants under low illumination have the problems of detail loss and
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insufficient contrast and low-illumination conditions, which greatly affect the visual quality
of the images. In order to improve the image quality as much as possible, this paper uses
the low-illumination image enhancement network, EnlightenGAN, based on deep learning.
Its main function is to improve the brightness of low-illumination soybean plant images,
and at the same time retain the effective information of soybean plants to the greatest extent
in the enhancement process. The high-brightness pixels will not be overbrightened, and
the image noise will be suppressed, thus solving the problem of insufficient illumination
conditions. The enhanced image is more prominent in the soybean plant image structure
characteristics, which is conducive to the soybean plant image feature detection and image
matching and further enhances the effect of three-dimensional reconstruction based on
multi-view.

The EnlightenGAN image enhancement network uses an attention-guided U-Net as a
generator to guide soybean plant information through a global and local dual discriminator,
using self-feature retention losses to guide the training process, as shown in Figure 3. The
generator network is composed of a feature extraction module, an information reconstruc-
tion module, and a brightness adaptive module. The feature extraction module mainly
extracts image feature information. The information reconstruction module recovers the
image information from the extracted image feature map through deconvolution operation.
The brightness adaptive module adjusts the illumination brightness freely, so that the
enhanced image will not have overexposure or underexposure. In order to improve the
global illumination while adaptively enhancing the local area illumination, the global-local
structure dual discriminator uses PatchGAN [33] to identify the normal-illumination image
and the enhanced image. The judgment information of the two discriminators will be
fed back to the generator to continuously adjust the image enhancement effect, so that
the enhanced image and the normal-illumination image cannot be distinguished by the
two discriminators, thus completing the adaptive enhancement of the image. The local
discriminator randomly cuts five local blocks from the enhanced soybean plant image
and the normal-illumination soybean plant image and learns to distinguish them from the
normal-illumination image or the enhanced image. The global-local structure can make the
local blocks of the enhanced image close to the normal-illumination image, which is the
key to avoiding local overexposure or underexposure. The global discriminator uses the
relativistic discriminator structure to estimate the probability that the normal-illumination
soybean plant image is more realistic than the enhanced soybean plant image, so that the
generator synthesizes the enhanced soybean plant image more realistic than the normal-
illumination soybean plant image. The generator normalizes the illumination channel of the
input RGB image, uses the difference between the elements to generate the self-regularized
attention map, adjusts the size of the attention map to extract the multi-level features
of different depth layers, retains the rich texture information of the image, and uses the
multi-scale context information to synthesize high-quality enhanced images, combined
with the discriminator feedback identification information. So that the output image dark
area will not be overexposed or underexposed, it effectively removes the noise hidden in
the dark area, color distortion and other degradation problems, and adjusts the appropriate
lighting conditions to maintain the texture and structure of soybean plants.
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Figure 3. Soybean plant image enhancement model.

2.3. Point Cloud Reconstruction of Soybean Plant
2.3.1. Feature Detection and Matching

With image feature detection and matching as a key part of the three-dimensional
reconstruction, the establishment of the corresponding relationship between soybean plant
images obtained from different observation angles and the corresponding relationship
between images obtained from different perspectives is the key information to generating
three-dimensional reconstruction of subsequent point cloud reconstruction. For the soybean
plant image feature detection and matching, as shown in Figure 4: Firstly, building a
Gaussian differential pyramid for the input enhanced soybean plant images achieves the
multi-scale space construction of soybean plant images. Secondly, the key points of the
soybean plant are determined by the detection of extreme points in the scale space of the
soybean plant image, and the main direction of feature points is established to generate the
feature description vector of the soybean plant and complete the feature matching task of
the soybean plant.

Figure 4. Detection and matching of soybean plant characteristics.

Gaussian difference pyramid is the premise of detecting the extreme points of soybean
plant image in the later stage. As shown in Figure 5, the Gaussian difference pyramid of
the soybean plant image is obtained by subtracting the adjacent layers in each group of
image sequences in the Gaussian pyramid composed of multiple groups of soybean plant
image sequences. Each group of soybean plant image sequences in the Gaussian pyramid
is calculated by convolution of the basic image I(x, y) in the group and the Gaussian
function G(x, y, σ) that changes the scale factor σ multiple times. The adjacent layers in the
same group of image sequences are subtracted to form the Gaussian difference pyramid
convolution D(x, y, kσ), thus constructing a multi-scale space where kσ and σ is the scale
factor of different layers. G(x, y, σ) denotes a Gaussian function with a scaling factor.
Formulas (1)–(3) are:

D(x, y, kσ) = [G(x, y, kσ)− G(x, y, σ)]⊗ I(x, y) (1)
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G(x, y, σ) =
1

2πσ2 e−
x2+y2

2σ2 (2)

σ(o, r) = σ02o+ r
n , o ∈ [0, 1, · · · , O− 1]; r ∈ [0, 1, · · · , n + 2] (3)

Figure 5. Construction of Gaussian difference pyramid of soybean plant image.

σ(o, r) represents the Gaussian blur coefficient of the corresponding soybean plant
image: that is, the scale factor of the corresponding layer, where o is the index number
of each image sequence group of the Gaussian pyramid; r is the scale image layer index
number in a set of image sequences; and σ0 is the Gaussian blur initial value.

The extreme point detection of the soybean plant scale space is performed by compar-
ing the D(x, y, kσ) value of 26 adjacent points between the adjacent two layers of images in
the same group of the points to be detected in the Gaussian difference pyramid; to ensure
that the D(x, y, kσ) value of the detection point is the maximum or minimum value of
its adjacent points, the detection point is determined to be a key point of the image at
this scale, and the feature information coordinates (x, y) and scale L(x, y) of the point are
recorded. Through histogram statistics, the gradient amplitude and direction correspond-
ing to the pixels in the neighborhood of the key points of soybean plants are calculated.
The cumulative peak of the gradient amplitude is the main direction of the key points, and
the corresponding feature point descriptors are generated to make them not change with
various changes, to improve the probability of the correct matching of feature points. After
screening and normalization, the final soybean plant feature description vector is obtained,
in which the gradient amplitude m and direction θ calculation Formulas (4) and (5) are:

m(x, y) =
√
(L(x + 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y− 1))2 (4)

θ(x, y) = tan−1[
L(x, y + 1)− L(x, y− 1)
L(x + 1, y)− L(x− 1, y)

] (5)

After the feature description vectors of two soybean plant images are generated, a
feature description vector V in one image is taken, and the first two feature description
vectors V1 and V2 with the closest Euclidean distance in the other image are found, and
the distance is Dist(V, V1) < Dist(V, V2). If the ratio of the nearest distance to the second
nearest distance in these two feature points is less than the set proportional threshold M,
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the nearest distance feature description vector is matched with the feature description
vector. The calculation Formulas (6) and (7) are:

Dist(V, V1) =

√
n

∑
i=1

(vi − v1i)
2, Dist(V, V2) =

√
n

∑
i=1

(vi − v2i)
2 (6)

Dist(V, V1)

Dist(V, V2)
< M (7)

A large number of two soybean plant images with arbitrary scale, rotation, and
brightness changes are matched. The optimal proportion threshold is set between 0.4 and
0.6. In the process of soybean plant matching, the proportion threshold is set to 0.5. For
the matching with high accuracy requirements, the proportion threshold is 0.4; when the
number of matching points requires more matching, the ratio threshold is 0.6.

2.3.2. Space Point Cloud Reconstruction

The sparse point cloud of soybean plants can reflect the general morphology and
traits of current soybean plants. After observing the surrounding soybean plants, the
three-dimensional appearance of the soybean plants is perceived. The point cloud is used
to represent the three-dimensional structure of the soybean plants. The camera pose is
obtained by the motion recovery structure. A large number of multi-view soybean plant
images are used to obtain the sparse point clouds of soybean plants. The multi-view dense
matching method based on patch is used to generate the dense point cloud model of
soybean plants.

Because the original EXIF (exchangeable image file format) information of the collected
images will be lost in the process of image enhancement, it is difficult to determine the
camera pose, which seriously affects the effect of reconstructing the three-dimensional
model of soybean plants. In this paper, the SFM algorithm is used to restore the three-
dimensional point cloud model from multi-view soybean plant images, as shown in Figure 6.
Firstly, the EXIF information of each soybean plant image is extracted, which contains
the attribute information and shooting data of each image, so as to obtain the internal
reference information of the camera. Secondly, the feature detection and matching of the
soybean plant image adjusted by illumination are carried out to obtain the feature point
pairs. Combined with the epipolar constraint between the two soybean plant images, the
matching pairs are optimized by the algorithm, and the singular value decomposition
of the essential matrix is carried out to solve the camera pose and obtain the external
reference information. In this process, the distance between the source point cloud set
P = {p1, p2, · · · , pn} and the target point cloud set Q = {q1, q2, · · · , qn} is minimized by
finding a spatial optimal transformation matrix composed of a rotation matrix R and a
translation matrix t. The above matching process is iterated continuously to form an image
trajectory around the soybean plant. The calculation Formula (8) is:

E(R, t) =
1
n

n

∑
i=1
‖qi − (Rpi + t)‖2 (8)

Figure 6. Point cloud reconstruction of soybean plant.



Agriculture 2022, 12, 2067 10 of 20

The angle between the feature points of the same soybean plant is observed from
two perspectives, and the position relationship of the point is determined. The three-
dimensional coordinates of the feature points of the soybean plant in the world coordinate
system are solved. The camera pose and the point cloud of the soybean plant are optimized
by bundle adjustment in turn to reduce the difference between the projection and repro-
jection of the real three-dimensional space points on the image plane. After the bundle
adjustment optimization, the accurate camera pose and the three-dimensional coordinates
of the soybean plant point cloud are obtained, and the sparse point cloud model of the
soybean plant is generated.

Because the sparse point cloud of the soybean plant is different from the real soybean
plant in appearance, it cannot fully express the real shape and character of the soybean plant.
Therefore, it is necessary to make the sparse point cloud of the soybean plant denser, so that
the reconstructed soybean plant model is closer to the actual soybean plant. Through the
relevant information provided by the sparse point cloud, the patch-based PMVS algorithm
is used to restore the dense point cloud of soybean plants, and the point cloud model of the
soybean plants is generated accurately and efficiently. According to the spatial points in
the sparse point cloud of soybean plants, the surface slices of the soybean plant model are
generated in order of the distance from the point to the camera optical center from near to
far, and the neighborhood image set that conforms to its certain constraints is set for each
surface slice. The existing surface slices are iterated continuously to generate more slices,
and the individual or wrong surface slices are eliminated to generate a dense point cloud
model of soybean plants closer to the real soybean plant morphology and traits.

3. Experimental Analysis of Three-Dimensional Reconstruction of Soybean Plant
3.1. Experimental Environment

This article is an experiment using the Windows10 system. The processor uses Intel
(R) Core (TM) i5-10600KF, graphics card NVIDIA GeForce RTX 3060, hard disk 1 TB, and
memory 16 GB. Based on CUDA11.1 and Cudnn11.1, Tensorflow1.8.0 and Pytorch1.6.0
frameworks are selected in the Python3.8 compilation environment for experimental model
training and testing in the Pycharm2018 community version.

3.2. Evaluating Indicator
3.2.1. Image Enhancement Evaluation Index

In this paper, the image enhancement uses the usual quantitative indicators peak
signal to noise ratio (PSNR) and structural similarity (SSIM) as the evaluation criteria for
soybean plant image enhancement. The experiment compares the average PSNR and SSIM
of the test set. The higher the value, the better the model is at the light adjustment and
the soybean plant detail recovery enhancement effect, so as to select the better enhanced
image to reconstruct the soybean plant model. PSNR evaluates the effect of the image
enhancement by judging the pixel difference between the enhanced soybean plant image
and the normal-illumination image, where max1 represents the maximum pixel value of the
image, MSE represents the mean square error value of the image pixel, and x and y represent
the two soybean plant images before and after enhancement. Formulas (9) and (10) are as
follows:

PSNR = 10× log10(
max2

1
MSE

) (9)

MSE(x, y) =
1

mn

m

∑
i=1

n

∑
j=1

(x(i, j)− y(i, j))2 (10)

SSIM is used to evaluate the degree of detail similarity of soybean plant by judging the
structural differences between images. The image similarity is mainly measured from three
aspects: brightness l(x, y), contrast c(x, y), and structure s(x, y), where µx and µy represent
the mean values of image x and y, respectively. δx and δy represent the variance of image
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x and y, respectively. δxy represents the covariance of image x and y, C1, C2, and C3 are
constants. The Formulas (11)–(14) are as follows:

SSIM(x, y) = l(x, y)× c(x, y)× s(x, y) (11)

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C2
(12)

c(x, y) =
2δxδy + C2

δ2
x + δ2

y + C2
(13)

s(x, y) =
δxy + C3

δxδy + C3
(14)

3.2.2. Feature Point Detection Evaluation Index

In this paper, repeatability is used as the standard to judge the advantages and dis-
advantages of feature point detection methods, and the matching time of feature points is
used as the evaluation criterion of feature matching efficiency. The evaluation criterion was
proposed by KMikolajczyk et al. [34] after comparing different local feature descriptors.
Considering the different detection algorithms and the different detection shapes of feature
regions, the evaluation criterion is optimized. Formula (15) is as follows:

R =
N

min(Na, Nb)
, (Na ∈ IA, Nb ∈ IB) (15)

where R represents the repeatability rate, N represents the number of repeated points, IA
and IB represent the graph A and graph B to be matched in the same scene, respectively,
and Na and Nb represent the number of feature points detected in IA and IB, respectively.
Considering that there must be a non-overlapping range between the two graphs, the
coordinates of the feature points in IA are mapped to the IB coordinate system through the
homography matrix, and the coordinates beyond the range of the IB coordinate system are
removed. The number of Na is updated, and then, the number of Nb is updated by doing
the same operation on IB.

Since the homography matrix mapping process is mainly used to project the coordi-
nates of one of the image feature points onto another image coordinate system through this
matrix, the splicing of two images is realized. However, in the actual feature point detection
and matching, it is not perfect, and there will be errors and mismatches. Therefore, the
minority obeys the majority to retain the optimal data and reduce the error of the homog-
raphy matrix mapping process. The coordinates of the Na feature points updated in IA
are calculated in the IB coordinate system by the homography matrix H mapping, and the
Euclidean distance is solved with the updated Nb feature point coordinates to determine
whether the distance is less than the set threshold ε. If it is less than the set threshold, it is
established as a repetition point and counted in N. The iteration to obtain the homography
matrix H corresponding to the maximum N is the mapping process that is least affected.
Moreover, the optimized repeatability rate limits N, and it is required to set ε to 1.5 and the
overlap error between IA and IB is less than 0.2, where a and b represent the feature points
of IA and IB, respectively, and IA and IB represent the image after the feature points out of
the range are eliminated. Formula (16) is as follows:

‖a · H − b‖ < ε, (a ∈ IA′ , b ∈ IB′) (16)

3.3. Evaluation of Three-Dimensional Reconstruction Experiment of Soybean Plant
3.3.1. Soybean Plant Image Enhancement Evaluation

The enhanced soybean plant images are evaluated using multi-view soybean plant
images collected at low illumination. Experiments compare different classical image
enhancement networks for a test set of soybean plants and test the image enhancement
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effect of different image enhancement networks on soybean plants at low illumination. As
shown in Figure 7, soybean plant images enhanced by the RetinexNet algorithm suffer
from overexposure, color distortion, and local area blurring. The overexposure of the
KinD++ algorithm [35] is mitigated, but the colors are not realistic. The sharpness of
the leaves of the soybean plants is high and contains visible noise. The LIME algorithm
alleviates the overexposure and color distortion to some extent, but the brightness is not
improved enough and there is texture distortion. The MBLLEN algorithm has better color
restoration, but the local area of the soybean plant is dark and deviates from a natural
light image. The color and noise of the soybean plant images are well processed by the
SCI algorithm [36], but the brightness is dimmer after enhancement. The EnlightenGAN
algorithm enhances the soybean image with a light brightness closer to the natural light
brightness to recover better and more natural color for soybean details. As shown in Table 1,
different algorithms are used to enhance the contrast of the soybean plants. The high SSIM
of the EnlightenGAN algorithm indicates that the structure and texture details of soybean
plants are well recovered at low illumination. Although its PSNR is lower than that of the
KinD++ algorithm, the enhanced illumination brightness of the KinD++ algorithm is more
prominent, but the actual illumination enhancement is improved by the EnlightenGAN
algorithm.

Figure 7. Comparison of soybean plant image enhancement effect.

Table 1. Comparison results of different algorithms.

Algorithm PSNR SSIM

Input −6.82 0.14
RetinexNet 18.99 0.84

KinD++ 19.40 0.88
LIME 11.17 0.39

MBLLEN 10.65 0.63
SCI 10.83 0.81

EnlightenGAN 17.37 0.92
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The soybean plant image with natural light environment and rich detail information
is an important data source for reconstructing the soybean plant model. Therefore, this
paper selects the EnlightenGAN enhancement network to adjust the lighting conditions
of the low-illumination soybean plant image, to effectively remove the noise and color
distortion hidden in the dark area, and to generate the soybean plant image with suitable
illumination brightness and rich information. The soybean plant contour structure, feature
points, and boundary information in the image are more clearly highlighted, which is more
conducive to the subsequent image analysis and processing such as feature point extraction
and matching. The enhanced soybean plant image can perceive accurate soybean plant
growth information. The accuracy of feature point detection and matching of soybean
plants was improved to optimize the reconstructed soybean plant model and make it closer
to the morphology and traits of real soybean plants.

3.3.2. Evaluation of Soybean Plant Model Reconstruction

Aiming at the three-dimensional model of soybean plants under different illumination
conditions, this study obtains a set of soybean plant images after adjusting illumination
through the soybean plant image enhancement network and performs image feature detec-
tion and matching with the collected soybean plants under low illumination to compare
the feature detection performance under different illumination environments.

By comparing the detection and matching of feature points in four groups of two
adjacent soybean plant images before and after light environment adjustment and under
a normal-light environment, it shows the improvement of feature point detection and
matching after light adjustment of soybean plant images and evaluates the impact of the
light adjustment of soybean plant images on the reconstruction of soybean plant models.
As shown in Figure 8, the detection and matching of feature points on adjacent frame
images of soybean plant under low illumination are carried out. A very small number
of feature points in the four groups of soybean plant images under low illumination are
detected. The feature points of the four adjacent plant images are matched. Due to the small
number of feature points detected in the soybean plant images under low illumination and
the differences in the feature points detected from different perspectives, the number of
successful matches of the feature points of the four adjacent soybean plant images is limited,
which can easily cause the mismatch of soybean plant features. It increases the difficulty of
establishing the correspondence between soybean plants from different perspectives, which
is affected by light constraints. It is easy to produce incorrect spatial point cloud estimation
and inaccurate camera trajectory, and different image features cannot be matched, which
greatly affects the reconstruction accuracy of the three-dimensional model of the soybean
plant. As shown in Figure 9, it shows the detection and matching of feature points on
adjacent frame images of soybean plant under a normal-light environment. Compared
with the feature detection and matching results shown in Figure 8, we can clearly see that
more soybean feature points can be detected under a normal-light environment, which
is related to whether the soybean model reconstruction is complete, which also leads us
to match four groups of soybean plant images under a normal-light environment. More
successful feature matching can be obtained, which helps to improve the precision of our
model reconstruction.

Figure 8. Detection and matching results of feature points in adjacent frames of soybean plants under
low illumination.
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Figure 9. Detection and matching results of feature points in adjacent frames of soybean plants under
normal light.

Four groups of adjacent soybean plant images collected at low illumination are ad-
justed by the EnlightenGAN enhancement network, which effectively removed the image
noise at low illumination to improve the image quality and recover more soybean plant
image details. As shown in Figure 10, the adjacent frame images of soybean plants with
improved illumination conditions are generated and the feature points of the soybean
plants are detected. It is clear that the number of feature points detected in the soybean
images after adjusting the illumination environment of the four groups is greatly increased
and its feature performance is better than that of the soybean images without adjusting the
illumination. The feature point pair matching was performed on the detected soybean plant
image. Neighboring images from different perspectives increase the number of feature
pairs successfully matched compared to images without illumination adjustment, and the
accuracy of image matching is also improved. Compared to the real features of soybean
plants extracted at normal illumination, the real features of soybean plants extracted at
low illumination are very limited, and the images of soybean plants without illumination
adjustment are easily masked by false features, resulting in the false matching of soybean
plant features. After the adjustment of illumination conditions, the soybean plant image can
extract more real features and capture more abundant soybean plant information, which
provides convenience for the establishment of the corresponding relationship between
different perspective images of soybean plants, and also provides accurate information for
the point cloud reconstruction of soybean plants in the later stage, so that the reconstructed
soybean plant model is closer to the morphology and traits of real soybean plants.

By testing the feature detection and matching of the collected four groups of adjacent
matching images and the four groups of adjacent matching images after the illumination
environment is adjusted, the number of feature points detected by adjacent images, the
number of image matching pairs, the repeatability rate, and the feature point matching
time are used to illustrate the influence of the illumination environment on the image
feature points. As shown in Table 2, Figure A and Figure B in the table represent the
adjacent frame images to be matched. It is obviously observed that the performance of the
soybean plant image feature point detection after the light adjustment has been greatly
improved. The number of soybean plant feature points detected has increased, which is
close to the soybean plant feature points detected under the normal light environment,
so that the missing of feature detection information can be reduced compared with the
image before the light adjustment. Obtaining more precise soybean plant information and
establishing more accurate correspondence between images, while the repeatability of the
feature point matching has been improved to a level close to the repeatability of the feature
point matching under normal lighting environment, indicates that the probability of correct
image matching has been improved while reducing feature point mismatch. Due to the
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adjustment of the light environment, when detecting a large number of feature points of
soybean plants, the overhead of certain computing resources is indispensable, and the
matching of a large number of feature points of soybean plants requires more time to
calculate, and in the process of image processing, inevitably, there will be a certain amount
of information redundancy, resulting in the extension of processing image time, but the
increase of feature matching time can be obtained. Both the number of feature points and
the number of image matching pairs increase significantly, capturing rich and accurate
soybean plant information and improving the accuracy of the reconstructed soybean point
cloud.

Figure 10. Detection and matching results of feature points in adjacent frames of soybean plants after
light adjustment.

Table 2. Feature detection and matching of four adjacent soybean plant images.

Light Brightness

Figure A Average
Number of

Feature Points
(Na)

Figure B Average
Number of

Feature Points
(Nb)

Average Number
of Image

Matching Pairs
(N)

Repeatability (R)
Average Time of

Feature Point
Matching (Unit: s)

Unadjusted 10 11 5 0.5 0.0011
Normal 3227 3307 1836 0.5689 0.1965

After adjustment 2245 2281 1211 0.5394 0.1267

4. Discussion

In this study, we performed three-dimensional reconstruction of a soybean plant
environment by adjusting the illumination conditions of soybean plant images and com-
pared the impact of the illumination conditions on the reconstruction effect of the soybean
plant model. It showed that the adjustment of the appropriate illumination environment
brings the reconstructed soybean plant model closer to the real soybean plant, and the
reconstructed soybean plant phenotype has the detailed soybean plant current growth
morphology and traits. In Figure 11, it shows the sparse point cloud model reconstructed
from the same soybean plant under low illumination and the dense point cloud model
of its corresponding view, in which a large number of different color dots constitute the
structural characteristics of soybean plants. The sparse point cloud of a soybean plant at
low illumination is observed from the sparse point cloud of a soybean plant at low illumi-
nation above the image. The generated sparse point clouds of soybean plants contain fewer
soybean point clouds. The soybean plant information with limited illumination constraints
produces incorrect spatial point cloud estimation and inaccurate camera trajectory. The
correct rate of matching between different image features is very low. After surface slicing,
a dense point cloud of soybean plants in low illumination is constructed below the image,
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where it is difficult to observe the general outline of soybean plants. It was found that
because the soybean plant image cannot obtain the texture information of the leaves under
low illumination, the reconstructed dense point cloud model of the soybean plant is more
unable to observe the morphology and traits of the soybean plant, and it is difficult to
evaluate the current growth status of the soybean plant.

Figure 11. Reconstruction of soybean plant model under low illumination.

The experiment conducted the reconstruction of the sparse point cloud model of the
same soybean plant and the dense point cloud model of its corresponding view under
normal light conditions, as shown in Figure 12. The soybean sparse point cloud model
reconstructed under normal light at the top of the figure can be clearly observed. The
rebuilt soybean sparse point cloud model under light can easily see the general outline
and growth structure of soybean plants. The model with the dense point cloud of the
soybean plant under normal light in the lower part of the figure simulates a model similar
to the actual soybean plant in appearance. Additionally, compared with the soybean plant
model reconstructed under low illumination, it is obvious that the structure and color of
the soybean appearances are diverse, the rich texture surface is also clearly visible, and the
characteristics of the soybean plant leaves can be observed in detail.

The illumination environment of the collected soybean plant images is adjusted to
generate a sparse point cloud based on the paired matched feature points of the soybean
plant, and the dense three-dimensional point cloud of the soybean plant is recovered by
surface slicing, as shown in Figure 13, where the sparse point cloud model reconstructed
from the same soybean plant after enhancement and the dense point cloud model from
the corresponding perspective are shown. For the sparse point cloud model reconstructed
from the multi-view image, due to the increase in the number of feature points that are
adjusted for the detection of light brightness and correctly matched, the light-adjusted
soybean sparse point cloud reconstructed from the top of the figure is almost the same
as the sparse point cloud of soybean plants under normal light, and the contour of the
soybean plants can also be observed, and the general characteristics of soybean plants
can be seen. The model of the soybean plants with dense point clouds at the bottom of
the figure is, in appearance, also very close to the actual soybean plant. In addition, the
reconstructed soybean plant model is similar to the soybean plant reconstructed under
normal lighting conditions in appearance. It also has a complex and detailed structure,
various colors, and rich texture surface. However, it is difficult to extract information
from the image under low illumination. The acquired multi-view soybean plant image is
subject to light adjustment, which can reduce the noise information of the image to a certain
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extent. The contour structure, feature points, and boundary information of the soybean
plants in the image are more prominent. The distinct three-dimensional model of soybean
plant structure information reconstruction makes the differences between the reconstructed
soybean plant model and the model reconstructed under normal light small and realizes
the perception of soybean plant growth in a low-light environment.

Figure 12. Reconstruction of soybean plant model under normal light.

Figure 13. Reconstruction of soybean plant model after brightness adjustment.
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5. Conclusions

In order to acquire data on plant growth in low illumination, we enhanced the 3D
reconstruction method often employed for crop trait perception for agricultural equipment.
We used the EnlightenGAN image enhancement technique to improve low-light photos
of soybean plants and highlight their structural characteristics. After picture detection
and alignment, we completed the reconstruction of the sparse and dense point clouds of
soybeans to actualize the perception of the current growth conditions of soybean plants
by agricultural machinery in low-illumination working contexts, such as at night. Using a
motion recovery structure method and a multi-view stereo approach, the reconstruction of
soybean sparse point clouds and dense point clouds was completed.

We evaluated the impacts of reconstructing soybeans under low illumination, under
normal illumination, and after augmentation. We then showed that our method—in
which soybean plants are enhanced when exposed to low illumination—performs better
at identifying and matching soybean features. Our approach demonstrates that soybean
plants under low illumination can be accurately recreated from models employing a high
level of refinement, making them nearly comparable to soybean plants grown under
normal lighting conditions. With the help of this technique, we hope to increase the range
of applications for crop reconstruction and enhance 3D reconstruction performance under
more difficult low-light conditions, allowing us to perceive plant growth even in dim
lighting. With this effort, the issue of crop reconstruction in low light has taken a stride in
the right direction.
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