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Abstract: Genomic Prediction (GP) is a powerful approach for inferring complex phenotypes from
genetic markers. GP is critical for improving grain yield, particularly for staple crops such as wheat
and rice, which are crucial to feeding the world. While machine learning (ML) models have recently
started to be applied in GP, it is often unclear what are the best algorithms and how their results
are affected by the feature selection (FS) methods. Here, we compared ML and deep learning
(DL) algorithms with classical Bayesian approaches, across a range of different FS methods, for
their performance in predicting wheat grain yield (in three datasets). Model performance was
generally more affected by the prediction algorithm than the FS method. Among all models, the best
performance was obtained for tree-based ML methods (random forests and gradient boosting) and
for classical Bayesian methods. However, the latter was prone to fitting problems. This issue was
also observed for models developed with features selected by BayesA, the only Bayesian FS method
used here. Nonetheless, the three other FS methods led to models with no fitting problem but similar
performance. Thus, our results indicate that the choice of prediction algorithm is more important
than the choice of FS method for developing highly predictive models. Moreover, we concluded that
random forests and gradient boosting algorithms generate highly predictive and robust wheat grain
yield GP models.

Keywords: genomic prediction; machine learning; random forests; gradient boosting; Bayesian
methods; penalized regression; deep learning

1. Introduction

Genomic Prediction (GP) is a methodology used to predict phenotypic values from
genotypic data generated using high-throughput genotyping technologies, such as genotype-
by-sequencing [1]. This observed genotype is typically recorded as single nucleotide
polymorphisms (SNPs) relative to a reference genome. GP is potentially useful not only for
understanding the basic genetic architecture of genomes but also for increasing the genetic
performance of crops and livestock. In fact, GP is having a substantial impact on plant
and animal breeding [2–4] because of its ability to unveil complex traits such as yield or
disease/pest resistance directly from genotypes.

In GP modelling, the typical approach to choose the best method for single or multi-
trait problems is to apply and compare different computational methods, namely from
statistics, machine, and deep learning [5–7]. Bayesian and GBLUP approaches are the
most commonly used methods in GP [8–11]. However, nowadays, machine and deep
learning methods are being shown as a good alternative for GP in terms of accuracy,
computational time, and cost. The most commonly used methods are random forests (RF)
and gradient boosting (GB) for machine learning [12,13] and multilayer perceptron (mlp)
and convolutional neural network for deep learning [14,15].

When developing a GP workflow, two of the most critical decisions are the choice
of feature selection (FS) method and predictive model. Furthermore, a major challenge
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in developing a GP model is the ‘curse of dimensionality’ [16], as the number of genetic
markers (p) is generally much greater than the number of genotyped/phenotyped individ-
uals (n), i.e., p >> n. FS [17] and dimensionality reduction (DR) [18] approaches can be
applied to overcome the marker dimensionality problem. Both approaches aim to reduce
the high number of features in a dataset. FS identifies a subset of markers from the original
data set without changing them, and DR transforms the original feature space into a lower
dimension space, which may lead to some data loss. FS has three general approaches:
filter, wrapper, and embedded, with multiple methods being available for each one. GP
predictive models are based on Bayesian, machine learning (ML) or deep learning (DL)
methods. Despite the importance of selecting both the FS method and the predictive model,
there are limited studies. Refs. [19,20] have explored the interaction between these two
steps of the GP workflow. Moreover, the performance of statistical and ML methods for GP
is also highly dependent on the dataset, as shown by Refs. [21,22].

Crop yield and specifically wheat yield are important for food security. However,
it faces multiple threats, including climate change, reductions in water availability, soil
fertility, and land degradation. Genomics and GP are expected to be central in allowing
crop yield to be maintained/increased, despite these challenges, and to respond to the 50%
increase in food demand by 2050, as the global population reaches 9.7 billion [23]. Indeed,
GP can help in reducing the time and cost of extensive phenotyping evaluation and in
accelerating the genetic gain, during breeding programs, for key traits such as wheat yield.
In order to help breeders and researchers to define their GP workflows, we evaluated the
interaction between 4 FS methods and 12 predictive models, across 3 datasets in which
the predicted phenotype is wheat yield. Our results revealed that the choice of prediction
method is more relevant than the FS method choice. Moreover, we show that ML tree-based
methods, RF, and GB are highly predictive and are the least sensitive to factors such as
different FS methods, datasets, or over/under-fitting issues.

2. Materials and Methods
2.1. Dataset Description

We used a subset of the genomic and phenotypic data published by Ref. [24] to
investigate the relationship between wheat genotype and the grain yield phenotype. Briefly,
the datasets used in this paper consist of the following three populations: an F5 biparental
population in which grain yield was measured in Pullman (WA, USA) in 2017 (501 lines;
referred to as dataset1) and two double haploid biparental populations with the phenotype
measured during 2018 in Pullman (759 lines; dataset2) and Lind (447 wheat lines; dataset3;
WA, USA). A set of 11,089 high-quality SNPs were used for analysis. Phenotypic data is
adjusted yield (measured in t/ha), calculated using an Augmented Complete Block Design
from measurements obtained by harvesting whole plots.

2.2. Computational Pipeline Overview

The computational pipeline can be subdivided into four main steps: (i) data pre-
processing and splitting; (ii) FS; (iii) building prediction models; (iv) performance assess-
ment, as explained in Section 2.3, Section 2.4, Section 2.5, and Section 2.6, respectively.
Each of these steps were applied independently to each of the datasets described above.
The framework of our study is presented in Figure 1.
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Figure 1. The wheat grain yield prediction scheme using SNP data and classification of the im-
plemented methods. Four filter feature selection methods were implemented: variance threshold,
correlation matrix, mutual information, and BayesA. The predictive methods are categorized into
linear and non-linear and belong to four different computational families. Performance was assessed
using Pearson’s correlation. The four main steps of the GP workflow are highlighted in red.

2.3. Data Pre-Preprocessing and Splitting

Firstly, we accessed genotypic (input variables) and phenotypic (response variable)
data using the pandas library [25], and pre-processed the data by checking for miss-
ing values using isnull function [26]. We then generated random partitions using the
train_test_split helper function [27], selecting 80% of the data for training and 20% for
testing for dataset1 and dataset2. For dataset3, we split into 70%/30% for training/testing.
The data splitting was based on the best fitting for each dataset. After data splitting, we
implemented FS approaches, as explained in Section 2.4.

2.4. Feature Selection

To investigate the best FS approach for GP of wheat grain yield, we implemented four
filter methods typically used after data pre-processing: variance threshold (VT), mutual
information (MI), correlation matrix (Corr_Matrix), and BayesA [28]. FS was conducted
on the training data only because it increases prediction accuracy and reduces the over-
fitting problem [29]. We used the sklearn FS library [30] to implement VT and MI methods.
The VT algorithm only works on predictors but not response variables, filtering out all
low-variance features ([31]). It drops the features whose variance does not meet the
defined threshold, which was equal to 0.75 for dataset1 and dataset3 and 0.90 for dataset2.
The Corr_Matrix used a Pearson’s correlation based on a heuristic function to determine
significant features and was implemented using the corr function of the pandas library. It
generates a correlation matrix and removes the features with correlation greater than the
threshold, which was set to 0.80 for the three datasets [32].

Unlike previous approaches, MI depends on non-parametric methods based on en-
tropy assessment from k-nearest neighbors distances [33,34]. In particular, it measures how
much information is communicated on average in one feature in relation to another. We
selected the top 10% features for each dataset. Finally, BayesA is an approach often used for
FS in GP studies [21]. It is an adaptive variable shrinkage method that uses t-scaled prior
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and a point mass at 0 to select informative features [35,36]. In our experiments, we draw
the top 5500 features (50% of total features) in each dataset, selected by BayesA method,
which was implemented using R based BGLR library [37]. In order to decide the best
thresholds and top feature sets for (VT and Corr_Matrix) and BayesA, respectively, we
generated feature sets on different threshold and feature set values, trained the models on
those feature sets, and explored the best threshold for each dataset.

2.5. Prediction Models

We chose 12 regression methods, categorized them into linear and non-linear, and be-
longing to 4 computational families. In the linear category, we selected three classical
benchmark approaches (i.e., Bayesian regression family), which we considered as baseline
models, and three approaches from the penalized regression family. In the non-linear cate-
gory, we studied five approaches from the tree-based family and one from the DL family.
We trained a collection of 12 models per dataset, using the feature (SNP) sets selected by
each FS method. Thus, we performed a total of 144 experiments (12 predictive methods ×
4 FS methods × 3 datasets).

We used k-fold cross-validation (CV) re-sampling strategy to validate the models.
Hence, the training data were randomly partitioned into k equally sized data subsets [38].
Random search is a method widely used over a set of parameters, in which each setting
is sampled from a distribution over possible settings [39]. Therewith, a set of k − 1 data
points are used for training and the remaining partition for validation. Afterward, we used
a 4-fold randomized search CV on the k −1 training data points to select the optimized set
of hyper-parameters [40]. Each model was trained using the optimized hyper-parameter
set. The prediction models were implemented using Python [41] and R languages [42], so
we denoted model names with ‘py’ or ‘r’. The different models were implemented with the
following tools:

1. Tree-based: Random Forests (RF_py), extraTrees_py, Gradient Boosting (GB_py) and
adaboost_py with the scikit-learn ensemble library [30,43], and eXtreme gradient
boosting (Xgboost_py) with XGBoost library [44];

2. Penalized linear regression: LASSO_py, ridge_py, and elasticnet_py with the scikit-
learn linear model library [30];

3. Deep learning: Multilayer Perceptron (mlp_py) with Keras library [45];
4. Bayesian Methods: BayesA_r, Bayesian Ridge Regression (BRR_r), and Bayesian

LASSO (BL_r) were implemented with the BGLR R library [36].

Details about each prediction model and optimized hyper-parameters are described
in the Supplemental Materials, Section S1.

2.6. Performance Assessment

The predictive ability of the models was compared using Pearson’s correlation co-
efficient (R) as a performance metric [46]. This performance metric was used for model
selection on the 4-fold CV and to validate the robustness of our results by regressing the
real against the predicted values on the test dataset. R is the most commonly used metric
for GP problems, and it is typically defined as:

R =
∑ (x − x̄)(y − ȳ)√

∑ (x − x̄)2 ∑ (y − ȳ)2
, (1)

where x and y are the real and predicted variables, respectively. The calculation of the
p-value relies on the assumption that each dataset is normally distributed. Similar to other
correlation coefficients, R varies between −1 and +1, with 0 implying no correlation.

Test R values were also used as the dependent variable in linear mixed effects models,
which were fitted with the nlme [47] R package, in order to assess the effect of the FS
methods and the prediction models on R. In these models, each dataset was fitted as a
random effect and each model was minimized following stepwise deletion of the least
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significant terms, with log-likelihood ratio (χ2) tests being used to evaluate the change in
model deviance, keeping only significant terms.

3. Results and Discussion
3.1. Feature Selection Methods Vary Widely in the Number and Identity of the Selected SNPs

The GP framework requires selecting the most appropriate FS method after data pro-
cessing. We tested four FS methods that showed a broad variation in selected SNP numbers.

VT and Corr_Matrix methods chose a variable number of SNPs depending on the
dataset. The number of SNPs selected by the VT and Corr_Matrix methods varied from
2417 (22%) to 4700 (42%) and from 3169 (29%) to 4714 (42%), respectively (Table 1). Con-
versely, MI and BayesA selected SNPs were fixed at 1109 (10% of all SNPs) and 5500 (50%),
respectively. Among all methods, the selected SNPs identity showed broad variation across
populations, as seen in Supplemental Figures S1–S12.

Table 1. List of selected features by each feature selection method per dataset.

Feature
Selection

Dataset1 Dataset2 Dataset3

VT 3235 2417 4700
MI 1109
Corr_Matrix 4714 3835 3169
BayesA 5500

3.2. Prediction Method Is the Main Determinant of Model Performance

To assess the performance of the prediction models on the test data and its dependence
on the FS method and dataset, we analyzed the statistical association between predicted
and real continuous variables by accessing the performance (R) values. Across all datasets
(Figure 2A,D,G), R varied between 0.20 and 0.72. The best performance was obtained for
dataset2 (R between 0.49 and 0.72), which was expected as it is the largest dataset with the
most wheat lines. Dataset1 analysis revealed intermediate performance (0.32 < R < 0.51),
and dataset3 analysis resulted in poor performance models (0.20 < R <0.46). Notably,
dataset3 has the smallest number of wheat lines, thus highlighting the importance of
sample size for prediction accuracy.

Next, we used a simple linear mixed model to better understand whether the perfor-
mance (R) variation is more affected by the choice of prediction model or FS method, while
controlling for the effect of the dataset size. Our results show that model performance
is not significantly affected by the interaction between FS method and prediction model
(χ2

33 = 38.7; p = 0.23). Conversely, the choice of FS method showed only a borderline sig-
nificant effect (χ2

3 = 8.1; p = 0.04), while the prediction model choice displayed a stronger
effect (χ2

11 = 55.2; p < 0.0001) when analysed individually. Therewith, the prediction model
affected the median R values more than the FS method (Figure 2B,C,E,F,H,I). Furthermore,
R ranged dependently within each dataset on the prediction model rather than on the FS
method (Figure 3). The R range across FS methods per prediction model (Figure 3A) was
generally smaller than that estimated across the prediction models for a given FS method
(Figure 3B). Taken together, these results suggest that both across and within the same FS
approach, the prediction model choice dramatically affects the prediction accuracy.
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Figure 2. The performance of the predictive models on dataset1, dataset2, and dataset3 across the
feature selection methods. (A,D,G) Heat map of obtained coefficient of determination (R) on highly
predictive SNPs, selected using variance threshold (VT), correlation matrix (Corr_Matrix), mutual
information (MI), and BayesA. (B,E,H) Box plot of obtained R scores, organized by prediction model.
(C,F,I) Box plot of obtained R scores, organized by feature selection method.

Figure 3. Variation in model performance depends more on the prediction method than on the FS
method. (A) Range of R values per dataset per prediction model (i.e., across FS methods). (B) Range
of R values per dataset per FS method (i.e., across prediction models).

Across all datasets, the best prediction model - FS combinations were: GB_py with MI
(dataset1), GB_py with BayesA (dataset2), and GB_py or RF_py with Corr_Matrix (dataset3)
(Figure 2A,D,G). This indicates that while GB_py generally led to the best prediction model,
the best FS was variable, reinforcing the idea that the FS method has a minor effect on the
predictability of the final model than the prediction method. Moreover, we considered
optimal models those with a difference of R ≤ 0.05 relative to the best model for each
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dataset. Within this R range, GB and RF generated at least one optimal model across all
datasets. This is followed by Xgboost, ridge, elasticnet, BayesA, BRR, and BL that were
in the optimal range for two datasets (dataset1 and dataset3 in all cases), and by three
prediction methods that were optimal in a single dataset: adaboost (dataset1), extraTrees
(dataset2), and mlp (dataset3). Interestingly, LASSO was the only method that never
provided predictability within this optimal range, displaying the poorest performance
for all models. This indicates that models from all four families studied here can have
performances on par with the best model, but it depends on the dataset size.

Focusing on GB_py and RF_py, the results showed that the best prediction models used
features selected by the same FS method, depending on the dataset (dataset1: MI; dataset2:
BayesA; dataset3: Corr_Matrix). Notably, GB_py was more variable than RF_py, even
though GB_py could have higher performance. The difference between the highest and
lowest R values for GB_py ranged between 0.11 and 0.14 (across the three datasets), whereas
this ranged between 0.05 and 0.10 for RF_py (Figure 2A,D,G). Therefore, RF_py showed
to be a robust model, corroborating our previous observation that RF_py had a smaller
variation among FS methods (Figure 2C,F,I). The ridge regression and three Bayesian
methods had robustness similar to RF_py, with the difference between the highest and
lowest R values ranging between 0.03 and 0.09. Additionally, their prediction performances
placed them within the optimal model range, except for dataset2, thus suggesting a stronger
dependence on the dataset than GB_py or RF_py (Figure 2A,D,G). Altogether, our results
suggest that RF_py and GB_py are the most robust approaches for GP in the analyzed
datasets, with the choice of FS method having limited importance.

The prediction performance superiority of RF_py and GB_py observed here is likely
because these models are able to learn more complex non-linear decision boundaries in the
data and handle a large number of covariates and interactions with high accuracy. This
is in line with previous studies showing that RF_py and GB_py can be highly predictive,
with model performance being at least on par with classical Bayesian methods [21,48].
Moreover, regarding DL methods, we found that the prediction performance of mlp_py
models was generally poorer than what we observed for Bayesian prediction models
(Figure 2A,D,G). A similar conclusion was made in a recent review on this topic [49]. This
may be because DL-based methods require sufficiently large training data, which is not
the case of the present datasets. Therefore, we concluded that RF_py and GB_py have the
highest predictive abilities over other tree-based, mlp, penalized, and Bayesian methods to
solve GP problems.

3.3. Machine Learning Tree-Based Prediction Methods Maximize Model Performance While
Minimizing Over- and Under-Fitting Issues

We recorded the R-scores of the models on the training and testing datasets to un-
derstand the bias-variance trade-off [50] and see how well the models generalized to the
test data. Overall, the difference in R (∆R) between test and training ranged between
−0.25 and 0.22 (Figure 4). Variation in ∆R was visible both across the FS and prediction
models. Regarding FS methods, models built with BayesA or MI features generally tended
to under-fit, whereas the opposite occurred for Corr_Matrix. However, the range of ∆R
values was substantially greater for BayesA (−0.25 to 0.22) than for Corr_Matrix (−0.09
to 0.15) or MI (−0.13 to 0.09). Conversely, the tendency for over/under-fitting for models
built with VT-selected features largely depended on the dataset. Interestingly, regarding
the prediction models, our results show that mlp_py (∆R: −0.19 to 0.22) and the Bayesian
models (∆R: −0.25 to 0.14 for BayesA_r; −0.24 to 0.15 for BL_r; −0.25 to 0.14 for BRR_r) dis-
played the highest absolute and variation ∆R values, both across datasets and FS methods,
regarding the prediction models.
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(A)

(B)

Figure 4. (A) Boxplot of the test and train correlation (R) score differences (i.e., ∆R on the y-axis) of the
12 prediction models of dataset1, dataset2, and dataset3. Each model name is denoted by the method
name and programming platform where they are implemented. (B) Boxplot of the test and train cor-
relation (R) score differences (i.e., ∆R on the y-axis) of the 12 prediction models of dataset1, dataset2,
and dataset3 of 4 feature selection methods. VT = variance threshold, Corr_Matrix = correlation
matrix, MI = mutual information.

Furthermore, the Bayesian methods tended to overfit dataset1, but underfit dataset2
and dataset3, while mlp generally showed a tendency for over-fitting, particularly on
dataset3 (which is the smallest one). All tree-based methods (Xgboost_py, adaboost_py,
GB_py, RF_py and extraTrees_py) and two linear methods (elasticnet_r, LASSO_r) showed
a less evident tendency for over- or under-fitting (i.e., absolute ∆R ≤ 0.05). Absolute
∆R ≤ 0.05 was only observed for dataset3 for the set of models with the highest R values
obtained with the test dataset, with under-fitting for RF_py and over-fitting for GB_py
(Figure 2. In both cases, replacing Corr_Matrix by VT or MI would yield similarly predictive
models (Figure 2G,H,I), while minimizing over- and under-fitting issues.
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4. Conclusions

Machine Learning (ML) has a critical role in turning high-throughput measurements
into specialized prediction models, including for the GP field [51]. We designed this study
to analyse the interaction between FS and prediction methods by implementing 12 linear
and non-linear methods along with 4 FS approaches. Our comparative study of the FS
methods suggests that variance threshold, mutual information, and correlation matrix FS
methods show more consistent results than the BayesA method. However, the choice of the
prediction model has the highest impact on prediction accuracy. In this regard, our results
indicate that tree-based methods achieved the highest performance (particularly GB and
RF), which is also found in Ref. [48] and are the least sensitive to the choice of FS method.
Moreover, among the more conventional Bayesian approaches for GP, BayesA, Bayesian
ridge regression, and Bayesian LASSO had the highest performance. Nevertheless, these
were not superior to the tree-based ML methods and seemed prone to over- or under-fitting
issues. Thus, our results indicate that tree-based models, particularly RF and GB, are robust
ML approaches for GP, across different factors (performance, robustness to FS, datasets and
over- or under-fitting).
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train (in brackets) correlation (R) scores of the 12 prediction models of dataset2 per feature selection
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12 prediction models of dataset3 per feature selection method; Figure S1: Chromosome-wide SNP
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Abbreviations
The following abbreviations are used in this manuscript:

adaboost adaptive boosting
Corr_Matrix correlation matrix
CV cross-validation
DL deep learning
DR dimensionality reduction
ExtraTree extremely randomized tree
GB gradient boosting
gBLUP genomic best linear unbiased predictor
GBS genotyping-by-sequencing
FS feature selection
GP genomic prediction
LASSO least absolute shrinkage and selection operator
MI mutual information
ML machine learning
MLP multilayer perceptrons
R Pearson’s correlation coefficient
RF random forests
SNP single nucleotide polymorphism
VT variance threshold
Xgboost eXtreme gradient boosting
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