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Abstract: Considering the high quality requirements related to agricultural production, the intelligent
prediction of sprinkler drip infiltration quality (SDIQ) of the moisture space distribution in soil fields
is an important issue in precision irrigation. The objective of this research is to adaptively predict
an optimal data set of SDIQ indices using a robust prediction algorithm called the regulated sparse
autoencoder–niche particle swarm optimization (RSAE-NPSO) system, so that the SDIQ indices of
various irrigated layers of loam, sandy, chernozem, saline–alkali, and clay soils can be predicted
and analyzed. This prediction procedure involves the following steps. First, the drip infiltration
effectiveness of the moisture on specific irrigated soil layers is measured. Second, a complete set of
SDIQ indices used for assessing the moisture space distribution is introduced. Third, an analytical
framework based on the RSAE-NPSO algorithm is established. Fourth, the intelligent prediction
of SDIQ indices using RSAE-NPSO computation is achieved. This research indicates that when
the irrigation parameters include the sprinkling pressure (Pw) at 224.8 KPa, irrigation duration
time (Id) at 2.68 h, flow discharge amount (Fq) at 1682.5 L/h, solar radiation (Sr) at 17.2 MJ/m2,
average wind speed (Aw) at 1.18 m/s, average air temperature (At) at 22.8 ◦C, and average air relative
humidity (Ah) at 72.8%, as well as the key variables of the irrigation environment, including the
soil bulk density (Sb) at 1.68 g/cm3, soil porosity (Sp) at 68.7%, organic carbon ratio (Oc) at 63.5%,
solute transportation coefficient (St) at 4.86 × 10−6, evapotranspiration rate (Ev) at 33.8 mm/h, soil
saturated hydraulic conductivity rate (Ss) at 4.82 cm/s, soil salinity concentration (Sc) at 0.46%,
saturated water content (Sw) at 0.36%, and wind direction Wd in the north–northwest direction
(error tolerance = ±5%, the same as follows), an optimal data set of SDIQ indices can be ensured,
as shown by the exponential entropy of the soil infiltration pressure (ESIP) at 566.58, probability of
moisture diffusivity (PMD) at 96.258, probabilistic density of infiltration effectiveness (PDIE) at 98.224,
modulus of surface radial runoff (MSRR) at 411.25, infiltration gradient vector (IGV) at [422.5,654.12],
and normalized infiltration probabilistic coefficient (NIPC) at 95.442. The quality inspection of the
SDIQ prediction process shows that a high agreement between the predicted and actual measured
SDIQ indices is achieved. RSAE-NPSO has extraordinary predictive capability and enables much
better performance than the other prediction methods in terms of accuracy, stability, and efficiency.
This novel prediction method can be used to ensure the infiltration uniformity of the moisture space
distribution in sprinkler drip irrigation. It facilitates productive SDIQ management for precision soil
irrigation and agricultural crop production.

Keywords: soil irrigation; sprinkler drip infiltration quality; prediction; moisture space distribution;
RSAE-NPSO
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1. Introduction

It is well known that sprinkler-irrigated agriculture plays crucial roles in global water
resource usage. Sprinkler drip infiltration, as an essential issue in agricultural irrigation,
is critical for soil tillage and crop cultivation. Prediction of the quality of the sprinkler
irrigation, known as the sprinkler drip infiltration quality (SDIQ), is highly necessary and
important in order to regulate the moisture space distribution, and can ensure that the
soil irrigation process is highly productive. Owing to the varied infiltration characteristics
and moisture contents in the typical soil types of Guangzhou city, such as loam, sandy,
chernozem, saline–alkali, and clay soils, the intelligent prediction of the SDIQ values
of these soil types is imperative to ensure high efficiency and good sprinkler irrigation
performance, facilitating the satisfactory maintenance of crop cultivation areas. However,
detailed investigations from a moisture space distribution perspective remain scarce.

According to the moisture infiltration principles for infield soil during the sprinkler
irrigation process, the SDIQ can be determined from the drip infiltration mechanism.
These infiltration phenomena cause cumulative infiltration when the final moisture content
reaches the critical limit, particularly in the optimized deep learning enhancement of the
infiltration effect prediction process [1,2]. By analyzing the drip infiltration mechanism,
many intelligent prediction models have been developed to describe the drip infiltration
effectiveness, accounting for the dispersion of the moisture distribution properties of dif-
ferent soil specimens. Certain novel examples include measuring the combined water
infiltration in cracked soils and data misalignment [3], multiple linear regression mod-
els [4], moisture variation simulations [5], and infiltration investigations of soil texture and
environmental conditions [6]. In view of the inhomogeneous properties of drip-irrigated
soils, Cui et al. [7] developed a multi-stage calculation method for a moisture infiltration
analysis in unsaturated soil spaces based on the stochastic evaluative theory. Concur-
rently, a complete wavelet cointegration prediction analysis for irrigation water infiltration
based on multi-parameter coupling was conducted to depict the statistical properties of
infiltration effectiveness [8,9]. Although these studies have provided a theoretical basis
for the infiltration quality prediction of sprinkler drip irrigation, a systematic analysis of
SDIQ characteristics not limited to traditional discussions based on pure experimental
investigations or direct empirical predictions has not yet been presented.

In contrast to the above-mentioned analyses, convolutional neural networks have
been frequently used to describe the drip infiltration process in clay loam soil [10], while
parametric modeling and infiltration quality prediction processes have also been conducted
for the applied irrigation depths at the farm level [11]. Yassin et al. [12] investigated
the influence of gene expression programming in furrow irrigation on the infiltration
effectiveness of crop irrigation. Moreover, furrow irrigation using artificial neural networks
and nitrate accumulation and leaching beneath groundwater-irrigated corn fields [13,14]
have been proposed as approaches to study the moisture space distribution during the drip
infiltration process. These mentioned approaches have also been introduced and applied
in modeling gypsifereous soil infiltration for the purpose of evaluating the whole-field
irrigation performance, simulating the soil water movement during canal irrigation, and
determining the accuracy of different water infiltration models [15–18]. In this domain, the
effects of sprinkler drip infiltration variability on irrigated soils can be accurately obtained,
and can be employed to verify the probabilistic quality model using machine learning for
sprinkler drip infiltration [19–21]. These studies have analyzed the characteristics of soil
irrigation and the prediction of infiltration quality, particularly considering the complex
effects of sprinkler drip irrigation, areas that deserve increased attention. The moisture
distribution of infield soil has also been investigated.

It is well known that conventional infiltration effect estimation is mainly based on
experimental data from standard soil specimens, and the complex effects of the moisture
space distribution characteristics are frequently ignored. Sengupta et al. [22] studied the
effects of machine-learning-based prediction models based on the deficit irrigation and
moisture distribution characteristics. Actual infiltration index evaluations should be based
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not only on the soil properties but also on the infiltration development theory under the
continuous sprinkler drip irrigation process [23]. Owing to the inherent limitations of tradi-
tional drip infiltration evaluation tests [24–27], it is necessary to analyze the complex effects
of moisture infiltration on the irrigation scheduling and field capacity of multi-layered
agronomic soils [28,29]. Moreover, regarding infiltration quality predictions, studies [30–35]
have reported the latest investigative results in terms of predictive optimization for esti-
mating on-the-spot infiltration quality. It is understandable that SDIQ predictions cover
the majority of soil irrigation performance results and present original suggestions for en-
hancing the drip infiltration productivity. However, this new topic of SDIQ determination
considering the complex influence of soil characteristics is still in a state of infancy, and its
advancement is the motivation of the current study on precision irrigation.

The objective of this research is to adaptively predict an optimal data set of SDIQ
indices using RSAE-NPSO, so that the SDIQ indices of various irrigated layers of loam,
sandy, chernozem, saline–alkali, and clay soils can be predicted and analyzed. Based on
this research, the infiltration quality of infield soils could be monitored and improved,
meaning the high quality requirements for sprinkler drip irrigation performance could
also be reached. Motivated by the need to adaptively predict the SDIQ of the moisture
space distribution, Section 2 presents the methods and materials, including the SDIQ
indices of the moisture space distribution, the working mechanism of the regularized
sparse autoencoder, and the working mechanism of the NPSO approach incorporated with
the RSAE. Thereafter, Section 3 concentrates on the results and discussion, including the
experiment preparation, experimental data measurements, intelligent prediction of SDIQ
indices, significance analysis using F-ratio tests, and calibration coefficients of prediction
error, which are all investigated in detail, contributing to the conclusions drawn in Section 4.

2. Methods and Materials
2.1. SDIQ Indices of Moisture Space Distribution

Since the accurate prediction of the SDIQ is one of the most critical and complex
problems in sprinkler drip irrigation, the inverse logarithm variable of the drip infiltration
probability for the moisture space distribution, ϕ, is a function of the infield drip-causing
infiltration coefficient τo, the maximum infiltration rate Zo, the exponential entropy of soil
infiltration pressure Nf

k (ESIP), and the soil volume subjected to infiltration effectiveness
∆V, which is expressed as follows:

ln
1

ϕ(Nk
f )
∼= τC

o Z−h
o Ne(Nk

f )∆V (1)

Above, C = 3, h = 7/3, and e = 9/8 for an instantaneous drip–soil contact and e = 10/9
for continuous contact of a sprinkling water drip into a soil field [20,21]. The drip-causing
infiltration index τo determines the durability of the moisture concentration, which ensures
a uniform distribution of water and infiltration effectiveness over the total area of the
irrigated soil field. The drip irrigation determining the infiltration quality can be calibrated
using the maximum orthogonal infiltration rate, σ. This is comparable to the depth of
the infiltrated soil level, so that the infiltration quality determines the influence of the
moisture content and soil infiltration on the survival probability. The mathematical equation
determining the SDIQ of infield soil is demonstrated as follows [22,23]:

ln
1

ϕxψ(Nk
f ; θ)

∼= σC
xψ(Nk

f ; θ)Z−h
xψ Ne(Nk

f ; θ)∆Vxψ (2)

Here, the moisture content subjected to various soil infiltrated layers, ∆Vxψ, could be
defined as the product of the elementary water/soil mass ratio measured in the targeted
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soil specimen, ∆ψ(Nf
k)·rbx, and the volume determined by the monitored field area, ∆x.

The drip infiltration depth at which the maximum infiltration rate occurs, Zxψ, is as follows:

∆Vxψ = ∆ψ(Nk
f )·rbx∆xZxψ (3)

Here, N is the infiltration depth subjected to infield soil. The infield infiltration de-
pends mainly on soil types and the moisture space distribution [24–26]. Traditional methods
require large amounts of parametric data and long-term experimental testing; this is particu-
larly difficult under actual irrigation conditions owing to the rapid advances in agricultural
crop production. Herein, the SDIQ of infield soil is proposed for the statistical analysis
of irrigation test results, including the exponential entropy of soil infiltration pressure
(ESIP), probabilistic density of infiltration effectiveness (PDIE), infiltration gradient vector
(IGV), modulus of surface radial runoff (MSRR), probability of moisture diffusivity (PMD),
and normalized infiltration probabilistic coefficient (NIPC). Therefore, the mathematical
correlation between the infiltration depth, Nf, and the drip infiltration quality index, P,
can be determined. The coefficients c0 and c1 characterize the moisture regression of the
infiltration quality of infield soil, providing a clear description of P depending on Nf, which
is denoted as the probability of moisture diffusivity (PMD) [28–30]:

lgN f = c0 + c1·arcsin
√

P

P(N f ) = sin2
[ lgN f−c0

c1

] (4)

The function of the normal distribution density for the infiltration effectiveness of
infield soil is as follows:

p
(

N f ; P, Σ
)
=

1√
(2π)n|Σ|

exp
(
−1

2

(
N f − P

)T
Σ−1

(
N f − P

))
(5)

Above, Nf is the random variable of the infiltration depth based on its normal distri-
bution, and the drip infiltration quality, P, is the mathematical expectation of Nf, which
is expressed as P = (Nfx, Nfy)T. Here, Σ is the covariance matrix of Nf [31]; therefore, the
computational function of the normal distribution covariance matrix is expressed as:

Σ =

 σ
(

N f x, N f x

)
σ
(

N f x, N f y

)
σ
(

N f y, N f x

)
σ
(

N f y, N f y

)  (6)

Above, Nfx = Nfy = P, σ(Nfx, Nfx) = σ(Nfy, Nfy) = σ2
2, σ(Nfx, Nfy) = σ(Nfy, Nfx) = 0. To

simplify the predictive analysis, a fast Fourier transformation (mathematical) is applied to
determine the spectrum of the probabilistic density of the drip infiltration depth, which
can be updated with the probabilistic frequency of the controlled parameter sampling. This
yields the following mathematical expression of infiltration quality [32,33]:

Sd(N f
k) =

M−1

∑
y=1

N−1

∑
x=1

s(N f x N f y)× exp(−j
2π

N
N f x N f yk), k = 0, . . . , N − 1 (7)

Above, Sd(Nf
k) denotes the probabilistic density of infiltration effectiveness (PDIE)

and s(NfxNfy) denotes the moisture infiltration gradient vector (IGV). Thus, the modulus of
surface radial runoff (MSRR) can be given as [34,35]:

S0(N f
k) =

M
2 −1
∑

y=1

N
2 −1
∑

x=1
s0(mn)× exp(−xy 2π

N mknk), k = 0, . . . , MN
2 − 1

S1(N f
k) =

M
2 −1
∑

y=1

N
2 −1
∑

x=1
s1(mn)× exp(−xy 2π

N mknk), k = 0, . . . , MN
2 − 1

(8)
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Above, the moisture distribution variables of drip infiltration exponents on different
soil layers can be represented by the bounds of the cumulative density function (CDF).
Let the CDF of spectrum variable k be Nf

k. For any k ∈ K, there is a closed interval
[Nf_lower

k, Nf_upper
k] that satisfies Nf_lower

k < Nf
k < Nf_upper

k. Nf_lower
k and Nf_upper

k stand for
the envelopes of the probability family of infiltration effectiveness. The drip infiltration
exponents of a soil field at time t can be characterized by [36]:

Sl(N f
k) = µ

∫ t

0
ϕ(N f

k; θ)dt + δBH(N f
k) (9)

Above, ϕ(Nf
k;θ) stands for the nonlinear drift term of the overall infiltration trend,

µ is the drift coefficient, θ is a vector with unknown parameters, δ is a constant moisture
diffusion coefficient, and BH(Nf

k) is fBm. A generalized drip infiltration model describing
the moisture space distribution can be obtained by replacing µ and δ by the time functions
ϕ(x) and ω(x), respectively. Thereafter, the interference term BH(Nf

k) is replaced by ψ(x),
meaning Equation (9) can be rewritten as [37,38]:

Sl(N f
k) = φ(N f

k)
∫ t

0
ϕ(N f

k; θ)dt + ω(N f
k)ψ(N f

k) (10)

This investigation considers the drip infiltration process as a random interference term
with regulated drip infiltration properties. This means that the general expression of the
drip infiltration model is as follows:

Sl(N f
k) = φ(N f

k)
∫ t

0
ϕ(N f

k; θ)dt + ω(N f
k)Sd(N f

k) (11)

Simplifying this drip infiltration model yields the following form:

Sl(N f
k) = µϕ(N f

k) + δSd(N f
k) (12)

Above, µ and δ are the drift and diffusion parameters of the drip infiltration model,
respectively. Here, ϕ(Nf

t) is a time-dependent function used to describe the overall trend of
the probability density of the moisture content diffusivity, equivalent to the normalized
infiltration probabilistic coefficient Nfx

i
qua (NIPC), and which can be described by the

linear, power rate, and exponential drift functions [37,38]. Based on this arrangement, the
mathematical properties of SDIQ can be described.

2.2. Working Mechanism of Regularized Sparse Autoencoder

To accurately predict the SDIQ indices of sprinkler drip irrigation, two fundamental
problems need to be solved before developing the prediction algorithm: (1) the irrigation
parameters should be determined accurately and robustly to establish the objective SDIQ
function; (2) the influence of the irrigation performance should be analyzed to accelerate
the convergence velocity and calculation accuracy of the prediction process. Therefore, the
concept of RSAE-NPSO is proposed based on the unique integration of a regularized sparse
autoencoder (RSAE) and niche particle swarm optimization (NPSO), and is employed
for the intelligent prediction of SDIQ indices. This integrated system first uses the RSAE
network to extract the drip infiltration properties of infield soil, and subsequently the NPSO
provides a high-efficiency tool to predict the SDIQ indices for the mechanism investigation
and performance promotion of sprinkler drip irrigation.

The RSAE is an excellent autoencoder that can be used to determine the SDIQ indices,
according to the measured raw data of irrigation performance rates, since it incorporates
index extraction and process quantification in a general-purpose prediction system [38,39].
Both the supervised and unsupervised irrigation data are combined in the RSAE framework
to improve the regression results, based on the functional combination of the clustering and
reasoning algorithms. The clustering algorithm is applied to identify the clusters of test
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samples with similar mathematical characteristics. Subsequently, a reasoning algorithm is
developed for each of the previously identified clusters.

The SDIQ indices are denoted as unlabeled data
{

Id

[(
N f x

k, N f y
k
)

; µ, σ2
]}Mk ,Nk

f x=1, f y=1
.

The RSAE–decoder uses a mapping function f to calculate the mathematical properties of
SDIQ indices, as denoted by HMk ,Nk

RSAE , from Id[(Nfx
k,Nfy

k);µ,σ2] [40,41].

HMk ,Nk
RSAE = f (Id

[
(N f x

k, N f y
k); µ, σ2

]
) = σr(WRSAE Id

[
(N f x

k, N f y
k); µ, σ2

]
) (13)

Above, WRSAE denotes the weight matrix of RSAE. Here, σr(z) is a rectified linear
unit employed as an activation function in the RSAE–decoder, which guarantees more
efficient training during network prediction than other traditional functions. Thus, the

RSAE–decoder reconstructs
{
_
I d

[
(N f x

k, N f x
k); µ, σ2

]}
using a mapping function gRSAE:

_
I d

[
(N f x

k, N f y
k); µ, σ2

]
= gRSAE(HMk ,Nk

RSAE ) = WRSAE2HMk ,Nk
RSAE (14)

In order to learn various drip infiltration indices, the cost function of the RSAE is
proposed as:

min
W

1
2Mk Nk

∫ Mk
1

∫ Nk
1

(∣∣∣∣_I d(N f x
k, N f y

k)− Id(N f x
k, N f y

k)

∣∣∣∣2
)

dxkdyk+

λxkyk

∫ Mk
1

∫ Nk
1

(∣∣∣HMk Nk
RSAE

∣∣∣)dxkdyk

s.t. WRSAE1·WRSAE2 = E

(15)

Above, WRSAE1 or WRSAE2 denotes the weight matrix of the RSAE, ensuring that
its computational performance is maintained in a highly efficient state. Here, λxkyk de-
notes the regular coefficient of the RSAE corresponding to the meshed grid coordinated
by (Nfx

k, Nfy
k). As WRSAE1 and WRSAE2 are replaced by W and WT, the gradient of JRSAE

with respect to W is calculated as follows:

∇J = ∂JRSAE
∂W =

[(
1

Mk Nk
W·D + λxk ,yk ·sgn

)
·σr′
(

W·
(

N f x
k, N f y

k
))](

N f x
k, N f y

k
)T

+ 1
Mk Nk

σr

(
W·
(

N f x
k, N f y

k
))
× DT

(16)

Above, D = WT
σr(W·(Nfx

k,Nfy
k))− (Nfx

k,Nfy
k), sgn denotes the sign function of σr(W·(Nfx

k,
Nfy

k)), σr
′ denotes the derivative function of the rectified linear unit, σr, and (Nfx

k, Nfy
k)

denotes the matrix form of (Nfx
k) and (Nfy

k). The reiterative update process of W(i+1,j+1) can
be written as:

W(i+1,j+1) = W(i,j) − η(i,j)H(i,j) J(i,j) (17)

Above, i and j are the ith and jth intervals of the update process of WRSAE1 and WRSAE2,
respectively; H(i,j) denotes the inverse of the Hessian matrix [42,43], and η denotes the
step size of the SDIQ update process. The RSAE is trained an adequate number of times,
allowing the drip infiltration properties of the soil field to be accurately calculated and
inputted into the NPSO algorithm for the highly efficient calculation of SDIQ indices,
making NPSO an universal and reliable prediction network for infiltration qualities [44,45].

Figure 1 illustrates the operational levels and data transmission in the architecture of
the RSAE. From this figure, it can be learned that the RSAE ranges across the measurement,
calculation, and prediction levels. As the drip infiltration process is described by the SDIQ
monitoring tools, the real-time soil infiltration data collected by the soil moisture gauge,
data grating system, and computing platform are transferred into a complete module
in charge of the infiltration measurement, the regularized autoencoder, the data input
interface, and condition monitoring. As all these function modules are located at the
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calculation level, they comprise a constructive data preparation platform for the predictive
workstation interface, where the feature calculation of SDIQ is implemented. Then, the
resultant data set can be inputted into enclosed data processing circles, in which the
statistical modeling, calculation error compensation, infiltration prediction, and condition
assessment are implemented in sequence. All of these data transmission and information
processes happen around the center of the intelligent prediction system in a bi-directional
way. The novel architecture design of the RSAE gives us high flexibility in the SDIQ data
processing mechanism when the sprinkler drip infiltration is monitored instantaneously.
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Figure 1. The operational levels and data transmission in the architecture of the RSAE.

2.3. Working Mechanism of NPSO Incorporated with RSAE

In this research, we propose an improved NPSO search algorithm based on the niche
group collaboration to complete the prediction of the ESIP, PDIE, IGV, MSRR, PMD, and
NIPC. The technological advances of the NPSO system provide new tools for the optimized
prediction of the drip infiltration quality. For the purpose of SDIQ index prediction, the
solutions in the NPSO search space are called the objective particles of computational
variables. All of these objective particles have their own position vectors, velocity vectors,
and fitness values, which are determined by the optimized calculation function. This
function initializes an appropriate group of random particles denoting the given neuron
variables; thus, the global search solution of the SDIQ index is chosen by calculating the
optimized index values in several iterations. In this computational architecture, each
network neuron on a specific layer is connected to all participant neurons on the next
network layer via direct data links that consist of different network weights, meaning the
structure of NPSO can be established.

To construct a highly efficient RSAE-NPSO system, first a training process is conducted
to adapt this computational network to the complex probabilistic conditions of moisture
infiltration. This is achieved by adjusting the related neuron weights when different input–
output data pairs are employed. It is well known that the drip infiltration specifications
determine the numbers of RSAE network neurons in the input and output layers; the
number of hidden layers and their topological sizes are determined using the testing
set of NPSO trial procedures. Moreover, the objective data clustering of SDIQ indices is
achieved using the multi-layer state perceptrons for the purpose of infiltration quality



Agriculture 2022, 12, 691 8 of 32

comparisons. In this comprehensive SDIQ prediction process, a ten-fold cross-validation
scheme is followed to implement exhaustive calculation tests of data regression techniques
for SDIQ indices [46]. Based on this architectural design, Table 1 summarizes the parametric
arrangements as the objective function (quasi-Monte Carlo simulation) and penalty function
being used.

Table 1. Parametric arrangements of the RSAE-NPSO system.

Condition Initial Positions Initial Velocities pBesti
k Level

Initial particle



N f x
k=1
i=1 =

[
∆αN f x , ∆N f x , ∆N f y , ∆N f z

]T

N f x
k=1
i=2 = rand·

[
∆αN f x , ∆N f x , ∆N f y , ∆N f z

]T

...
N f x

k=1
i=np = rand·

[
∆αN f x , ∆N f x , ∆N f y , ∆N f z

]T



vk=1
i=1 =

[
v∆α f x , v∆ f x , v∆ f y , v∆ f z

]T

vk=1
i=2 = rand·

[
v∆α f x , v∆ f x , v∆ f y , v∆ f z

]T

...
vk=1

i=np = rand·
[
v∆α f x , v∆ f x , v∆ f y , v∆ f z

]T

pBestk
3,i =

min(pBestk
i−1, pBestk

i , pBestk
3,i+1)

Level 1
(Measurement

Level)

fobjki(Xi)

N f x
k
i=1 ⇒ f k,i=1

obj ⇒
{

pBestk
i=1 = min( f 1,i=1

obj , f 2,i=1
obj , f 3,i=1

obj , . . . , f k,i=1
obj )

pBestk
3,i=1 = min(pBestk

i=np , pBestk
i=1, pBestk

i=2)

N f x
k
i=2 ⇒ f k,i=2

obj ⇒
{

pBestk
i=2 = min( f 1,i=2

obj , f 2,i=2
obj , f 3,i=2

obj , . . . , f k,i=2
obj )

pBestk
3,i=2 = min(pBestk

i=1, pBestk
i=2, pBestk

i=3)

N f x
k
i=3 ⇒ f k,i=3

obj ⇒
{

pBestk
i=3 = min( f 1,i=3

obj , f 2,i=3
obj , f 3,i=3

obj , . . . , f k,i=3
obj )

pBestk
3,i=2 = min(pBestk

i=2, pBestk
i=3, pBestk

i=4)

...

N f x
k
i=np ⇒ f k,i=np

obj ⇒
{

pBestk
i=np = min( f 1,i=np

obj , f 2,i=np
obj , f 3,i=np

obj , . . . , f k,i=np
obj )

pBestk
3,i=np = min(pBestk

i=np−1, pBestk
i=np , pBestk

i=np+1)

vk+1
i = ωvk

i + c1r1(pbesti − xk
i )

+c2r2(gbesti − xk
i )

N f x
k+1
i = N f x

k
i + vk+1

i

Nk
f xi =

(
∆αNk

f xi , ∆Nk
f xi , ∆Nk

f yi , ∆Nk
f zi

)T Level 2
(Calculation

Level)

Objective
function

(Quasi-Monte
Carlo

simulation)

fobj = min



ε1( fγo(N f x
k

i)− γo)
2
+ ε2( fϕ(N f x

k
i)− ϕ)

2
+ ε3( fr(N f x

k
i)− rc)

2

⇓
Parametric Fitness

+

ε4
ncore
∑

jj=1
fdist(jj) + ε5

ncore
∑

jj=ncore+1
fdist(jj)

⇓
Pro f ile Fitness

+
u(N f x

k
i)

⇓
Constraint Condition


Above, ε1, ε2, ε3, ε4, and ε5 are the weight coefficients meeting different irrigation accuracy requirement of γ0, rc, is rake profile,

and ϕ is rear profile.

Level 3
(Prediction

level)

Penalty
function:

→
Sj+1

i =
→
Sj

i + c1g1(Slb
i − Sj

i) + c2g2(Sgb
i − Sj

i); xj
i+1 = xj

i + Sj
i ;

Si
k+1 = ω·Si

k+1 + λ1·rand·(pBestk
i − N f x

k
i ) + λ2·rand·(gBestk − N f x

k
i ); N f x i

k+1 = N f x i
k+1 + Si

k

Nfx
i is the inertia weight factor. c1 and c2 denote the local learning factor and the global learning factor, respectively. r1 and r2

are the random numbers in the range of (0, 1). vk
i and xk

i denote the position and velocity vector of particle i at the kth

iteration, respectively.

Note: Si
k is the velocity of particle Nfx

i after kth iterations; Nfxi
k is the position of particle Nfx

i after kth iterations;
λ1 and λ2 are the accelerating constants; rand is a random value in the range of [0, 1]; pBesti

k is the best position of
particle Nfx

i after kth iterations; gBestk denotes the best positions of all particles after kth iterations; ω is an inertia
weight in the range of (0.8, 1.2).

In this table, N f Xi
T = (N f xi

1, N f xi
2, . . . , N f xi

T) denotes the solution space vector
of the SDIQ index group, which shows that the ith parameter group can be used as
the optimal self-adaptive searching path, while N f X gb

T = (N f xgb
1, N f xgb

2, . . . , N f xgb
T)

stands for the solution space vector of the globally optimal parameter group. Here,
N f Xlb

T = (N f x lb
1, N f x lb

2, . . . , N f x lb
T) denotes the solution space vector of the locally-

optimal parameter group, and Si
t denotes the self-adaptive optimal search direction for the

parameter group:

→
Si

t = ci

→
si

t ⊕ c2(N f xgb
t − N f xgb

t−1)⊕ (N f x lb
t − N f x lb

t−1) (18)

Here, si
t ∈ Si

t; thus,

→
Si

t =


→
vi

t 0 < S ≤ c1s1
c1s1+c2s2+c3s3

N f xgb
t − N f xgb

t−1 c1s1
c1s1+c2s2+c3s3

< S ≤ c1s1+c2s2
c1s1+c2s2+c3s3

N f x lb
t − N f x lb

t−1 c1r1+c2r2
c1s1+c2s2+c3s3

< S ≤ 1

(19)
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Therefore, the solution space for the parameter group at the next time point can be
expressed as N f Xi

t+1 = N f Xi
t ⊕ Vi

t, where N f Xi
t+1 = (N f xi

1, N f xi
2, . . . , N f xi

t, N f xi
t+1, ).

The solution space coordinates of every SDIQ index group can be updated constantly until
Si

T ≤ ξ, where ξ denotes the convergence range of the SDIQ calculation error.
Here, the logical architecture for the data collection and processing control in sprinkler

drip infiltration provides a highly efficient data processing platform for the RSAE-NPSO
prediction system composed of a data sensor, database, computation workstation, and
process monitoring module. It could be seen that when the raw data for soil moisture
infiltration are measured, the collected data set sourced from the irrigation rate and infiltra-
tion speed must be processed in the data sensor module located at the measurement level,
which is followed by the data pre-processing, SDIQ index extraction, and RSAE function
selection stages. The predictive computation process includes data filtering, statistical
analysis, and regulated classification at the calculation level. When the moisture infiltration
analysis is performed, the processed data for the ESIP, PDIE, IGV, MSRR, PMD, and NIPC
are transmitted to the computation workstation for the predictive calculation, and then to
the process monitoring unit for real-time network coordination at the prediction level, so
that the computed results transmitted and stored in the database can be employed freely
for the RSAE-NPSO statistical prediction.

To verify the established NPSO network, the SDIQ indices should be validated. During
the process of SDIQ index prediction, a few samples of experimental data and random
prediction errors are considered by using the bootstrap and probability box methods. Thus,
the global optimum can be determined as gBest = min(pBestk=nk

3,i=1, pBestk=nk
3,i=2, pBestk=nk

3,i=3,

. . . , pBestk=nk
3,i=nk

), and the positions and velocities of every particle are updated according to
their individual and adjacent optimums as follows:

vk+1
i = ω·vk

i + λ1·rand(pBestk
i − N f x

k
i ) + λ2·rand(pBestk

3,i − N f x
k
i )

N f x
k+1
i = N f x

k
i + vk

i ; ω(k) = ωmax − (ωmax −ωmin)·k/nk
(20)

Based on the logical architecture and computational data flow of the RSAE-NPSO
prediction system, the data hub of the SDIQ indices provides a monitored data set for
ESIP, PDIE, IGV, MSRR, PMD, and NIPC. Therefore, the data processing, decision-making,
information collection, and integrative control during SDIQ index prediction can be imple-
mented freely. It is also noteworthy to point out that such key elements of soil moisture
measurements as loop control, decision-making support, data processing, data acquisition,
and communication between the measurement sensors and prediction modules are all
interconnected to each other through the bi-directional data channel. This unique network
architecture ensures high computational accuracy and flexible environmental adaption
during SDIQ index prediction in practice.

3. Results and Discussion
3.1. Experiment Preparation

A set of sprinkler drip irrigation tests were carried out at the campus field of Guangzhou
University (23◦03′1.23′′ N, 113◦24′3.92′′ E), from 1 July 2020 to 30 June in 2021 and from
08:00 to 18:00 every day. The experimental field has several typical soil types from the
Guangzhou city area, such as loam, sandy, chernozem, saline–alkali, and clay soils, which
were tested for their unique physical, chemical, and biological properties, as detailed in
Table 2. Guangzhou has a subtropical climate where drought is rarely seen, with a mean
annual temperature range of 21.5–22.6 ◦C, precipitation range of 1623.6–899.8 mm, and
evapotranspiration rate of 1603.5 mm, according to the past 60 years of weather records
referenced from the meteorological agency of Guangzhou metropolitan region: Guangzhou
weather records from January 1960 to December 2020. Available online: http://gd.cma.gov.
cn/gzsqxj/ and https://data.gz.gov.cn/odweb/catalog/catalogDetail.htm?cata_id=98083
(accessed on 20 June 2021). Zoysia matrella was selected as the irrigated plant due to its

http://gd.cma.gov.cn/gzsqxj/
http://gd.cma.gov.cn/gzsqxj/
https://data.gz.gov.cn/odweb/catalog/catalogDetail.htm?cata_id=98083
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robust adaptation to climate and external environments, making this test ideal for SDIQ
prediction and growth control in objective soil field.

Table 2. The physical properties of tested soil types.

Soil Type

The Physical and Chemical Properties (Error Tolerance = ±5%)

pH Value
Electrical

Conductivity
(ECe) (dS/m)

Average Volumetric
Moisture Content (%)

Wilting
Point (%)

Organic
Content
(g/kg)

Nitrogen
Content
(mg/kg)

Mean Bulk
Density
(g/cm3)

loam 6.624 0.143 40.44 28.93 22.601 1.68 1.354
sandy 6.672 0.152 42.43 29.94 24.113 1.72 1.441

Chernozem 6.782 0.182 41.46 30.43 23.841 1.58 1.389
Saline–alkali 6.651 0.167 39.77 31.21 22.467 1.64 1.522

Clay 6.722 0.149 38.98 29.98 23.903 1.66 1.55

In order to achieve the adaptive prediction of SDIQ indices, the sprinkler drip irrigation
platform was composed of the 350HW-8S fluid-intensifier pumps (Yancheng Harriston
Int’l Co., Ltd., Yancheng, China), the revolving HX-3301-1 sprinkler nozzles (Taizhou
Hengxin Valve Tech., Taizhou, China), the NPS2 CLASS150 pressure valves (Sichuan Saier
Valve Mfg. Co., Ltd., Zigong, China), the PVC pressure pipes (Jiangsu Haiwei Plastics
Industry Technology Co., Ltd., Jiangyin, China), the BONAD RS485 soil moisture sensors
(BND-MS10) (Shenzhen Bonad Precision Instrument Co., Ltd., Shenzhen, China), and other
components, including a solar cell panel, charging controller, storage battery, inverter,
electric control box, circuit controller, and strainer.

For the accurate prediction of infiltration rates, clods of soil crust with a thickness of
10 cm on different infiltrated-depth layers were sampled out after each test. The average dis-
tribution of water precipitation was measured over a rectangular area measuring 5 × 5 m2

under calm conditions. Environmental parameters such as the average air temperature, av-
erage relative humidity, and solar radiation were collected every 10 min. Moreover, the local
air temperature was measured using an HW-F7 thermometer (LD Products Inc. Long Beach
City, CA, USA), the air relative humidity was determined using Testo 610 hygrometers
(Testo Pty Ltd., Croydon South, Victoria, Australia), the solar radiation value obtained
from an LI-1500 irradiance radiometer (HUATEC., Beijing, China), and the wind speed
was measured using RK100-02 RS485 wind speed measurement units (RIKA Sensor Inc.,
Changsha, China). The measurements of soil moisture evaporation were carried out using
40 sets of microlysimeters, which were equally distributed throughout whole field area. A
moderate flow pressure of 320 kPa was applied to ensure the infiltrated soil depths were
measured easily. A pair of sprinkler heads with a vertical height of 80 cm were placed at
the linear interval of 2.5 m to provide a uniformly distributed soil wetting pattern and to
guarantee a wetting diameter overlap of 55–60% at all times.

3.2. Experimental Data Measuring

A highly efficient and precise monitoring procedure of the sprinkler drip irrigation
tests could be conducted when the following requirements were met: sufficient number of
irrigation cycles, sufficient amount of water to achieve complete coverage of the irrigated
area, and adequate moisture concentration to achieve the drip infiltration effect, which
can be easily measured and clearly differentiated from other types of noise interference.
A total of 100 sets of soil fields were prepared to undergo sprinkler drip irrigation, and
10 grid positions in each set of irrigated fields were targeted and monitored for the data
measurement of infield soil, while the soil moisture content or drip infiltration rate was
checked once every 10 min. The least-squares interpolation method was applied to calcu-
late the SDIQ indices at any coordinate position between two monitored points that could
not be measured by the soil moisture sensor directly [47,48]. The following influential
irrigation and environmental parameters were shown: sprinkling pressure (Pw/KPa), irri-
gation duration time (Id/h), flow discharge amount (Fq/L/h), solar radiation (Sr/MJ/m2),
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average wind speed (Aw/m/s), average air temperature (At/◦C), average air relative hu-
midity (Ah/%), soil bulk density (Sb/g/cm3), soil porosity (Sp/%), organic carbon ratio
(Oc/%), solute transportation coefficient (St/×10−6), evapotranspiration rate (Ev/mm/h),
soil saturated hydraulic conductivity rate (Ss/cm/s), soil salinity concentration (Sc/%),
saturated water content (Sw/%), and wind direction (Wd) [49]. Because the parametric
data in Table 3 conformed to the stochastic normal distribution of experimental variables,
their equalized intervals were applied to cover 97% of all possible values, with the lowest
value denoted as “1” and the highest as “10”. Based on these equalized intervals, other
parametric grouping stages were achieved sequentially. Therefore, the value ranges can be
defined to ensure the high repeatability of the testing conditions, providing accurate data
ranges and facilitating subsequent quantified computation in RSAE-NPSO. Tables 4–8 list
the representative parametric sets of sprinkler drip irrigation data for loam soil (A), sandy
soil (B), chernozem soil (C), saline–alkali soil (D), and clay soil (E), based on orthogonal test
arrangements. The moisture content on each soil layer was obtained from 100 × 10 = 1000
grid positions, covering 94–96% of the overall irrigated zone.

Table 3. Partitioned levels of sprinkler drip irrigation parameters.

Factor
Level

Pw/
KPa

Id/
h

Fq/
L/h

Sr/
MJ/m2

Aw/
m/s

At/
◦C Ah/% Sb/

g/cm3 Sp/% Oc/% St/
×10−6

Ev/
mm/h

Ss/
cm/s

Sc/
% Sw/% Wd

1 210 2.1 1100 11 0.1 10 60 1.0 30 40 2.0 20 1.0 0.23 30 Northeast
2 220 2.2 1200 12 0.3 12 62 1.1 35 43 2.6 22 1.5 0.26 35 Southeast
3 230 2.3 1300 13 0.5 14 64 1.2 40 46 3.2 24 2.0 0.29 40 West
4 240 2.4 1400 14 0.7 16 66 1.3 45 49 3.8 26 2.5 0.32 45 Northwest
5 250 2.5 1500 15 0.9 18 68 1.4 50 52 4.4 28 3.0 0.35 50 North
6 260 2.6 1600 16 1.1 20 70 1.5 55 55 5.0 30 3.5 0.38 55 South
7 270 2.7 1700 17 1.3 22 72 1.6 60 58 5.6 32 4.0 0.44 60 Southwest
8 280 2.8 1800 18 1.5 24 74 1.7 65 61 6.2 34 4.5 0.47 65 East
9 290 2.9 1900 19 1.7 26 76 1.8 70 64 6.8 36 5.0 0.50 70 North/Northwest
10 300 3.0 2000 20 1.9 28 78 1.9 75 67 7.4 38 5.5 0.53 75 Southwest/West

Table 4. Orthogonal test parametric arrangement for sprinkler drip irrigation in loam soil.

Test Pw Id Fq Sr Aw At Ah Sb Sp Oc St Ev Ss Sc Sw Wd

A_1 5 4 8 8 6 6 8 9 8 9 8 9 8 8 8 8
A_2 3 2 2 5 2 6 7 8 9 6 9 6 8 9 9 5
A_3 2 8 5 2 3 3 5 9 5 5 6 8 5 5 5 4
A_4 1 6 6 3 5 2 4 6 2 2 5 5 4 2 1 8
A_5 8 2 5 6 4 5 2 3 1 10 8 2 2 3 2 9

Table 5. Orthogonal test parametric arrangement for sprinkler drip irrigation in sandy soil.

Test Pw Id Fq Sr Aw At Ah Sb Sp Oc St Ev Ss Sc Sw Wd

B_1 7 7 8 8 8 8 8 9 8 8 8 10 8 8 8 8
B_2 5 9 5 5 5 6 5 6 5 8 5 8 5 6 9 9
B_3 8 5 2 2 6 2 6 5 9 5 9 5 2 5 5 5
B_4 7 8 6 6 4 5 1 8 5 7 6 6 6 2 1 4
B_5 4 5 9 2 2 3 2 9 4 7 2 1 9 4 6 6

Table 6. Orthogonal test parametric arrangement for sprinkler drip irrigation in chernozem soil.

Test Pw Id Fq Sr Aw At Ah Sb Sp Oc St Ev Ss Sc Sw Wd

C_1 5 8 8 8 8 9 10 8 8 8 8 8 9 8 8 8
C_2 5 5 7 9 4 5 5 9 9 5 9 5 9 5 9 6
C_3 6 6 5 5 7 8 6 5 5 6 5 4 5 6 5 5
C_4 2 2 4 6 5 2 8 6 6 2 6 7 8 2 6 4
C_5 5 4 2 2 2 4 2 2 6 4 2 2 4 4 2 7
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Table 7. Orthogonal test parametric arrangement for sprinkler drip irrigation in saline–alkali soil.

Test Pw Id Fq Sr Aw At Ah Sb Sp Oc St Ev Ss Sc Sw Wd

D_1 8 6 8 8 8 8 8 8 8 2 8 9 8 8 8 8
D_2 8 6 9 5 9 9 6 2 9 5 2 6 5 5 9 5
D_3 9 9 5 4 8 6 5 5 5 1 5 9 6 6 5 6
D_4 5 5 6 2 5 5 9 6 6 4 1 8 2 2 6 3
D_5 6 8 2 1 7 3 2 2 3 10 4 5 3 3 3 2

Table 8. Orthogonal test parametric arrangement for sprinkler drip irrigation in clay soil.

Test Pw Id Fq Sr Aw At Ah Sb Sp Oc St Ev Ss Sc Sw Wd

E_1 8 9 8 9 8 8 8 1 8 8 1 9 8 8 8 8
E_2 5 6 5 9 7 5 9 10 8 6 2 6 9 9 9 9
E_3 6 9 6 5 4 4 5 8 6 9 1 8 5 5 5 5
E_4 2 5 3 6 5 7 6 9 5 2 4 5 6 6 6 6
E_5 1 3 2 3 2 2 3 9 8 5 5 3 3 4 3 3

Although the SDIQ indices were influenced by numerous irrigation parameters and
environmental variables, only the major and controllable ones were considered. Here,
Pw and Id were determined using the BF1000-3EB-X full-bridge moisture content gauges
buried on each soil subsurface layer. Fq, Sr, and Aw were obtained by using a DN6-DN300
metering system and calibrated before each test. At and Ah were monitored using a Coriolis
mass flow meter and transmitted online via signal acquisition using a quadratic encoder.
Concurrently, Sb, Sp, Oc, St, Ev, Ss, Sc, Sw, and Wd were determined by employing the
prearranged parametric data [50]. It is worth noting that a computer-controlled data
acquisition system was applied to collect the irrigation data [51–54].

When the sprinkler drip irrigation test began, the measured vertical depths of infil-
trated soil ranged from 0 m to 0.8 m, labeled as layers A to E, as shown in Figure 2, offering
effective observations of the moisture space distribution. Based on the error differences be-
tween the measured and predicted data, RSAE-NPSO defined the adjustment coefficients of
network weights, and subsequently triggered a set of predictive calculations. Furthermore,
one decision-making threshold in the prediction-acting unit, based on the least square error
between the irrigation parameters and the SDIQ indices, was employed; thus, the best SDIQ
indices were determined to minimize the total prediction error. Based on these network
optimization steps, the effective and ineffective influential variables were differentiated.
The latter were redirected to the next cycle of coefficient adjustment until accurate neuron
weight selection was ensured to allow process stabilization and calculation convergence for
accurate SDIQ prediction.

3.3. Intelligent Prediction of SDIQ Indices

As an effective data analysis and processing algorithm, RSAE-NPSO offers a powerful
tool to solve the problem of irrigation infiltration calibration with broad SDIQ prospects. It
uses on-the-spot drip infiltration information to make objective classification, regression
estimation, pattern recognition, trend prediction, data clustering, trend analysis, and causal
analysis decisions. Based on this standard initialization, its iteration number is set as 16,500,
the reporting interval is set as 0.15 s, the mean square error is 0.200, and the update interval
is 0.15 s. The inputs (irrigation parameters and key environmental variables) and outputs
(SDIQ indices) form logical predictive correlations. Figure 2 presents the obtained kernel
density diagram describing the drip infiltration properties, as labeled from Test A_1 to
Test E_10. In this figure, the key distributive areas with high SDIQ values are identified
by white circles, while the drip infiltration indices on different soil layers show upward
and downward trends, respectively. Moreover, this figure suggests that the drip infiltration
coverage on a given irrigated area maintains a close correlation with the probability density
of SDIQ indices. For instance, when the rate of drip infiltration coverage ranges from
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68% to 84%, the probabilistic distribution density of the PDIE is in the range of (80%,
90%), and when the former influential factor ranges from 91% to 95%, the latter resultant
variable is in the range of (85%, 98%). Figure 3 gives us a detailed data illustration of the
drip infiltration phenomena considering the moisture space distribution on layers A–E,
with the distribution highlighted in high-contrast color areas and the white circles in the
data-constructed pictures denoting the high-concentration areas of moisture distribution.
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Figure 3. Data illustration of drip infiltration considering the moisture space distribution labeled as
sampled layer A.

Here, 25% of the experimental cases were used for RSAE-NPSO training, while the
other cases were used for testing to reduce the unexpected signal disturbances caused from
the test environment and data measurements. Figures 4–8 present the loam soil specimen
and its SDIQ indices on layers A–E sequentially. Similarly, Figures 9–14 demonstrate the
actual and predicted SDIQ values of chernozem soil on tests A_1 to E_10. All of these
index values were normalized into the data range of (0–100) for a better understanding and
easy comparison. In Table 3, it can be seen that the values were in high agreement under
different testing conditions.
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Figure 4. The loam soil specimen and its corresponding SDIQ index values obtained from the
sampled layer A.



Agriculture 2022, 12, 691 15 of 32Agriculture 2022, 12, x FOR PEER REVIEW 17 of 35 
 

 

 

Figure 5. The loam soil specimen and its corresponding SDIQ index values obtained from the 

sampled layer B. 

 

Figure 6. The loam soil specimen and its corresponding SDIQ index values obtained from the 

sampled layer C. 

 

Figure 7. The loam soil specimen and its corresponding SDIQ index values obtained from the 

sampled layer D. 

14.55

16.58 29.85
68.75

75.48

88.96

0

20

40

60

80

100

120

M
ea

n
 v

al
u

es
 o

f 
IS

D
IQ

 in
d

ex

ESIP(×10)     PMD     PDIE     MSRR(×10)   IGV(×10)  NIPC The sampled loam soil 

85.22

61.47

35.89

28.64

70.25 69.48

0

10

20

30

40

50

60

70

80

90

100

M
ea

n
 v

al
u

es
 o

f 
IS

D
IQ

 in
d

ex

ESIP(×10)     PMD    PDIE     MSRR(×10)    IGV(×10)  NIPC The sampled loam soil 

77.25

95.84

65.11

58.42

39.52

28.77

0

20

40

60

80

100

120

M
ea

n
 v

al
u

es
 o

f 
IS

D
IQ

 in
d

ex

ESIP(×10)     PMD      PDIE    MSRR(×10)   IGV(×10)  NIPC The sampled loam soil 

Figure 5. The loam soil specimen and its corresponding SDIQ index values obtained from the
sampled layer B.

Agriculture 2022, 12, x FOR PEER REVIEW 17 of 35 
 

 

 

Figure 5. The loam soil specimen and its corresponding SDIQ index values obtained from the 

sampled layer B. 

 

Figure 6. The loam soil specimen and its corresponding SDIQ index values obtained from the 

sampled layer C. 

 

Figure 7. The loam soil specimen and its corresponding SDIQ index values obtained from the 

sampled layer D. 

14.55

16.58 29.85
68.75

75.48

88.96

0

20

40

60

80

100

120

M
ea

n
 v

al
u

es
 o

f 
IS

D
IQ

 in
d

ex

ESIP(×10)     PMD     PDIE     MSRR(×10)   IGV(×10)  NIPC The sampled loam soil 

85.22

61.47

35.89

28.64

70.25 69.48

0

10

20

30

40

50

60

70

80

90

100

M
ea

n
 v

al
u

es
 o

f 
IS

D
IQ

 in
d

ex

ESIP(×10)     PMD    PDIE     MSRR(×10)    IGV(×10)  NIPC The sampled loam soil 

77.25

95.84

65.11

58.42

39.52

28.77

0

20

40

60

80

100

120

M
ea

n
 v

al
u

es
 o

f 
IS

D
IQ

 in
d

ex

ESIP(×10)     PMD      PDIE    MSRR(×10)   IGV(×10)  NIPC The sampled loam soil 

Figure 6. The loam soil specimen and its corresponding SDIQ index values obtained from the
sampled layer C.
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Figure 7. The loam soil specimen and its corresponding SDIQ index values obtained from the
sampled layer D.
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Figure 8. The loam soil specimen and its corresponding SDIQ index values obtained from the
sampled layer E.
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Figure 9. Demonstration of the actual and predicted ESIP values of chernozem soil on tests A_1 to
E_10, implemented on layers A–E, respectively.

The computational neuron numbers of the RSAE have an important influence on
the prediction accuracy of SDIQ indices. To improve the reasoning performance, the
NPSO algorithm was applied to optimize the number of neurons on each RSAE layer,
thanks to its high precision, short analysis time, and ease of implementation. Moreover,
the mathematical degradation for the SDIQ index is included in the RSAE-NPSO, which
transforms the input irrigation and environmental parametric data into the hidden layers,
where the feed-forward multi-layer perceptron method is used. To quantify the numerical
variation in SDIQ indices, Figure 15 demonstrates the comparative relationship between
the actual measured and predicted results. The inclined full line denotes the 1:1 standard
ratio between the predicted and actual measured indices, while the red points stand for the
ratio results. The mathematical errors between them were quantified and traced back to
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the fluctuations in truncation error or external environmental interference. Furthermore,
Figures 16–21 illustrate data comparisons based on the prearranged conditions.
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Figure 10. Demonstration of the actual and predicted PMD values of chernozem soil on tests A_1
to E_10, implemented on layers A–E, respectively.
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Figure 11. Demonstration of the actual and predicted PDIE values of chernozem soil on tests A_1
to E_10, implemented on layers A–E, respectively.
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Figure 12. Demonstration of the actual and predicted MSRR values of chernozem soils on tests A_1
to E_10, implemented on layers A–E, respectively.
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Figure 13. Demonstration of the actual and predicted IGV values of chernozem soils on tests A_1
to E_10, implemented on layers A–E, respectively.
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Figure 14. Demonstration of the actual and predicted NIPC values of chernozem soils on tests A_1
to E_10, implemented on layers A–E, respectively.

From these figures, it could be observed that Pw, At, and Fq should be focused on to
determine Sb, Sp, Oc, St, Ev, Ss, Sc, Sw, and Wd, because they have a remarkable influence
on ESIP, PDIE, and PMD, presenting intensified accuracy improvements of up to 33–35% of
NIPC after one complete epoch of RSAE-NPSO prediction. The irrigation parameters of Aw
and At cause 16–18% reductions in the stability of PDIE and IGV, owing to increased infor-
mation entropy or measurement chaos. The change tendencies of At, Ah, and Sb indicate
that IGV and MSRR decrease by 15–18%, depending on Fq, Sr, Aw, and their accompanying
variation. In contrast, PDIE and IGV were found to be most sensitive to the correlation
mechanism of Pw, Id, Fq, Sr, Aw, and At, owing to the high drip infiltration rate. PMD and
NIPC are sensitive to Sp, Oc, St, Ev, Ss, Sc, and Sw, owing to the corresponding variation
in drip infiltration conditions. It can also be found that when a set of irrigation parame-
ters such as Pw = 224.8 KPa, Id = 2.68 h, Fq = 1682.5 L/h, Sr = 17.2 MJ/m2, Aw = 1.18 m/s,
At = 22.8 ◦C, and Ah = 72.8%; and key variables of the irrigation environment, including
Sb = 1.68 g/cm3, Sp = 68.7%, Oc = 63.5%, St = 4.86 × 10−6, Ev = 33.8 mm/h, Ss = 4.82 cm/s,
Sc = 0.46%, Sw = 0.36%, and Wd (north–northwest; error tolerance = ±5%, the same as
follows) were prepared, an optimal data set of ESIP, PDIE, IGV, MSRR, PMD, and NIPC
could be obtained for the purpose of improving the performance quality of the sprinkler
drip irrigation approach [55].
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Figure 16. Comparison between the actual and predicted ESIP values in typical soil types.
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Figure 17. Comparison between the actual and predicted PMD values in typical soil types.
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Figure 18. Comparison between the actual and predicted PDIE values in typical soil types.
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Figure 19. Comparison between the actual and predicted MSRR values in typical soil types.
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3.4. Significant Analysis Using F-Ratio Tests

The RSAE-NPSO system has two modes of predictive reasoning: causal and diag-
nostic reasoning. Causal reasoning provides tools for predicting what might occur under
the presented experimental condition, which could be used to determine the statistical
characteristics of drip infiltration properties. On the other hand, diagnostic reasoning refers
to the exploration of possible causes of a known irrigation event or inherent moisture
infiltration characteristics, whereby the posterior probability of the hypothesis variable is
accurately calculated and used to predict the remarkable variation trends related to drip
infiltration. Thus, RSAE-NPSO addresses a query of SDIQ indices precisely through using
basic probability formulae for predictive reasoning. To implement a quality inspection for
the RSAE-NPSO prediction, the F-ratio criterion is used to describe the variance importance
of SDIQ indices. Here, p denotes the number of SDIQ index levels, and there are mj levels
for the jth index, where each value level is tested c times; n denotes the total number of
orthogonal irrigation tests; the obtained values for SDIQ verification cases are marked as
x1, x2, . . . , xn, and K1, K2, . . . , Kmj denote the sum of levels of the jth index with respect to
the testing time [56]:

K = K1 + K2 + . . . + Kmj; U =
1

mjc
K2; W =

n

∑
i=1

xi
2; Q =

1
c

mj

∑
i=1

Ki
2 (21)

Thus, the square sum of variance SSj =
1
c

mj

∑
i=1

Ki
2 − 1

mjc
K2; degree of variance freedom :

d f j = mj − 1;
(22)

total square sum : SST =
n
∑

i=1
xi

2 − 1
mjc

K2; total degree of variance freedom :

d f T = n− 1;
(23)

square sum of SDIQ error : SSe = SST −
p

∑
j=1

SSj (24)

degree error of variance freedom : d fe = d fT −
p

∑
j=1

d f j (25)

mean square value : MSj =
SSj
d f j

; mean square value of error : MSe
SSe
d fe

; F− ratio :

Fj =
MSj
MSe

(26)
Thus, the weighted sum of F-ratio can be expressed as follows:

Fall =
p

∑
j=1

KjFj
p (27)

To confirm the RSAE-NPSO prediction quality based on the comparative evaluations
of significance level, a set of evaluation coefficients were designed using Equations (21)–(27) [57].
A high F-ratio implies the closeness of the predicted SDIQ indices to the actual measured
value. Table 9 presents the variance analysis results using test set D_8 for the sprinkler
drip irrigation as an example. Here, the predicted values of ESIP, PMD, PDIE, MSRR, IGV,
and NIPC were evaluated in the domains of SSe, DfT, Q, Fj, and P, whereby ** represents
a highly significant influence, * denotes a significant influence, and O indicates no in-
fluence. Thus, the predictive quality levels of SDIQ indices were calibrated in a clear
mathematical manner.
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Table 9. Variance analysis of sprinkler drip infiltration quality indices using F-ratio tests.

Index Value SSe DfT Q Fj p Significance

ESIP 566.58(±5%) 78.25/69.25/32.47/
85.2/4/17.45 8 14.77/16.25/8.97

/14.77/9.31
13.25/15.42/16.65

/17.82/9.98 <0.0002 **/*/**/**/O

PMD 96.258(±5%) 9.22/28.55/10.26/
9.98/6.47 8 6.47/10.05/8.98/

14.5/1/18.47
20.01/18.77/13.24/14.4

2/13.95 <0.0154 O/**/O/*/**

PDIE 98.224(±5%) 11.47/9.24/28.78/
18.42/46.52 8 13.25/8.98/13.25/

6.9/8/14.77
17.74/16.21/17.75/16.6

4/10.22 <0.0523 **/O/*/***/

MSRR 411.25(±5%) 15.45/28.65/36.54/
9.47/26.35 8 10.33/18.74/13.34/

12.28/14.75
11.47/18.82/14.46/18.6

5/17.74 <0.0315 **/O/***//**

IGV [422.5,654.12]
(±5%)

18.57/19.58/22.64/
18.75/26.54 8 9.99/7.14/8.02/

10.25/11.47
19.25/10.22/16.32/18.8

5/17.77 <0.0005 **/**/O/*/*

NIPC 95.442(±5%) 6.51/17.52/28.22/
9.25/18.11 8 12.25/6.62/3.32

/14.25/8.87
10.25/14.47/13.25/

6.65/18.87 <0.0010 O/**/**/*/**

Here, the normality and homogeneity tests of participant parametric variance were
performed to give a more clear explanation of the statistical analysis. The F values, sig-
nificance levels, and values of SDIQ indices showed the normality and homogeneity of
those irrigation parameters and the condition variance to be reliable. The frequency data
can be used for the variance analysis of ESIP, PMD, PDIE, MSRR, IGV, and NIPC. For
example, the F-ratio variance test of ESIP and NIPC indicated that there were significant
differences among different SDIQ groups (F = 15.886, p = 0.0002 (<0.05)). Similarly, there
were significant differences for the PMD and PDIE groups (mean F-ratio values of 17.42
and 19.06, respectively, p = 0.0154 (<0.05)) and MSRR group (mean F-ratio value of 18.97,
p = 0.0315 (<0.05)). Finally, for the IGV and NIPC groups (mean F-ratio values of 15.98
and 17.79, respectively, p = 0.0010 (>0.05)), there was no significant difference between the
means of SDIQ values from several RSAE-NPSO prediction trials. All of these values of
SSe, DfT, Q, Fj, and P sourced from the variance F-ratio tests showed the slightly lower
heritability values than those corresponding to the original SDIQ index data. The normality
and homogeneity variability studies in this research were likely proposed to satisfy the
SDIQ index prediction conditions.

In this research, the tested samples of soil infiltration effectiveness were used to
classify the fluctuations in SDIQ indices, such as the fluctuations caused by the variations
in irrigation parameters or environmental conditions. Because RSAE-NPSO is conditionally
independent, only the local network map adjacent to the computational neurons was
focused on. In the predictive calculations, as long as the state of relevant neurons is
known, the occurrence probability of computational neurons can be estimated. Therefore,
the complexity of the knowledge acquisition and predictive reasoning processes can be
reduced. These tested samples provided important references to demonstrate the complex
influence of irrigation parameters on the SDIQ prediction process.

As can be seen from Table 10, the significance level showing the high significance
of the SDIQ indices demonstrates the variance characteristics of the SDIQ; the effects of
Pw, Id, and Fq on IGV and MSRR are remarkable, while Sr, Aw, At, and Ah have larger
impacts on PMD and NIPC than on other SDIQ indices. Simultaneously, the influence of
Pw, Sp, Oc, and Sc on ESIP, IGV, and MSRR cannot be ignored. Further analysis shows that
Ah, Sb, and Sp have the most influence on PDIE and IGV, whereas Pw, Id, At, and Sp are
crucial in terms of the infiltration quality deviations. After identifying the mathematical
effects of these parameters, the optimized results of the RSAE-NPSO system can be antici-
pated by controlling the corresponding factors. A comparison of IGV, MSRR, PMD, and
NIPC values for the given soil samples with and without using the optimized irrigation
parameters demonstrated the remarkable improvements achieved by the RSAE-NPSO
prediction approach.
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Table 10. Performance assessment of SDIQ index prediction method for different example soil sets.

Test ESIP
(×10) PMD PDIE MSRR

(×10) NIPC IGV
(×10) MAE MAPE RMSE Err Corr Rob

set A_1 33.2 50.1 89.2 66.3 65.2 12.3 0.5589 96.52 88.25 75.23 0.5563 69.32
set B_2 55.2 45.3 43.2 25.8 52.4 16.3 0.6985 54.82 82.56 82.56 0.8526 85.26
set C_3 42.6 26.1 50.6 75.2 65.2 49.5 0.8625 81.54 96.25 77.49 0.5952 44.72
set D_4 63.2 26.3 26.3 44.7 45.6 72.5 0.6954 56.32 86.25 85.64 0.8256 66.25
set E_5 72.5 56.3 72.5 48.5 47.6 79.6 0.8825 48.26 78.25 63.25 0.6332 47.26

3.5. Calibration Coefficients of Prediction Error

This research also proposes the following calibration coefficients to evaluate the accu-
racy and reliability of RSAE-NPSO prediction, namely the mean absolute error (MAE) [49],
root mean square error (RMSE) [50], mean percentage error (MAPE) [51], percent error
of prediction results (Err) [52], correlative error (Corr) [53], and relative exponent error
(Rob) [54,55], as follows:

MAE =
1

mn

n

∑
j=1

m

∑
i=1

∣∣∣N f indexij − N f indexij

∣∣∣; (28)

MAPE =
1

mn

(
n

∑
j=1

m

∑
i=1

∣∣∣∣∣N f indexij − N f indexij

N f indexij

∣∣∣∣∣
)
× 100% (29)

RMSE =

√√√√ 1
mn

n

∑
j=1

m

∑
i=1

(
N f indexij − N f indexij

)2
(30)

Err =

[
N f indexij

]
measurement

−
[

N f indexij

]
prediction[

N f indexij

]
measurement

× 100% (31)

Corr(N f x
i
qua, tn) =

∣∣∣∑N
n=1 (N f x

i
quaT(tn)− N f x

i
qua(tn))(tn − N f x

i
quaR(tn))

∣∣∣√
∑N

n=1 (N f x
i
quaT(tn)− N f x

i
qua(tn))

2
∑N

n=1 (tn − N f x
i
quaR(tn))

2
; (32)

Rob(N f x
i
qua) =

1
N

N

∑
n=1

exp

(
−
∣∣∣∣∣N f x

i
quaR

(tn)

N f x
i
quaT(tn)

∣∣∣∣∣
)

(33)

Above, m and n are the numbers of SDIQ indices, Nfindexij and N f indexij are the actual
and averaged SDIQ indices, and [Nfindexij]measurement and [Nfindexij]prediction denote the data
limits of actual measured and predicted infiltration quality indices, respectively.

By computing these calibration coefficients for the predicted results using the soil
samples from A_1 to E_10, Table 10 summarizes the comprehensive prediction evaluation.
The ESIP and PDIE values show that the efficiency and reliability of this novel prediction
for sandy and chernozem soils maintain remarkable correlations with IGV, MSRR, and
PMD, especially when At and Sr are highly focused. RSAE-NPSO has strong processing
capability for data uncertainty in the determination of MSRR and NIPC values. It uses
the conditional probability density to express the correlation mechanism among various
influential factors, which makes the learning and reasoning of SDIQ indices under different
limited, incomplete, and uncertain conditions possible. Even when the experimental
SDIQ data are not rich, they can be quantified using the expert estimations and statistical
corrections or by utilizing the expectation maximization (EM). Therefore, RSAE-NPSO
combines adaptive prediction and extension reasoning to ensure the reliability and stability
of SDIQ indices.
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Here, the MAPE of the RSAE-NPSO predictive performance with respect to the proba-
bilistic concentration of the drip infiltration notably maintains close relations with Ah, Sb,
Sp, and Oc when the PMD and NIPC are considered. This is particularly obvious in the
irrigation cases when saline–alkali soil and clay soil are considered. The MAPE provides a
critical criterion for Aw, At, Ah, Sb, and Sp; thus, the IGV effectively assesses the multi-source
information expression and data fusion of the drip infiltration properties. This shows that
it is suitable for the heterogeneous infiltration knowledge representation and reasoning
under uncertain irrigation conditions. ESIP and PDIE provide reliable mathematical mod-
els for uncertainty knowledge representation and logical reasoning in the case of SDIQ
determination. The predictive reasoning principle of RSAE-NPSO is essentially a set of
probability calculations considering the influences of mean SDIQ percentage errors.

The RMSE provides a reliable reference criterion related to the drip distribution
balance when Id, Sp, and Wd are considered. Its value variation causes a corresponding
fluctuation in the predictive precision of PMD and NIPC when Sr, Aw, and At are concerned.
RSAE-NPSO has causal and probabilistic semantics, which facilitate the combination of
prior knowledge and a probability distribution of infiltrated moisture in the experimental
cases involving chernozem and clay soil. Furthermore, it effectively avoids overfitting and
ensures the robustness of the prediction of PDIE and IGV, considering the fluctuations in
Ah, Sb, Sp, Oc, St, and Ev values.

Regarding the irrigation cases of loam and sandy soil, Err presents close correlations
with ESIP, PDIE, and IGV when Sr, Aw, At, Ah, Sb, Sp, and Oc are considered, and it is
remarkably affected by the water mass redistribution also. The quantitative knowledge
regarding moisture infiltration includes edge and conditional probabilities, which should
be fully considered in the computation of MSRR and PMD. Because the quantitative rela-
tionships (probabilities) are mainly derived from the statistical calculations, the professional
literature, and expert experience, the RSAE-NPSO system has a conditional independence.
It only needs to consider the finite variables associated with the Sb, Sp, Oc, St, Ev, Ss, Sc, Sw,
and Wd variables, making the SDIQ determination approach a feasible solution in many
complex infiltration prediction cases.

The Corr parameter can be used to regulate the PDIE, IGV, and MSRR calculations and
to monitor the drip infiltration quality based on the boundary subsurface of infield soil. This
quality inspection coefficient describes the critical influence of Oc, St, and Ev on sandy and
chernozem soils. This highly depends on the value ranges of MSRR, PMD, and NIPC when
Sb, Sp, Oc, St, and Wd are observed closely. This refers to the structural relationship with
the prediction network and expresses the mathematical correlations between PDIE, MSRR,
and PMD. The qualitative relationships between all SDIQ indices are mainly derived from
expert experience, the professional literature, and statistical learning. Using this coefficient,
RSAE-NPSO can be used to deal with different prediction errors.

The Rob parameter shows that the predictive calculation is strongly influenced by
Aw, Sb, Sp, Ev, and Ss, and that its operational mechanism is remarkably affected by the
accuracy of the Pw, Oc, St, Ev, Ss, Sc, and Sr values, particularly in the irrigation of clay and
saline–alkali soil. RSAE-NPSO itself is a calculation system that visualizes the probabilistic
representation and reasoning computation processes to determine the mathematical and
conditional correlations between various neuron variables. IGV, MSRR, and NIPC describe
the interrelationships among the drip infiltration data via graphic representations of relative
exponent error, with clear semantics, making this approach easy to understand. The
mathematical description of Rob makes it easy to assess the consistency and integrity of
SDIQ indices and to demonstrate the RSAE-NPSO module in the investigation of sprinkler
drip infiltration.

All of the above-mentioned comparative analyses indicate that a stable and reliable
SDIQ can be ensured by ESIP at 566.58, by PMD at 96.258, by PDIE at 98.224, by MSRR at
411.25, by IGV at [422.5,654.12], and by NIPC at 95.442 (error tolerance within ±5%). Based
on this prediction result, an extensive comparative analysis was performed to quantify the
applicability and efficiency of this new prediction method compared with other frequently
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used methods as follows: (1) a poly tree propagation-based algorithm (PTP); (2) a clique-
tree propagation-based algorithm (CTP); (3) the graph reduction method (GR); (4) the
stochastic sampling, search-based, model simplification, and loopy propagation (SMSLP)
method; (5) the least squares support vector machine (LSSVM) method; (6) the multiple
linear regression (MLR) method; (7) MLR-GR; (8) the MLR-GR self-organizing map (MLR-
GR-SOM) method; (9) NPSO-SOM models [56–60]. Table 11 provides a performance
comparison of SDIQ index prediction results using RSAE-NPSO and other methods under
identical test conditions. The computation accuracy (%) and standard deviation (%) of
the network training and testing, together with the average computation storage (kb),
computation time (s), standard error of prediction (%), and the upper and lower error
limits of confidence intervals, were selected as the calibration coefficients. The calculation
performance of the RSAE-NPSO is highlighted in bold font in the first column. It can be
seen that LSSVM and MLR have relatively larger calculation errors, which shows that
traditional machine learning models cannot adequately fit the complex NPSO problems in
this investigation. The deep learning approach deals with the SDIQ index prediction better
than other approaches, while simultaneously the prediction errors of NPSO-SOM, CTP, and
SMSLP are less than for MLR-GR-SOM. In addition, the predicted SDIQ index facilitates
the performance profiling of the drip infiltration approach at different soil depths, and
provides a convenient method to build predictive functions for calibrating the moisture
space distribution in practice.

Table 11. Performance comparison of SDIQ index prediction results using RSAE-NPSO and other
typical methods.

Calibration
Coefficients

Typical Prediction Approaches

RSAE-
NPSO LSSVM MLR MLR-

BR
MLR-BR-

SOM
NPSO-
SOM PTP CTP GR SMSLP

Network
training

Computation
Accuracy (%) 97.58 93.22 91.52 95.44 93.15 93.25 96.24 94.15 93.55 94.26

Standard
deviation (%) 0.296 0.335 0.542 0.685 0.665 0.725 0.824 0.645 0.558 0.625

Network
testing

Computation
Accuracy (%) 97.42 93.22 91.45 96.23 93.65 96.55 95.87 94.56 93.66 95.26

Standard
deviation (%) 0.256 0.336 0.542 0.863 0.553 0.642 0.635 0.475 0.635 0.558

Average Computation
Storage (kb) 1856.2 1554.5 1963.2 1556.2 1725.6 1663.2 1845.2 1965.2 1753.2 1695.2

Computation Time (s) 1.88 2.36 2.54 3.65 4.26 1.95 1.89 2.03 2.56 2.95

Standard error of
prediction (%) 4.15 5.36 5.89 6.32 5.78 5.68 6.12 6.05 5.65 6.34

Confidence
interval
of 94%

Upper error
limit (%) 5.14 6.32 6.25 5.58 5.89 5.75 5.65 5.48 6.32 6.01

Lower error
limit (%) 3.25 4.26 5.21 4.15 3.65 3.98 3.66 4.03 3.58 3.95

As the working mechanism of the RSAE-NPSO prediction approach offers an effective
tool for investigating the drip infiltration characteristics, the proposed SDIQ indices com-
prehensively describe the moisture space distribution effectively. Because the statistical
evaluation of the predictive performance was conducted under identical irrigation test
conditions, it can be observed that RSAE-NPSO outperforms the other prediction methods
in terms of precision and reliability. This novel method describes the dynamic values of
SDIQ indices corresponding to actual measured values with low estimation errors, and
contributes to the optimal prediction of ESIP, PDIE, IGV, MSRR, PMD, and NIPC. The
confidence interval is set as 94% of the reference level, which covers all possible values
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of SDIQ indices. The average computational accuracy of this new proposed prediction
system reaches 97.58% in training and 97.42% in testing operations, together with the
standard deviations of SDIQ indices, which reach 0.296% and 0.256%, respectively. This
system requires only 1.88 s to complete an entire calculation epoch with the provided
computation platform. The other outstanding operating capabilities of RSAE-NPSO can
be observed from its average computational storage size of 1856.2 kb, standard error of
4.15%, and upper and lower error limits of 5.14% and 3.25%, respectively. RSAE-NPSO
has the following advantages: it not only demonstrates causal relations among different
prediction-making tasks in a robust form, but also integrates useful drip infiltration charac-
teristics under uncertain test conditions. Therefore, the number of network neurons can
be remarkably reduced to avoid over-fitting and excessive reasoning. MLR, MLR-BR, and
MLR-BR-SOM methods ensure robust predictive calculations of PDIE and MSRR that are
suitable for describing the distribution spectrum of IGV. The LSSVM method achieves
excellent predictive performance for the SDIQ indices, particularly when MSRR, PMD, and
NIPC are highly emphasized. NPSO-SOM, PTP, and CTP present precise predictive results
for ESIP and PDIE. Concurrently, GR and SMSLP show satisfactory capabilities in terms
of the computation accuracy of ESIP, MSRR, and NIPC. Overall, because the probabilistic
density of the sprinkler drip infiltration method monitored by the RSAE can help the
NPSO process to obtain higher accuracy when calculating the SDIQ indices, RSAE-NPSO
possesses much better operating advantages than alternative systems, supporting its robust
predictive quality.

From the comprehensive experimental description and discussion of the result regard-
ing RSAE-NPSO prediction, it can be summarized that with irrigation parameters of Pw
at 224.8 KPa, Id at 2.68 h, Fq at 1682.5 L/h, Sr at 17.2 MJ/m2, Aw at 1.18 m/s, At at 22.8 ◦C,
and Ah at 72.8%, as well as key irrigation environmental variables of Sb at 1.68 g/cm3,
Sp at 68.7%, Oc at 63.5%, St at 4.86 × 10−6, Ev at 33.8 mm/h, Ss at 4.82 cm/s, Sc at 0.46%,
Sw at 0.36%, and Wd as north–northwest, the optimal SDIQ indices of ESIP at 566.58, PMD
at 96.258, PDIE at 98.224, MSRR at 411.25, IGV at [422.5,654.12], and NIPC at 95.442 could
be achieved. This novel prediction method contributes greatly to performance improve-
ments in soil infiltration using sprinkler drip irrigation and agricultural crop production
in practice.

4. Conclusions

In this study, a new intelligent prediction method called RSAE-NPSO is proposed to
determine the SDIQ indices of moisture space distribution in irrigated soil fields, with loam,
sandy, chernozem, saline–alkali, and clay soils being tested. We consider the influence
of soil characteristics and focus on specific irrigation parameters (Pw, Id, Fq, Sr, Aw, At,
Ah) and key variables of the irrigation environment (Sb, Sp, Oc, St, Ev, Ss, Sc, Sw, Wd).
This research makes the following theoretical and technological contributions. It presents
the accurate prediction of SDIQ indices for moisture space distribution analyses. Based
on the comparison of these predicted indices with actual measurement data, we show
that the average relative error between them is within ±5%, which clearly verifies the
accuracy and correctness of the SDIQ estimation process. A novel RSAE-NPSO system
is designed and subsequently its working mechanism and constructive effects on the
SDIQ predictive computation are examined. A complete set of SDIQ indices are covered,
including ESIP, PDIE, IGV, MSRR, PMD, and NIPC. A quality inspection is performed to
assess the predicted SDIQ results from innovative perspectives, meaning the prediction
accuracy and calculation stability of the RSAE-NPSO system are confirmed. This research
compares the SDIQ indices obtained from the RSAE-NPSO system with those of other
typical prediction methods under identical test conditions, confirming the extraordinary
accuracy, generalizability, and logical reliability of this newly proposed prediction method.
Therefore, the irrigation efficiency and infiltration quality of soil fields can be monitored
instantaneously and planned precisely, while the SDIQ prediction also facilitates remarkable
improvements in agricultural crop production under complex working conditions.
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