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Abstract: Due to its rapid reproduction rate and brief life cycle, the most well-known oil palm
pest, Metisa plana (Lepidoptera: Psychidae), also known as the bagworm, can spread to epidemic
proportions. The outbreak can significantly reduce oil palm yield by resulting in 40% crop losses
and 10% to 13% leaf defoliation. A manual census was conducted to count the number of pests and
determine the category of infestation; however, when covering a large area, it typically takes more
time and labour. Therefore, this study used unmanned aerial vehicles (UAVs) as a quick way to detect
the severity levels of infestation in oil palm plantations, including healthy (zero), low, mild, and
severe infestation using DJI Inspire 2 with Micasense Altum-PT multispectral camera at an altitude of
70 m above ground. Three combinations were created from the most significant vegetation indices:
NDVI and NDRE, NDVI and GNDVI, and NDRE and GNDVI. According to the results, the best
combination in classifying healthy and low levels was found to be NDVI and GNDVI, with 100%
F1 score. In addition, the combination of NDVI and NDRE was found to be the best combination in
classifying mild and severe level. The most important vegetation index that could detect every level
of infestation was NDVI. Furthermore, Weighted KNN become the best model that constantly gave
the best performance in classifying all the infestation levels (F1 score > 99.70%) in all combinations.
The suggested technique is crucial for the early phase of severity-level detection and saves time on
the preparation and operation of the control measure.

Keywords: multispectral image; bagworm; infestation; vegetation index; unmanned aerial vehicle;
machine learning

1. Introduction

Bagworms (Lepidoptera: Psychidae) are tiny insect pest larvae that are prevalent
worldwide in arborvitae as well as other fruit and flower crops like apple, maple, elm,
poplar, oak, birch, black locust, cypress, juniper, willow, and juniper. In Malaysia, bagworm,
especially Metisa plana, is the most serious insect pest which is capable of reaching epidemic
proportions in oil palm plantations by presenting higher numbers than usual [1]. Bagworms
are “naturally created” to easily become pests due to their high reproductive rate and short
life cycle, which are gifts of natural advantages, along with their unique dispersal mode,
case construction, and silk thread as survival mechanisms [2]. Bagworm outbreaks are
frequent in oil palm plantations and can result in up to 40% crop losses and 10% to 13%
leaf defoliation, both of which have a significant negative economic impact on oil palm
yield [1,3]. According to Chung [4], small holes from feeding are the first signs of bagworm
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damage on fronds. The outbreaks are noticeable because the bagworms start eating as
soon as they hatch, scraping the top surface of the leaf until it dries out and leaving
holes. The palms with severe bagworm infestations suffer increased amounts of foliage
damage until all the fronds are lost, typically in the upper part of the palm fronds, which
appear brown in colour. Brownish-coloured frond damage results from severe bagworm
infestation. Furthermore, the severely damaged leaves caused the lower and central crown
to appear greyish brown [5]. When pest populations reached their maximum growth
potential, they frequently reached levels that significantly reduced leaf cover over large
areas and had a propensity to recur [6]. Single-species outbreaks were frequently reported,
while mixed species outbreaks could affect both young and old palms, though the area
of the outbreak is typically larger on older palms [7]. According to Aziz et al. [8], precise
estimation of the infestation based on the oil palm foliar damage is difficult to identify.
Thus, the estimation of the damage severity rating was used which corresponds to the
bagworm infestation. The severity rating was divided into four levels, which started with
zero infestation, followed by light damage, medium damage, and serious damage. All the
severity ratings are summarized in Table 1.

Table 1. Classification of damage due to bagworm infestation [8].

Infestation Classification Description
0 NIL e  There is no obvious bagworm harm.
1 Light A leaflet with very few bagworm larvae and pupae.

Leaflets start to have small holes and necrosis.

Most leaflets contain pupae and larvae of bagworms.

2 Medium Leaflets with several holes and light necrosis.

Numerous bagworm larvae and pupae on the leaflet.
3 Serious e  Lots of necrosis and numerous holes on the leaflets and
drying out and turning brown.

A census must be conducted to effectively control bagworm in an oil palm plantation.
It is carried out to count the number of insect pests directly, which involves a superficial
inspection for signs of pest incidence [5]. It is conducted by cutting down one frond to
count the number of larvae on both sides of the frond. According to the Standard Operating
Procedure (SOP) of bagworm control by the Malaysian Palm Oil Board (2016) [9], a census
is conducted on 1% of the infested area, subject to the entire infested area, where one palm
of every ten is sampled. Critical early defoliation can be considered present when there are
ten larvae on each frond [10]. When it comes to covering a large area, this method typically
requires more time and labour. Therefore, a quick and trustworthy method utilising remote
sensing would be helpful in determining the degree of bagworm-infested area for prompt
decisions regarding outbreak control measures.

Technology advancements that replace manual sampling techniques have benefited
the agriculture sector, particularly in terms of increasing crop production. Unmanned
aerial vehicles (UAV), also known as drones, are an increasingly important component of
remote sensing tools in the context of precision farming. UAVs have limitless potential in
agriculture, and they have the power to revolutionise the industry along with smart farming
and new data management techniques [11]. Usually, UAV platforms equipped with a wide
range of sensor types, such as visual RGB (Red, green, blue) cameras, multispectral cameras,
hyperspectral cameras, and thermal cameras that can capture images with flexible revisit
scheduling at low altitudes with ultra-spatial and temporal resolutions have allowed for
the observation of small individual plants and the extraction of information at a fine scale
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that can aid farmers in making decisions, improve agricultural production, and maximise
resource utilisation [12-14].

Moreover, UAV images and machine learning (ML) techniques have developed new
ways to examine datasets recently, particularly in precision agriculture. These models
can be powerful and useful tools for the prediction of various crop parameters using data
obtained from UAV images. Vegetation Indices (VI) are algebraic combinations of different
spectral bands that are used to highlight the vigour and other characteristics of vegetation
(i.e., canopy biomass, absorbed radiation, chlorophyll content, etc.) [15]. Many VIs can
be obtained from RGB cameras or multispectral cameras that consist of five channels
(i.e., red, green, blue, near infrared, and red edge), such as the normalized difference
vegetation index (NDVI), the green normalised difference vegetation index (GNDVI),
the normalized difference red edge (NDRE), the simple ratio (SR), and the chlorophyll
index (CI). These VIs were usually used to provide significant information in analysing
vegetation traits such as plant diseases, pests, and stress detection. For instance, Klouc¢ek
et al. [16] calculated selected vegetation indices (i.e., greenness index (GI), simple ratio
(SR), green ratio vegetation index (GRVI), normalized difference vegetation index (NDVI),
and green normalized difference vegetation index (GNDVI)) and evaluated them based
on visual differences in the spectral curves of bark-beetle-infested tree and healthy trees.
Minafik et al. [17] extracted elevation features (crown area, height percentiles) and three
vegetation indices (i.e., NDVI, NDRE, and Enhanced Normalized Difference Vegetation
Index (ENDVI)) to detect a bark beetle disturbance in a mixed urban forest. According to
Tsouros et al. [18], the most popular techniques for analysing UAV imagery for precision
agriculture include vegetation indices and machine learning. These techniques were used to
detect pests and diseases in a variety of crops, including coffee [19], wheat [20], citrus [21],
cotton [22] and forests [16,23], as summarized in Table 2. Despite the number of various
remote sensing approaches that were used to monitor pests and diseases in oil palm
plantations [24,25], their application at the UAV platform together with vegetation indices
and machine learning techniques is still limited [26,27]. Based on Table 2, it also can be
concluded that the same vegetation indices can be used to detect different types of pests
and diseases in different types of crops. Therefore, it also has the potential to be used for
detecting bagworm infestation areas in oil palm plantations.

Table 2. Summary of the application of UAV-based imagery with machine learning technique.

Cro Purpose of . . Machine Classification
Ty pre) uSlt)u dy Sensor Type Vegetation Indices Lezrn;ng Perfolrmarice References
Normalized difference
vegetation index
(NDVT)
Green Normalized
Difference Vegetation F1 score 91.50%
Coffee Coffee leaf rust  Multispectral Normalized Difference ~ -08istic model (carly stage) [19]
disease camera Red Edge (NDRE) tree (LMT) F1 score: 87.50%
Modified normalized (late stage)
vegetation red edge
(MNDRE)
Modified Green Simple
Ratio (MGSR)
Ratio vegetation index .
(RVI) Precision:
Normalized difference ?{%32?1{0 89.40%
Yellow rust Multispectral vegetation index Random forest e
Wheat disease camera (NDVI) (RF) 8A9C§101/§acy. [20]
Optimized soil (45' days after
adjusted vegetation inoculation)

index (OSAVI)
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Table 2. Cont.
%;g Pugft’l(l’;; of Sensor Type Vegetation Indices ]lt/i :ﬁg;ﬁ; (l;’leﬁ?)l:lnizg(c)g References
Greenness Index (GI),
Simple Ratio (SR),
Green Ratio Vegetation o 1
RGB camera Index (GRVI), Maxi ac‘éiI;ZC .
Bark beetle NIR Normalized Difference lika?}}rlnurg 7896 ¥ [16]
infestation customized Vegetation Index clla‘:sliﬁ% (; (MLC) th_t' o (across
sensor (NDVI), € 1g1e
Forest Green Normalized periods)
Difference Vegetation
Index (GNDVI)
Normalized Difference Overall
. . Hyperspectral Vegetation Index accuracy (HI +
Hine wilt camera (HI) (NDVD), gg‘)dom forest  [iDAR}: 73.96% 23]
and LiDAR Simple Ratio (SR), (Early-stage
Chlorophyll Index (CI), PWD)
Normalized difference
vegetation index
(NDVI)
Simple ratio (SR) Overall
Citrus Greening Multispectral Chlorophyll index (CI)  Support vector ac‘éilgc ) 1]
disease camera Green Normalized machine (SVM) 81.50% Y
Difference Vegetation '
Index (GNDVI)
Normalized Difference
Red Edge (NDRE)
Unsupervised:
k-means
Supervised:
support vector
Cotton Cotton rot Multispectral Green, red and NIR machine (SVM), Overall [22]
disease camera band (CIR) gig:;ﬁlclém accuracy: 88.5%
maximum
likelihood,
Mahalanobis
distance
. . Statistically
Normalized difference sionificant
vegetation index d% e
(NDVI), Green between
Bud rot (BR) Multi tral Normalized Difference  Lowest healthy and
and red ring ultispectra Vegetation Index Significant di y d pal [26]
disease (RRD) ~ camera (GNDVI), Green Difference (LSD) ~ '5¢as€d pa I;:S'
vegetation index (GVI) (generating the
Visible atmospherically baslehne of
resistant index (VARI) f)éfl%}lé{:sg(ﬁﬁ%s)
Green_Red_RedEdge
Oil palm E:I;ek?iﬁgggns; is. theﬁ)est to
Bagworm Multispectral Green_Red_RedEdge - :;?Fa yt' : 7]
infestation camera Green_Red_NIR (Visual analysis) hl ﬁlﬁm 1a£3
Red_RedEdge_NIR . efa )éar}l
Green_RedEdge NIR g;lerite ot
Three band
combinations; .
dGanoderma Multispectral Green_Rej_RedEdge %’;Z?_:i:le}iis ~80°% [27]
isease camera Green_Red_NIR ©
o dF e method (OBIA)

Red_RedEdge_NIR
Green_RedEdge_NIR

Previously, several bagworm studies were conducted in ground-based and aerial-
based detection. Ground-based detection normally was carried out to detect the presence
of bagworm, as performed by Ahmad et al. [28], who identified both live and dead bag-
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worms Metisa plana using a motion tracking technique on oil palm fronds. Nevertheless,
this method was only applied to live and dead bagworms without knowing the specific
instar stage. Since classifying bagworm instar stages is essential for early prevention,
Mohd Johari et al. [29] used machine learning to identify bagworm instar stages based
on spectral properties and upgraded to automatic detection using the transfer learning
approach [30]. However, these studies did not address the infestation. Previously, the
detection of foliar damaged was carried out by Aziz et al. [8], who discovered that the
most sensitive wavelengths (i.e., 570 nm, 680 nm, 734 nm, 787 nm, 996 nm, and 1047 nm)
to detect bagworm-infested foliar damage using ground-based spectrometer. However,
these studies were not appropriate to be applied in a large plantation area, as they require
high labour costs and are time consuming; thus, an aerial-based approach was proposed to
recognise the issue. Anuar et al. [27] applied a multispectral camera mounted on an UAV
to detect the bagworm-infested area and compare it with healthy area and concluded that
a multispectral false-colour composite has the capability to differentiate between healthy
and bagworm-infested oil palm. Nonetheless, this study only focuses on two areas (i.e.,
healthy, and infested) and does not distinguish between different infested areas, such as
low-infestation areas, mildly infested areas, and severely infested areas.

Based on the literature listed above, the study that assessed the potential of UAV
images in detecting different severity levels of bagworm infestation in oil palm plantation
was limited, and more needed to be discovered. Therefore, this study uses UAV-acquired
images and machine learning techniques to locate the bagworm Metisa plana infestation area.
This study focuses exclusively on the ability of machine learning to categorise the severity
level of infestation as healthy, low infestation, mild infestation, and severe infestation using
vegetation indices extracted from UAV images.

2. Materials and Methods
2.1. Overview

Figure 1 shows a flowchart of this study. It began with the data collection, including
study site selection for each category of bagworm infestation, i.e., healthy, low, mild,
and severe infestation, and also the ground assessment of the level of infestation. Image
acquisition was conducted using an UAV, and all the captured images were then processed
for mosaicking and exported in TIFF format. Six selected vegetation indices were derived
and extracted from the imagery. Statistical analysis was carried out to identify the significant
differences between the indices. The three most significant indices were selected for the
classification model. Then, the performance of the model was evaluated based on the value
of accuracy and F1 score. Due to the imbalanced dataset, undersampling and oversampling
methods were used to achieve the balance distribution of the dataset for the further analysis.
A classification model was developed using the combination of significant vegetation
indices. The model was then tested with the original dataset, and the performance of the
model was evaluated. The most insensitive model with the highest F1 score was selected
as the best model in this study.

Data UAV. 'T‘?age Classification Performance
! —> acquisition & [— — !
collection . model evaluation
processing

Figure 1. Flowchart of the study.

2.2. Data Collection

This study was conducted in three different plantation areas, which covers four
categories of infestation, as described in Table 3. These study areas are presented in Figure 2
using a Google Earth imagery (2020) and labelled in the red frames. A healthy plantation
area that showed no sign of infestation was located at Serdang, Selangor, covering about
6 hectares at coordinate location (2°59’13” N, 101°43'34” E) (Figure 2a). Low and mild
infestations were located at Pagoh, Johor (Figure 2b,c), covering 7.0 and 2.0 hectares,



Agriculture 2023, 13, 1886 6 of 21

respectively. Meanwhile, a severe infestation area was located at Ayer Kuning, Perak, with
coordinate location (4°11'56" N, 101°07'38" E), covering 10 hectares (Figure 2d).

Table 3. Information about selected oil palm plantations.

Infestation Location Area (ha) Coordinates Number of Trees

2°59'13" N

Healthy Serdang, Selangor 6.0 101°43/34" E 750
2°10'39"” N

Low 7.0 102°47°01" E 800
Pagoh, Johor > 1048" N

. °10'4

Mild 2.0 102°4711" E 300
. 4°11'56" N

Severe Ayer Kuning, Perak 10.0 101°07/38" E 1000

Figure 2. The study sites, (a) Serdang, Selangor, (b) Pagoh, Johor, (c) Pagoh, Johor, and (d) Ayer
Kuning, Perak.

The incidence of oil palm trees was determined to assess the bagworm infestation in
the oil palm plantation using a quantitative assessment, which was carried out based on
bagworm-infestation symptoms. The assessment was carried out based on the number of
infested fronds over the total number of fronds of each oil palm tree, as suggested by Thaer
et al. [31], using the following formula in Equation (1).

number of infested frond
number of total frond

)

incidence rate =
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Usually, each palm consists of 3040 frond leaves. The infected fronds were identified
based on the condition of the frond and the number of bagworms detected per frond. The
incidence rate was ranked according to infestation and severity of the bagworm infestation,
subject to the severity scale mentioned previously. In addition, a manual census was
also carried out to identify the bagworm instar stage and to sum up the existence of the
bagworms in each frond. The process involved cutting the frond randomly and observing
the bagworms. The incidence rate and the number of bagworms per frond are summarized
in Table 4.

Table 4. Incidence rate and details of bagworm infestation.

Percentage of Number of Bagworms

Classification Incident Rate Details of Incident Rate per Frond
NIL (Healthy) 0% No infested frond detected No bagworm detected
Low 1-33% Light necrosis was detected 10 and below
Mild 34-67% Moderate necrosis and hole 11-50
detected
Severe 68-100% SEHONS RECHOSIS andihole 50 and above

detected

2.3. UAV Image Acquisition and Processing

The images were taken with fixed exposure settings between 10:00 and 11:00 am local
time on a clear and non-cloudy day using a DJI Inspire 2 UAV (DJI Sky City, Shenzen,
China) with a rotary wing, known as a quadcopter, equipped with a Micasense Altum-PT
multispectral camera (Seattle, Washington, DC, USA) (Figure 3).

DLS 2 with
embedded GPPS

DJI Inspire 2

Altum-PT
Multispectral

Platform

caimetra

Figure 3. DJI Inspire 2 with Altum-PT Multispectral camera.

The Micasense series, which has five bands and can record data in the RGB, near-
infrared, and red-edge regions (400-900 nm), was the pioneer of multispectral cameras [32].
It can be used in a wide range of UAV types because of its lightweight design (577 g) and
small size (11 cm x 8 cm x 6.9 cm). It has five sensors with resolution of 3.2 megapixels
(2064 x 1544 pixels) in the five spectral regions of blue (475-500 nm), green (550-565 nm),
red (665-675 nm), red edge (715-725 nm), and NIR (825-860 nm). The sensor acquires all
five bands at a ground sample distance (GSD) of 120 m at a speed of up to 2 captures per
second with a 50° horizontal field of view (HFOV) and a 38° vertical field of view (VFOV).
It also captures ultra-high-resolution panchromatic images and has a thermal sensor at the
resolution of 12.4 megapixels (4112 x 3008 pixels) and 0.1 megapixels (320 x 256 pixels),
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respectively, for data output. A downwelling light sensor (DLS), mounted upward on the
UAV, measures incident light and enables radiometric calibration of these 5 multispectral
bands during image capture.

Meanwhile, the DJI Inspire 2 is a powerful, high-tech drone that weighs approximately
3.44 kg and is capable of transmitting video in both 1080p and 720p at a maximum distance
of 7 km. It travels at an impressive 94 km/h, which is quite fast. The UAV measures 42.7 cm
in length, 31.7 cm in height, and 42.5 cm in width. There are 150 to 390 RAW images for
each flight mission. The GPS coordinates on each photo help with 3D reconstruction.

In this study, the flight altitude was set at 70 metres above ground. Orthomosaics with
a 5.28 cm spatial resolution were taken at a speed of up to two captures per second and with
80% longitudinal and 75% lateral overlap. The Pix4Dmapper software version 4.13.1 (1)
(Pix4D SA, Lausanne, Switzerland) was used to execute the flight missions autonomously.
All the images taken were stored in an SD card.

Image mosaicking was performed in Agisoft Metashape Professional software (Agisoft
LLC,, St. Petersburg, Russia), which generates a multispectral orthomosaic which includes
each band imagery (Blue, Green, Red, Red-edge, NIR and thermal). Agisoft was the
most widely used software due to its advantages of excluding low-quality images and
its standardised workflow [33]. The process of mosaicking was started by importing all
the images into the software. The primary channel was set to panchromatic for a higher-
resolution panchromatic band during alignment. The MicaSense Calibrated Reflectance
Panel, which was captured prior to the flight, was then used to radiometrically calibrate
all the images. The primary goal is to adjust the various radiometric resolutions between
the UAV camera and the sensing periods. Then, the images were aligned, and a dense
point cloud model of the objects was built from the numerous collected images while
also fine-tuning the camera positions of each image. After the orthomosaic imagery was
generated, all the imagery of each infestation level was then exported for further analysis.

All the images of four infestation levels were loaded in the QGIS, an open-source GIS
software version 3.28.2 for data extraction. Reflectance values generated by the multispec-
tral bands corresponding to blue (475-500 nm), green (550-565 nm), red (665675 nm), red
edge (715-725 nm), and NIR (825-860 nm) were used to calculate the vegetation indices.
Six vegetation indices were derived, namely, the normalized difference vegetation index
(NDVI), the green normalized difference vegetation index (GNDVI), the normalized differ-
ence red edge (NDRE), the simple ratio (SR), the green Chlorophyll Index (GCI), and the
red edge Chlorophyll Index (RECI) (Table 5).

Table 5. List of vegetation indices (VIs) with formulas.

No. Vegetation Index Formula Reference
1 NDVI Vi 4
2 GNDVI G 1551
3 NDRE %ﬁﬁiféﬁ [36]
4 SR MR [37]
5 GCI | 8]
6 RECI % -1

Five points were randomly selected from each canopy of palm tree, as illustrated in
Figure 4. These sampling techniques were implemented for each sample of a tree in each
category of infestation. Vegetation indices of these points were then averaged to represent
the vegetation indices of each tree.
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Point 3 .
Point 1
Point 4
Point 2
Point 5

Figure 4. Illustration of vegetation index extraction.

2.4. Classification Model

A significant level of vegetation indices was identified using Analysis of Variance
statistical analysis (ANOVA) in SPSS software (IBM SPSS Statistics 25, IBM, New York, NY,
USA) based on a value of p < 0.05. Seventy percent of the total for each infestation level,
totalling 11,970 datasets, served as the ANOVA'’s input parameters and was later used for
model development, while the other 30% (5130) was used for testing. Only three significant
vegetation indices with a standard error lower than 0.002 were selected as datasets to
develop classification models using the classification learner apps available in the machine
learning toolbox from MATLAB (2021b, The Mathworks Inc., Natick, MA, USA).

A K-fold cross-validation function in MATLAB was used to conduct a cross-validation
process to assess the performance of the model. It was one of the most popular methods
for classifier model selection and error estimation [39]. It divides each sample into a
predetermined number of groups (N), of which N-1 groups are used to fit a model while the
remaining sample is used for validation. Each group served as the validation group during
the ‘N’ times this fitting and validation process was carried out. The model performances
were described using the averaged values of the evaluating metrics. In this study, the N
is set to 5, as it was randomly partitioned into 5 sub datasets of equivalent size. Figure 5
illustrates the 5-fold cross validation process.

—_
w
—_

i}
3
(=5

5 lterations (5-Folds)

Figure 5. The illustration of 5-fold cross validation.

Figure 6 provides a summary of the 5 machine learning classifiers used in this study
from the default setting by the classification learner apps in MATLAB, including Decision
Tree (DT), Discriminant Analysis (DA), Naive Bayes (NB), Support Vector Machine (SVM),
and K-nearest Neighbour (KNN). The classification models were developed separately
using three different combinations of vegetation indices: (a) NDVI and NDRE, (b) NDVI and
GNDVI], and (c) NDRE and GNDVI. The best classification model was determined based
on the highest F1 score mean value. The use of only 2 combinations of vegetation indices
serves to create a straightforward and more cost-effective tool for future hardware design.
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[CLASSIFIER| [ KERNEL |

Fine
| Decision Tree Medium
Coarse

|| Discriminant _[ Linear

analysis Quadratic
Classification }**{ Naive Bayes e
Support Vector | =0
Lyl Machine | _Quadratic
SVM > Cubic ’| Fine
( ) » Gaussian | Medium |

o[ Fine_]
K-Nearest

>  Neighbor |- _Coarse
(KNN) _ Cubic
> Weighted

Figure 6. Type of classifier and kernel used.

2.5. Performance Evaluation

The classification for each infestation category was displayed using the multiclass
confusion matrix, which shows the accuracy for each class while exposing specific misclas-
sifications. From the confusion matrix, true positive (TP), false positive (FP), true negative
(TN) and false negative (FN) can be calculated to assess the performance of the model
such as accuracy, precision, recall, specificity, and F1 score. Accuracy is the proportion of
correctly classified dataset over all datasets. The proportion of correctly predicted positive
observations among all predicted positive observations is known as precision (Equation (2)).
The proportion of correctly predicted positive observations to all the actual observations in
a class is known as recall (Equation (3)). The F1 score (Equation (4)) is the harmonic mean
of the precision and recall, which provides a measurement for the number of errors made
by the algorithm, with 0 being the worst possible value and 1 being the best possible value.
A high F1 score denotes both a high precision and recall. By comparing all the performance
metrics, the F1 score seems more reliable when it comes to unbalanced data. A macro
average was used to determine the results, which involved calculating each performance
separately and averaging them. Additionally, the percentage difference (Equation (5)) of
the F1 score between training (i) and testing (j) was then calculated to identify the pattern
of the model either overfitting or underfitting.

TP

Precision, P = ———— 2
recision, (TP + FP) 2
TP

Recall, R = ——————
ot BT TP+ EN) ®

(P xR)
F1 —score =2 x -——= 4
(P+R) @
Percentage dif ference = @ x 100 ®)

3. Results
3.1. Imagery Acquisition

Figure 7 displays the canopy image in red, green, and blue (RGB) colour format, for all
infestation levels. As shown in Figure 7a, the canopy was completely covered with green
frond leaves, indicating that the canopy is unharmed. Figure 7b shows a canopy with low
infestation that is beginning to change, particularly at the bottom of the canopy where the
frond leaves have begun to dry out. Then, the foliar damage is increasing and starting to
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strip most of the fronds at the bottom canopy area of Figure 7c, indicating mild infestation.
Meanwhile, the severely infested canopy in Figure 7d is completely stripped, with no frond
leaves remaining at the bottom of the canopy.

Figure 7. Condition of canopy image: (a) Healthy, (b) Low infestation, (c) Mild infestation, (d) Severe
infestation.

3.2. Vegetation Indices Analysis

All these vegetation indices were then subjected to a statistical analysis to determine
the variance across the means of infestation level. Results of mean (+standard error)
comparison of the vegetation indices for each infestation category using a Tukey’s HSD
are tabulated in Table 6. Values that are not connected by the same letter are significantly
different. According to Table 6, all the vegetation indices show consistent results where all
infestation categories differ significantly. Figure 8 provides an illustration of the histogram
mean comparison of each vegetation index according to the degree of infestation. As the
infestation grows, it is evident that all values decrease.

Table 6. Tukey’s HSD mean comparison for all vegetation indices based on infestation categories.

Infestation NDVI NDRE GNDVI SR GCI RECI
(Iiial%‘oy) 0.9469 + 0.000342  0.6853 + 0.00130@  0.8874 & 0.00069 @  38.7001 4 0.235902  16.6700 4+ 0.10268%  4.4696 + 0.02413
(nL:"é’(“)O) 0.8892 + 0.00082°  0.4908 + 0.00147°  0.7717 + 0.00095°  19.1967 + 0.16968 P 7.1558 + 0.04566°  1.9789 + 0.01162 °
(nl‘fé%o) 0.7816 + 0.00042¢  0.3319 £ 0.00109 ¢ 0.6380 £ 0.00090 ¢ 8.2434 =+ 0.01708 3.6012 £ 0.01341¢  1.0106 + 0.00513
(nsgq%rgo) 0.5958 £ 0.00180 ¢4 0.1524 +0.00088¢ 05213 +:0.00149¢ 41870 £0.02339¢ 22669 +0.013169  0.3643 & 0.00245 ¢

Data represents the mean (+ standard error). Different letters within the same column indicate statistical difference
by the Tukey’s HSD test at p < 0.05.
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Figure 8. Average infestation level based on each vegetation index. (a) NDVI, (b) GNDVI, (c) NDRE,
(d) SR, (e) GCI, and (f) RECI. Different letters within the bar chart indicate statistical difference by the
Tukey’s HSD test at p < 0.05.
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To provide a more cost-effective solution, only three significant vegetation indices
with standard errors lower than 0.002 were selected, namely NDVI, NDRE, and GNDVI for
model development. The combination of each selected index was then created: NDVI and
NDRE, NDVI and GNDVI, and NDRE and GNDVI. As a result, these three combinations
were included for model development.

3.3. Classification Model Analysis

The performance of the model was evaluated based on the F1 score value. The per-
centage difference between training and testing was calculated to identify the underlier of
the model performance. It was determined based on the model with the smallest difference
between training and testing. The tabulated results are shown in Table 7. According to
Table 7, the F1 scores of all the models during training and testing were mostly high, at
more than 90%. The percentage difference, meanwhile, was lower and below 1%, indicating
that there was no overfitting in any of the models.

Table 7. The performance of all classifiers in all combinations, F1 score.

NDVI and NDRE NDVI and GNDVI NDRE and GNDVI
Classifier Kernel Train Test Dif(f;)r)ence Train Test Dif(f;or)ence Train Test Dif(foe/or)ence
Fine 99.65 99.89 0.24 99.32 100.00 * 0.69 99.07 99.35 0.29
Tree Medium 99.65 99.89 0.24 99.32 100.00 * 0.69 99.07 99.35 0.29
Coarse 99.70 99.78 0.09 99.22 100.00 * 0.78 99.20 99.35 0.15
Linear 98.56 98.34 0.23 99.18 100.00 * 0.82 98.90 97.56 1.36
Discriminant
Quadratic 99.61 99.14 0.47 99.50 99.08 0.43 99.52 98.62 0.90
Naive Bayes Gaussian 99.64 99.25 0.40 99.18 98.76 043 99.09 99.14 0.05
Kernel 99.78 99.46 0.32 99.60 99.16 0.44 99.19 99.08 0.10
Linear 99.78 99.78 0.00 99.46 99.78 0.33 99.39 100.00 * 0.61
Quadratic 99.83 100.00 * 0.17 99.47 99.78 0.31 99.39 99.78 0.40
Cubic 99.78 99.78 0.00 99.50 100.00 * 0.50 99.39 99.35 0.04
SYM Fine Gaussian 99.69 100.00 * 0.31 99.51 99.82 0.31 99.39 99.46 0.07
Medium Gaussian 99.78 99.68 0.10 99.55 99.78 0.24 99.34 100.00 * 0.66
Coarse Gaussian 99.78 99.46 0.32 99.41 100.00 * 0.59 99.30 99.15 0.15
Fine 99.78 99.89 0.11 99.56 99.89 0.33 99.19 99.28 0.09
Medium 99.73 99.68 0.06 99.60 100.00 * 0.41 99.26 100.00 * 0.74
Coarse 99.65 99.25 0.41 99.55 100.00 * 0.45 99.26 99.33 0.06
KNN Cosine 98.22 97.34 0.89 97.89 98.40 0.53 76.64 77.03 0.51
Cubic 99.73 99.57 0.16 99.60 100.00 * 0.41 99.34 100.00 * 0.66
Weighted 99.73 99.89 0.16 99.61 99.89 0.29 99.39 100.00 * 0.61

* indicates the highest F1 score during testing achieved by the models in each combination.

In the combination of NDVI and NDRE, Quadratic SVM and Fine Gaussian SVM, both
achieved a 100% F1 score during testing, indicating that the models successfully classify
the infestation level correctly. It was then followed by a 99.98% F1 score, achieved by Fine
tree, Medium tree, Fine KNN and Weighted KNN. According to their confusion matrix,
the slight difference was due to ‘healthy’ being misclassified as ‘low” with an error rate of
0.44%. The same issue was faced by another 10 models that gained an F1 score between
99.14% and 99.79% (i.e., Coarse tree, Quadratic discriminant, Gaussian Naive Bayes, Linear
SVM, Cubic SVM, Medium Gaussian SVM, Coarse Gaussian SVM, Medium KNN, Coarse
KNN, and Cubic KNN) with error rates ranging between 0.89% and 4.00%. The Cosine
KNN model achieved the lowest F1 score, at 97.34%, due to misclassification of the model
in distinguishing between healthy and low, as well as mild being detected as severe, with
error rates of 4% and 10%, respectively. Additionally, the Linear discriminant model also
had a low F1 score (98.34%) because it misclassified low as healthy (2.22%) and misclassified
low as mild with an error rate of 2.5%. The Kernel Naive Bayes model obtained a 99.46% F1
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score. However, it has two issues: misclassifying healthy as low and low as healthy, with
error rates of 1.78% and 0.42%, respectively.

In the combination of NDVI and GNDVI, nine models, including Fine tree, Medium
tree, Coarse tree, Linear discriminant, Cubic SVM, Coarse Gaussian SVM, Medium KNN,
Coarse KNN, and Cubic KNN, achieved 100% F1 scores, indicating perfect classifications
with zero error rates. There were two models that had an F1 score less than 99%, i.e.,
Gaussian Naive Bayes (98.76%) and Cosine KNN (98.41%). Both models deal with the same
issue, which is misclassification of healthy as low (error rate < 3%), as well as mild being
misclassified as severe (error rate < 6%). Cosine KNN also deals with another issue, which
is misclassification of low as healthy, with an error rate of 0.83%. The same problems with
error rates between 0.42% and 0.83% were addressed by six additional models, namely
Kernel Naive Bayes, Linear SVM, Quadratic SVM, Medium Gaussian SVM, Fine KNN,
and Weighted KNN, which all achieved F1 score ranges of 99.16% to 99.89%. Furthermore,
Kernel Naive Bayes also misclassified mild as severe with an error rate of 4.44%. Quadratic
discriminant and Fine Gaussian SVM achieved F1 score ranges of 99.08% and 99.82%,
respectively; however, they misclassified mild as severe with an error rate of 5.56% and
1.11%, respectively.

In the combination of NDRE and GNDV], five models successfully achieved a 100% F1
score during testing, namely, Linear SVM, Medium Gaussian SVM, Medium KNN, Cubic
KNN and Weighted KNN. On the other hand, three models achieved an F1 score lower
than 99%, i.e., Quadratic discriminant (98.62%), Linear discriminant (97.56%) and Cosine
KNN (77.03%). The performance of Cosine KNN in this combination was the worst because
it was obviously unable to differentiate between all infestation levels, with an average error
rate of 25.19%. Meanwhile, the Quadratic discriminant and Linear discriminant models
had trouble, classifying healthy as low (error rate 3.11%) and low as mild (error rate 2.92%).
The Quadratic discriminant model also misclassified severe as mild with an error rate
of 0.67%. The other models with F1 scores between 99.00% and 99.79% essentially have
the standard issue of being unable to distinguish between healthy and low, such as Fine
tree, Medium tree, Coarse tree, Gaussian Naive Bayes, Quadratic SVM, Cubic SVM, Fine
Gaussian SVM, Coarse Gaussian SVM, Fine KNN, and Coarse KNN, with an average error
rate of 1.64%. However, some of these models also had another issue. For example, Fine
and Medium trees had error rates of 0.42% due to incorrectly classifying low as healthy.
The Kernel Naive Bayes, Coarse Gaussian SVM, and Fine KNN incorrectly misclassified
severe as mild with an average error rate of 0.44%. Misclassification of low, which was
predicted as mild, was also faced by Kernel Naive Bayes, Coarse Gaussian, Gaussian Naive
Bayes and Coarse KNN, with an average error rate of 1.36%.

Overall, the performance of each model varied depending on the combination. The
combination of NDVI and GNDVI was found to be the most successful in terms of perfect
classification, with a 100% F1 score and zero error rate, due to nine models that accurately
classified every level of infestation. It was then followed by a combination of NDRE
and GNDVI with five models, and two models from NDVI and NDRE combinations.
Nonetheless, all the models performed well, with an F1 score of more than 97.00% in every
combination, except for Cosine KNN in the combination of NDRE and GNDVI, which
performed the worst and gained an F1 score of 77.03%.

3.4. Effect of Combination of Vegetation Indices

Figure 9 shows the performance of each model in classifying the infestation level based
on the combination of vegetation indices. In general, all the models performed well across
all combinations. Out of 19 models, 14 models had a great performance, with an F1 score
of more than 98% in classifying all infestation levels for all VI combinations, especially in
classifying mild and severe levels, where all the models performed perfectly and achieved
100% F1 scores, i.e., Fine tree, Medium tree, Coarse tree, Linear SVM, Quadratic SVM,
Cubic SVM, Fine Gaussian SVM, Medium Gaussian SVM, Coarse Gaussian SVM, Fine
KNN, Medium KNN, Coarse KNN, Cubic KNN and Weighted KNN. The best models out
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of these models were the Weighted KNN and Cubic KNN models, which worked well in
all combinations and accurately classified infestation levels. The main distinction between
Cubic KNN and Weighted KNN was that, when NDVI and GNDVI were combined, Cubic
KNN achieved a 100% F1 score in classifying healthy and low, whereas Weighted KNN
achieved 99.78% and 99.79%, respectively. Nevertheless, Weighted KNN outperformed
Cubic KNN, which achieved 99.70% in classifying low and healthy in the combination of
NDVI and NDRE.

Out of all the models, Cosine KNN performed the least well, especially when combined
with NDRE and GNDVI, which performed the least well at classifying all infestation levels.
For instance, it gained a 32% F1 score in classifying mild, followed by 87% (severe), and
94% (healthy and low). Nevertheless, it did well in classifying a mild level in the other
combinations, with an F1 score of more than 94%. Additionally, the Cosine KNN performed
well when NDVI and GNDVI were combined, where all infestation levels were accurately
identified and an F1 score range of 97% to 99% was obtained.

The performance of the remaining four models, which included the Linear discrimi-
nant, Quadratic discriminant, Gaussian Naive Bayes, and Kernel Naive Bayes, were varied,
with F1 scores ranging from 95% to 100%. Generally, they successfully classified severe
level in all combinations and received a perfect F1 score. In addition, they also performed
well in classifying healthy and low, especially in the combination of NDVI and GNDVI, and
obtained F1 scores between 96% and 100%. However, they had difficulty in categorising
mild levels (F1 scores ranged between 95% and 97%), except for the NDRE and NDVI
combination, where they successfully achieved a 100% F1 score.
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0.93
0.92
0.91
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Figure 9. The performance of each model in distinguishing each infestation level based on combina-
tions of vegetation indices. (a) healthy, (b) low, (c) mild, and (d) severe.

In general, the best combination for the model to perform well in classifying the
healthy and low levels of infestation and achieving a 100% F1 score was the combination of
NDVI and GNDVL. For instance, 11 out of 19 models achieved a 100% F1 score in healthy
level (Figure 9a), followed by the combination of NDRE and GNDVI, where only six models
gained a 100% F1 score. A similar outcome was present at the low level, where most of the
models obtained a 100% F1 score (11 models) when NDVI and GNDVI were combined,
followed by the combination of NDRE and GNDVI (four models). For the combination of
NDVI and GNDVJ, it appears to be impossible for the models to classify at the healthy and
low levels and achieve a 100% F1 score; instead, it is the most effective for classifying at the
mild and severe levels, where 17 and 18 models out of 19 models perfectly performed well
at the mild and severe levels, respectively.

The findings of this study were logical, as foliar damage in a severe condition was
evidently present and gave off a brown appearance. The same is true of the mild level,
where all the foliar damage began to become apparent. The crucial factor was therefore
the healthy and low conditions, where the foliar damage was not readily apparent and
recognised. As a result, all the models in this study successfully classified healthy and low
infestation levels, particularly when NDVI and GNDVI were combined.

4. Discussion

In this study, UAV-based multispectral images were used in detecting different severity
levels of bagworm infestation in oil palm plantations. This study employs UAV-acquired
images and machine learning techniques to locate the bagworm Metisa plana infestation
area. It focuses exclusively on the ability of the machine learning to categorise the severity
level of infestation as healthy, low infestation, mild infestation, and severe infestation
using vegetation indices extracted from UAV images. Out of five vegetation indices, three
were selected and formed three combinations: NDVI and NDRE, NDVI and GNDVI, and
NDRE and GNDVI. A total of 19 models were used to determine the effectiveness of the
combination dataset to classify each infestation level.
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Weighted KNN was chosen out of all the models used due to its highly consistent
performance and the great classification of all infestation levels (F1 score greater than
99.70%). It was then followed by Cubic KNN, which had an F1 score of over 99.10%.
Meanwhile, the Cosine KNN model was chosen as having the least effective performance
among the others with an F1 score range between 32% and 94%. It was clearly demonstrated
that the same classifier, using a different kernel, produced the best and worst performance.
KNN typically works by using the distance function to determine how far new data entry
is from values provided in datasets with different classes based on its closeness in the
given range (k) of neighbours. In this study, the k-neighbour was constant and set at 10,
indicating medium distinctions between classes. Meanwhile, the distance function was
based on the kernel type of the KNN. For instance, Weighted KNN uses the distance-
weighing concept, where the weighing is calculated using Euclidean distances. Cosine
KNN and Cubic KNN use cosine distance and cubic distances, respectively. This study
clearly demonstrated that the weighted kernel provided an excellent result due to the
addition of weights to the Euclidean distance, which enhances classification performance.
The same verdict was obtained by Mohd Johari et al. [29], in differentiating the four larval
instar stages with an accuracy of 91% to 95%. In addition, Rathore et al. [40] also found
that KNN, using weighted kernel, achieved a high accuracy of 90% compared to other
kernels in distinguishing between various type of insects and between adult and larvae
insect sounds.

Furthermore, the best combination of vegetation indices was determined to be NDVI
and GNDVI, as most models could successfully classify the level of infestation and achieved
a 100% F1 score, especially in healthy and low levels. The same outcome was obtained by
Mangewa et al. [41], where the NDVI and GNDVI were determined to be the most effective
vegetation indices for detecting and monitoring ecological changes in wildlife habitat
condition classes (i.e., very good, good, poor and very poor). Generally, NDVI is most
useful when used to assess vegetation density over large areas and to assess crop health;
meanwhile, GNDVI is based on the greenness level, which is determined by the radiance of
the leaf surface and is a significant indicator in distinguishing between healthy and infested
leaves. Moreover, the combination of NDVI and NDRE was found to be the most suitable
combination for the models in classifying mild and severe levels and achieved an F1 score
of 100%. A comparable finding was presented by Boiarskii and Hasegawa [42], who used
NDVI and NDRE to identify the poorly growing vegetation area and demonstrated that
NDRE was sensitive to chlorophyll content, indicating nitrogen limitation in the leaves.
Hence, it can be inferred that the results obtained from this research, which showcased
the effectiveness of utilising the combination of NDVI and NDRE, as well as NDVI and
GNDVI, in achieving optimal classification performance for identifying low and severe
infestation, as well as healthy and low infestation, respectively, are deemed satisfactory.

In terms of spectral bands, NIR makes up all the vegetation indices used in this study.
Following that, the NIR band was tested against other bands such as red, green, and
red edge using the same arithmetic operation (subtraction, division, and addition). The
combination of NIR and red band formed NDVI; NIR and green band formed GNDVI;
and NIR and red edge formed NDRE. The combination of NDVI and NDRE obtained the
best results in classifying between mild and severe infestation, as well as a combination of
NDVI and GNDVI obtained the best results in classifying healthy and low. In this study,
NDVI was recognised as a crucial vegetation index because it aids in classifying all levels
of infestation. The red band was regarded as a crucial band in addition to NIR because it
also affects the performance of all classifications. Thus, the performance of all classification
models is clearly boosted by the combination of NIR and red bands.

Nevertheless, a severe condition seems easy to identify, as the foliar damage is obvious.
As mentioned by Corley and Tinker [5], the lower and central crown appeared greyish
brown as a result of the severely damaged leaves. This is consistent with the findings of
this study, which showed that most of the models were correctly classified as severe levels
and had 100% F1 scores in all combinations. In this case, healthy and low infestation levels
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play a crucial role, as it is difficult to detect the starting point of the infestation. As a result,
this suggested method has an excellent chance of identifying healthy and low infestation
levels even when the foliar damage is unseen, and there are no colour changes of the frond.
Therefore, decision-making models may be able to tell farmers when to start pest control
measures to stop the spread of the pest, especially for early infection predictions.

5. Conclusions

In this study, Metisa plana infestation levels were classified using UAV images and a
machine learning approach. To enhance the classification performance of each model in
classifying the level of infestation, three types of combinations among chosen vegetation
indices were developed, namely NDVI and NDRE, NDVI and GNDVI, and NDRE and
GNDVI. According to the results, the best combination for classifying healthy and low
levels was found to be NDVI and GNDVI, empowering the model to classify all infestation
levels with a 100% F1 score. In addition, the combination of NDVI and NDRE was found
to be the best combination fort classifying mild and severe levels. The most important
vegetation index that could detect every level of infestation was NDVI. The classification
of the infestation level is made clearer and more accurate by combining it with other
vegetation indices. In addition, Weighted KNN became the best model, which constantly
gave the best performance in classifying all the infestation levels (F1 score > 99.70%) in all
combinations.

Early detection of a bagworm infestation is crucial for effective management and
early control measures. Therefore, this suggested method is essential for the early phase of
severity level detection, considering that the infestation level can be automatically identified,
allowing the planning and management of the control measure to be planned more quickly.
Furthermore, the outcomes of this study demonstrated the enormous potential of UAV
synergy for the detection of pest infestations using machine learning. Transfer learning
methodology could be used in future studies to provide more automatic classification.
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