
Supplemental Materials

1. Computational Methods Overview

Below, we provide general overview of the genomic prediction models that

we applied in this work.

I. Tree-based Methods are a way to combine several models to im-

prove the predictions with a response variable. It has 3 phases such as

generation, pruning, and the integration phase [52].

1. RF py: It is the random forest ensemble of random regression trees

implemented by the RandomForestRegressor method [53]. The out-

puts of the base regression models are averaged to get the model

output. The hyper-parameters are ‘n estimators’, the number of the

trees in the forest, ‘max depth’ is the maximum depth of the tree set,

and ‘max features’ is the parameter to select the number of features

to have a best fit.

2. extraTrees py: It is an ensemble of extremely randomized regres-

sion trees [54] implemented by the ExtraTreesRegressor method from

sklearn library. The only hyper-parameters are ‘n estimators’ and

‘min samples split’, minimum number of samples required to split

an internal node.

3. GB py: It combines weak base learners into a strong ensemble by

iteratively adding base learners in a forward stage-wise fashion, and

in each iteration the new model is trained to fit the residual of the
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previous ensemble. It optimizes arbitrary differentiable loss func-

tions defining the fitting criteria [55]. The sklearn.ensemble python

library provides regression method of Gradient Boosting. The

hyper-parameters ‘learning rate’, ‘max features’, and ‘max depth’

are tuned in the study.

4. adaboost py: It is adaptive boosting meta-estimator [56] which

first fits on the original dataset and then weight of instances are tuned

according to error of the current outcome on additional copies of the

regressor on the same dataset. The hyper-parameter ‘n estimators’

is the number of estimators at which boosting is terminated and the

‘learning rate’ is also tuned and in case of good fit, the learning stops

early.

5. Xgboost py: It is an extreme gradient boosting [55], implemented

using the scikit-learn API for XGBoost regression. The ‘learn-

ing rate’, ‘max depth’, ‘min child weight’, γ, and ‘colsample bytree’

are tuning parameters.

II. Deep Learning

1. mlp py: Multilayer perceptrons (mlp) is class of feedforward artifi-

cial neural network and usually mean fully connected networks and

that is each neuron in one layer is connected to all neurons in the

next layer. The MLP consists at-least 3 layers; input, hidden and

output layer. Formally, one hidden layer mlp regression function is
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represented as follows:

g(x) = b+Wtanh(c+ V x) (1)

Where, x is the input p-vector, V is a n × p matrix, weights from

input to hidden, c is a n-vector, known as hidden unit biases, b is an

q-vector, known as output units biases, and W is an q × h matrix,

weights from hidden to output. In the current study, we developed

a mlp py model by two hidden layers with (32, 16) number of nodes

and (relu, relu) activation function. The function is a mathematical

equation that placed on each neuron and it decides whether that

neuron has to activate or not, it basically determines where inputs

of neuron are significant for the prediction. We tuned batch size and

epochs parameters for the model training and the performance is

calculated using R and optimizer is ‘adam’. The Adam stands for

Adaptive Moment Estimation and it keeps an exponentially decaying

average of past gradients, similar to momentum.

III. Penalized Linear Regression

1. LASSO r: Least Absolute Shrinkage and Selection Operator

(LASSO) is one the most famous parametric linear regression model,

implemented using sklearn Python module and trained with l1 reg-

ularization [57, 58]. The LASSO adds ‘absolute value of magnitude’

of coefficient as penalty term to the loss function. Tuning parameter
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is λ.

β̂LASSO := argmin
β

{ 1
n
||Y −Xβ||22 + λ||β||1} (2)

In the equation 4, ||β||1 is a 1-norm of the coefficient vector β and

λ||β||1 is known as l1 penalty.

2. ridge r: It is linear model, implemented using sklearn library and

combined linear least squares with l2 regularization [57]. It imposes

l2 penalty on the size of the coefficients in order to address some of

the problems of ordinary least squares method. The ridge coefficients

minimize a penalized residual sum of squares. The hyper-parameter

λ is tuned.

β̂Ridge := argmin
β

{ 1
n
||Y −Xβ||22 + λ||β||22} (3)

In the equation 3, ||β||22 is the squared 2-norm of the coefficient vector

β and l2 penalty since it is based on l2 norm of the parameter.

3. elasticnet r: It is a linear model implemented using sklearn module,

combined l1 and l2-norm regularization of the coefficients [57]. The

parameter α is ElasticNet mixing parameters. It is known as l2

penalty, if it is 1 then it is l1 penalty and if it is between 0 and 1

then penalty is a combination of l1 and l2. Along with it, λ value is

also tuned.

β̂ElasticNet := argmin
β

{ 1
n
||Y −Xβ||22 + λ2||β||2 + λ1||β||1} (4)
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IV. Bayesian Regression

The equation 5 represents simple linear function of GP for wheat GY

trait y:

y = Xβ + Zm+ e; (5)

Where, y is response variable and it is the vector of phenotype, X and

Z are incidence matrices i.e. SNPs, β and m are coefficients of SNPs

and e is residual term. ML parametric techniques make assumption

about the function and these models are faster than non-parametric

models. It requires less amount of data for model fitting, gives less

complexity however, it might not be as powerful as non-parametric

model. Here, we implemented three classical methods; BayesA r [1],

BRR r, and BL r [59, 60] using BGLR R package [36]. Each model has

tuned the two metaparamters; nIter with (10000, 9000, and 8000) for

the (dataset1, dataset2, and dataset3) and burnIn with 3000 for three

datasets, meaning the number of iterations, made in the Gibbs sampler

and used as burn-in respectively.
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2. Supplemental Tables

Table S1: Test (outside the brackets) and train (in brackets) correlation (R)
scores for dataset1. Scores are shown for the 12 prediction models per feature
selection method.

Test and Train Results of the dataset 1 (PUL17 F5)
Model VT MI Corr Matrix BayesA
RF py 0.46(0.46) 0.47(0.52) 0.43(0.48) 0.45(0.53)
extraTrees py 0.43(0.37) 0.39(0.43) 0.32(0.41) 0.43(0.44)
GB py 0.48(0.43) 0.51(0.48) 0.40(0.48) 0.43(0.50)
adaboost py 0.46(0.41) 0.45(0.45) 0.40(0.43) 0.45(0.45)
Xgboost py 0.50(0.45) 0.44(0.47) 0.42(0.44) 0.49(0.48)
mlp py 0.35(0.33) 0.42(0.33) 0.42(0.34) 0.42(0.61)
LASSO r 0.42(0.37) 0.42(0.41) 0.34(0.32) 0.36(0.38)
ridge r 0.49(0.41) 0.48(0.50) 0.44(0.48) 0.50(0.75)
elasticnet r 0.42(0.39) 0.44(0.39) 0.35(0.29) 0.50(0.57)
BayesA r 0.47(0.33) 0.46(0.50) 0.44(0.32) 0.50(0.75)
BRR r 0.46(0.32) 0.46(0.50) 0.44(0.30) 0.50(0.75)
BL r 0.46(0.31) 0.45(0.49) 0.43(0.32) 0.50(0.74)

VT = variance threshold, Corr Matrix = correlation matrix, MI = mutual in-
formation. Score in bold indicates the best model on the corresponding dataset.
Each model name is denoted by the method name and programming platform in
which they were implemented.
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Table S2: Test (outside the brackets) and train (in brackets) correlation (R)
scores for dataset2. Scores are shown for the 12 prediction models per feature
selection method.

Test and Train Results of the dataset2 (PUL18 DH)
Model VT MI Corr Matrix BayesA
RF py 0.58(0.64) 0.62(0.66) 0.67(0.63) 0.68(0.67)
extraTrees py 0.55(0.55) 0.49(0.61) 0.67(0.60) 0.67(0.63)
GB py 0.58(0.63) 0.63(0.66) 0.61(0.57) 0.72(0.68)
adaboost py 0.51(0.60) 0.53(0.62) 0.59(0.59) 0.63(0.59)
Xgboost py 0.55(0.63) 0.59(0.65) 0.66(0.62) 0.67(0.67)
mlp py 0.53(0.54) 0.52(0.58) 0.53(0.50) 0.80(0.59)
LASSO r 0.55(0.56) 0.57(0.53) 0.58(0.51) 0.55(0.54)
ridge r 0.56(0.58) 0.57(0.61) 0.59(0.51) 0.65(0.78)
elasticnet r 0.54(0.57) 0.58(0.56) 0.58(0.53) 0.65(0.66)
BayesA r 0.56(0.65) 0.56(0.62) 0.60(0.62) 0.63(0.83)
BRR r 0.56(0.65) 0.55(0.62) 0.57(0.60) 0.63(0.84)
BL r 0.56(0.65) 0.56(0.62) 0.60(0.62) 0.63(0.84)

VT = variance threshold, Corr Matrix = correlation matrix, MI = mutual in-
formation. Score in bold indicates the best model on the corresponding dataset.
Each model name is denoted by the method name and programming platform in
which they were implemented.
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Table S3: Test (outside the brackets) and train (in brackets) correlation (R)
scores for dataset3. Scores are shown for the 12 prediction models per feature
selection method.

Test and Train Results of the dataset 3 (LND18 DH)
Model VT MI Corr Matrix BayesA
RF py 0.45(0.42) 0.42(0.44) 0.46(0.34) 0.40(0.47)
extraTrees py 0.32(0.34) 0.37(0.35) 0.38(0.31) 0.39(0.35)
GB py 0.42(0.42) 0.44(0.40) 0.46(0.33) 0.32(0.42)
adaboost py 0.40(0.40) 0.32(0.41) 0.32(0.31) 0.42(0.33)
Xgboost py 0.37(0.41) 0.40(0.44) 0.35(0.31) 0.46(0.30)
mlp py 0.38(0.32) 0.26(0.35) 0.45(0.30) 0.59(0.37)
LASSO r 0.35(0.23) 0.34(0.29) 0.20(0.23) 0.22(0.30)
ridge r 0.38(0.32) 0.41(0.35) 0.42(0.32) 0.41(0.62)
elasticnet r 0.37(0.29) 0.34(0.30) 0.22(0.18) 0.41(0.46)
BayesA r 0.41(0.53) 0.42(0.55) 0.44(0.44) 0.42(0.55)
BRR r 0.42(0.51) 0.43(0.53) 0.45(0.44) 0.42(0.57)
BL r 0.41(0.58) 0.41(0.54) 0.44(0.46) 0.42(0.56)

VT = variance threshold, Corr Matrix = correlation matrix, MI = mutual in-
formation. Score in bold indicates the best model on the corresponding dataset.
Each model name is denoted by the method name and programming platform in
which they were implemented.
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3. Supplemental Figures

Figure S1: Chromosome-wide SNP density plot of the SNPs selected in dataset1 by vari-
ance threshold. Window size is set to 1 Mb. In the legend, bin range is between 0 and 10,
meaning the bin whose SNP number is smaller or bigger than the range will be used the
same color [61].
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Figure S2: Chromosome-wide SNP density plot of the SNPs selected in dataset1 by mutual
information. Window size is set to 1 Mb. In the legend, bin range is between 0 and 10,
meaning the bin whose SNP number is smaller or bigger than the range will be used the
same color [61].
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Figure S3: Chromosome-wide SNP density plot of the SNPs selected in dataset1 by
Corr Matrix. Window size is set to 1 Mb. In the legend, bin range is between 0 and
10, meaning the bin whose SNP number is smaller or bigger than the range will be used
the same color [61].
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Figure S4: Chromosome-wide SNP density plot of the SNPs selected in dataset1 by
BayesA. Window size is set to 1 Mb. In the legend, bin range is between 0 and 10,
meaning the bin whose SNP number is smaller or bigger than the range will be used the
same color [61].
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Figure S5: Chromosome-wide SNP density plot of the SNPs selected in dataset2 by vari-
ance threshold. Window size is set to 1 Mb. In the legend, bin range is between 0 and 10,
meaning the bin whose SNP number is smaller or bigger than the range will be used the
same color [61].
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Figure S6: Chromosome-wide SNP density plot of the SNPs selected in dataset2 by mutual
information. Window size is set to 1 Mb. In the legend, bin range is between 0 and 10,
meaning the bin whose SNP number is smaller or bigger than the range will be used the
same color [61].
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Figure S7: Chromosome-wide SNP density plot of the SNPs selected in dataset2 by
Corr Matrix. Window size is set to 1 Mb. In the legend, bin range is between 0 and
10, meaning the bin whose SNP number is smaller or bigger than the range will be used
the same color [61].
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Figure S8: Chromosome-wide SNP density plot of the SNPs selected in dataset2 by
BayesA. Window size is set to 1 Mb. In the legend, bin range is between 0 and 10,
meaning the bin whose SNP number is smaller or bigger than the range will be used the
same color [61].
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Figure S9: Chromosome-wide SNP density plot of the SNPs selected in dataset3 by vari-
ance threshold. Window size is set to 1 Mb. In the legend, bin range is between 0 and 10,
meaning the bin whose SNP number is smaller or bigger than the range will be used the
same color [61].
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Figure S10: Chromosome-wide SNP density plot of the SNPs selected in dataset3 by
mutual information. Window size is set to 1 Mb. In the legend, bin range is between 0
and 10, meaning the bin whose SNP number is smaller or bigger than the range will be
used the same color [61].
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Figure S11: Chromosome-wide SNP density plot of the SNPs selected in dataset3 by
Corr Matrix. Window size is set to 1 Mb. In the legend, bin range is between 0 and 10,
meaning the bin whose SNP number is smaller or bigger than the range will be used the
same color [61].
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Figure S12: Chromosome-wide SNP density plot of the SNPs selected in dataset3 by
BayesA. Window size is set to 1 Mb. In the legend, bin range is between 0 and 10,
meaning the bin whose SNP number is smaller or bigger than the range will be used the
same color [61].
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[8] Crossa, J.; Campos, G.D.L.; Pérez, P.; Gianola, D.; Burgueno, J.;

21



Araus, J.L.; Makumbi, D.; Singh, R.P.; Dreisigacker, S.; Yan, J.; et al.

Prediction of genetic values of quantitative traits in plant breeding

using pedigree and molecular markers. Genetics 2010, 186, 713–724.

https://doi.org/10.1534/genetics.110.118521.

[9] Habier, D.; Fernando, R.L.; Kizilkaya, K.; Garrick, D.J. Extension of

the bayesian alphabet for genomic selection. BMC Bioinform. 2011,

12, 1–12. https://doi.org/10.1186/1471-2105-12-186.

[10] Saini, D.K.; Chopra, Y.; Singh, J.; Sandhu, K.S.; Kumar, A.; Bazzer,

S.; Srivastava, P. Comprehensive evaluation of mapping complex traits

in wheat using genome-wide association studies. Mol. Breed. 2022,

42, 1–52. https://doi.org/10.1007/s11032-021-01272-7.

[11] Meher, P.K.; Rustgi, S.; Kumar, A. Performance of Bayesian and

BLUP alphabets for genomic prediction: analysis, comparison and re-

sults. Heredity 2022, 128, 519–530. https://doi.org/10.1038/s41437-

022-00539-9.

[12] Sandhu, K.; Patil, S.S.; Pumphrey, M.; Carter, A. Multitrait machine-

and deep-learning models for genomic selection using spectral informa-

tion in a wheat breeding program. Plant Genome 2021, 14, e20119.

https://doi.org/0.1002/tpg2.20119.
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[33] Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating mutual infor-

mation. Phys. Rev. E 2004, 69, 066138.
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