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Abstract: Several studies have identified a host of factors to be considered when attempting to
reduce food postharvest loss (PHL). However, very few studies have ranked those factors by their
importance in driving PHL. This study used the Random Forest model to rank the critical drivers
of PHL in maize, mango, and tomato, cultivated in Tanzania, Kenya, and Nigeria, respectively. The
study then predicted the maize, mango, and tomato PHLs by changing the levels of the most critical
drivers of PHL and the number of farmers at each level. The results indicate that the most critical
drivers of PHL consist of pre-harvest and harvest variables in the field, such as the quantity of maize
harvested in the maize value chain, the method used to know when to begin mango harvest, and the
type of pest that attacks plants in the tomato value chain. Furthermore, changes in the levels of a
critical driver and changes in the number of smallholder farmers at a given level both have an impact
on PHL, although the impact of the former is much higher than the latter. This study also revealed
that the critical drivers of PHL can be categorized as either passive and difficult to manipulate, such
as the geographic area within which a smallholder farmer lives, or active and easier to control, such
as services provided by the Rockefeller Foundation YieldWise Initiative. Moreover, the affiliation of
smallholder farmers to the YieldWise Initiative and a smallholder farmer’s geographic location are
ubiquitous critical drivers across all three value chains. Finally, an online dashboard was created to
allow users to explore further the relationship between several critical drivers, the PHL of each crop,
and a desired number of smallholder farmers.

Keywords: variable importance; Random Forest; predictive model; dashboard

1. Introduction

Maize, mango, and tomato are essential crops in Tanzania, Kenya, and Nigeria, respec-
tively. One way to observe this importance is by comparing each crop’s annual production
to all the other primary crops in each country. Maize in Tanzania, mango in Kenya, and
tomato in Nigeria ranked in the 97th, 92nd, and 76th percentile of all primary crops, re-
spectively, in 2019 [1]. Additionally, maize is cultivated by most Tanzanian farmers and
occupies 45 percent of Tanzania’s cultivated land [2]. Meanwhile, mango production in
Kenya, notably the Apple and Ngowe varieties, which are the most prevalent, has increased
rapidly over the last decade and is expected to reach an annual production of 1.1 MT in
2022 [3]. Nigeria is the largest producer of tomatoes in Sub-Saharan Africa (SSA), and
tomato is a key vegetable consumed throughout the country [4].

Besides production quantities, the nutritional facet of each crop is also valuable in
understanding the importance of the crops within the respective country. For example,
maize has been reported to provide about 60 percent of Tanzanian’s dietary calories and
50 percent of their proteins [5], making it an important food crop in several parts of
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Tanzania [6]. Mangos contain high β-carotene content, which is a precursor of vitamin A.
Hence, either fresh or dried, mango fruits could reduce vitamin A deficiency in Kenya in
vulnerable groups such as women and children [7]. Tomato are a rich source of lycopene,
beta-carotene, folate, potassium, vitamin C, flavonoids, and vitamin E, hence, may be
considered a valuable component of a cardioprotective diet [8].

Lastly, the economic importance of each crop, particularly for the benefit of smallholder
farmers (SHFs), has been well reported in several studies. In Tanzania, for example, SHFs
contribute over 80 percent of Tanzania’s total maize production [5], while mango farming
in Kenya and tomato farming in Nigeria constitute a major income generator for many SHF
households [4,9,10].

Yet, despite the evident nutritional and economic value that maize, mango, and tomato
crops bring to the populations of SSA, large quantities of these crops are lost during or
after harvest [11], thus never reaching the end consumer. For instance, in Tanzania, maize
postharvest losses (PHL) of up to 18 percent have been reported along the entire value
chain [12]. Similarly, mango and tomato production is usually accompanied by a major
PHL, estimated at 40–50% [13,14]. Hence, PHL reduction efforts, especially in SSA, could be
a catalyst for increasing profit for food value chain actors while at the same time boosting
food availability and ultimately improving food security [5,15]. To this end, several PHL
reduction initiatives have emerged over the last decade, predominantly in SSA, which
remains the most food-insecure region of the world [16].

Notably, the United Nations Sustainable Development Goals (SDG12.3) aim, by 2030,
to reduce food losses along production and supply chains, including postharvest losses [17].
Additionally, The Rockefeller Foundation launched the YieldWise Initiative (YWI) in 2016,
which implemented several interventions to help smallholder farmers reduce their PHL
in Tanzania, Kenya, and Nigeria [18]. Following the implementation of the YWI, surveys
were conducted to collect farm-level data [19].

While the survey instruments used in the YWI captured many explanatory variables
related to PHL, identifying critical drivers from such a large number of covariates using
standard statistical methods is rather challenging [20]. Therefore, this study used a predic-
tive modeling approach from the field of machine learning to first identify the most critical
drivers of PHL from the large numbers of explanatory variables recorded in the datasets
and their respective impact on PHL in the maize, mango, and tomato value chains. The
advantages of using predictive modeling to this effect include, but are not limited to, their
high speed in generating results [21] and their higher predictive accuracy than explanatory
statistical models [22]. Moreover, predictive models are well suited for exploring and
analyzing diverse data [20,23]. They can capture underlying complex patterns and rela-
tionships in the data [22] and quantify relationships between predictors and outcomes [24].
Furthermore, they are well suited for identifying important variables derived from a large
dataset. Therefore, this study used the Random Forest predictive model approach to iden-
tify the most critical drivers of PHL in the maize, mango, and tomato value chains and
predict their impact. Lastly, an online dashboard was created to allow users to predict
maize, mango, and tomato PHLs by varying several critical drivers of a value chain and the
number of farmers at once. The dashboard is described in Appendix A and can be accessed
through the following link: https://phldashboard.shinyapps.io/phldashboard/ (accessed
on 8 May 2023).

2. Materials and Methods
2.1. Data Summary

For each value chain, the data collected contained multiple explanatory variables,
such as farm demographics, agricultural practices, storage methods, YieldWise affiliation
or interventions, and PHL quantity incurred by the farmer between the harvest and point
of sale. In each value chain, PHL was expressed as the quantitative and qualitative losses
accumulated between harvest and point of sale [19]. After extensively cleaning the YWI
survey data, the maize value chain dataset contained 22 explanatory variables and 381 ob-
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servations (Table 1), the mango value chain dataset contained 21 explanatory variables and
753 observations (Table 2), and the tomato value chain dataset contained 25 explanatory
variables and 503 observations (Table 3). Each observation represents a SHF who responded
to the survey.

Table 1. Maize value chain data summary.

Variables Levels (Subset)
Number of
Farmers or

Observations (n)

21. Average
Land Size (ac)

per Farmer

22. Average
Maize Harvest
(kg) per Farmer

per Season

Average Maize
PHL (%) per
Farmer per

Season

1. gender female 161 4 2836 7
male 220 4 4626 7

2. zone
central 73 8 2410 13
coastal 24 2 2445 14

southern highlands 284 3 4365 6

3. sample types
beneficiary 146 3 4627 6

control 139 6 3210 11
other 96 3 3673 5

4. YieldWise training

female adults 57 2 3519 6
female youth 1 2 6000 7
male adults 84 3 5449 6
male youth 2 3 2878 2

other 237 5 3393 8

5. decides on planting
female adults 78 3 2759 9
male adults 148 4 4163 9

other 155 4 4148 5

6. decides on harvest

female adults 77 3 2865 8
male adults 104 5 4002 10
male youth 1 3 4940 3

other 199 4 4184 6

7. decides on
proceeds

female adults 71 3 2776 9
male adults 103 4 4007 9
male youth 1 3 4940 3

other 206 4 4172 6

8. tarp supplier

agra aggregator 76 3 4399 9
agro equipment stores 147 5 4572 7

donated 12 5 3507 10
other 146 3 2916 6

9. threshing modes
manual 82 3 3388 9

mechanical 134 6 4472 7
other 165 3 3619 7

10. point of sale

farm 11 5 3156 12
homestead 28 5 3199 8

other 333 4 3924 7
village market 8 4 5013 7

warehouse 1 1 3204 1

11. transport mode

other 374 4 3866 8
sacks on animal cart 4 6 3769 2

sacks on bicycle 1 5 7371 3
sacks on wheelbarrow 2 2 2950 5

12. direct client
aggregators 5 2 2266 11

direct consumers 4 4 5884 4
other 372 4 3869 7
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Table 1. Cont.

Variables Levels (Subset)
Number of
Farmers or

Observations (n)

21. Average
Land Size (ac)

per Farmer

22. Average
Maize Harvest
(kg) per Farmer

per Season

Average Maize
PHL (%) per
Farmer per

Season

13. level of dryness

dry 25 5 3923 9
humid 19 3 4478 10
other 104 4 3864 5

very dry 231 4 3829 8
very humid 2 3 2430 15

14. sun drying
practices

field before harvesting 149 4 3572 9
other 108 4 3818 5

shallow layer stand 1 1 1336 4
spread threshed maize 120 4 4328 7
ventilated crib for cob 3 4 2991 11

15. mc measurement
method

farmer experience 110 5 3191 10
other 255 4 4000 7

salt test 6 3 5644 4
smell-based 1 1 2440 2

use of machines 7 5 9078 3
weight-based 2 4 1765 5

16. storage method

home storage 32 4 4240 7
improved granaries 3 3 5060 4
on ground in house 28 3 5135 5

other 108 5 3576 6
pics hermetic bags 13 4 6115 7

plastic bag 161 4 3676 9
plastic silos 1 5 3470 3

traditional granaries 35 4 3393 9

17. received training no 177 4 3514 9
yes 204 4 4178 6

18. education level

complete college 2 4 5400 2
complete primary 293 4 4001 7

complete secondary 31 5 4126 5
complete university 1 2 1620 1

dip certificate 1 5 3798 18
no formal education 19 3 2600 12

other 7 6 2585 10
postgraduate 1 3 5220 0
some primary 16 3 1882 10

some secondary 10 4 5501 4

19. employment
status

formal sector 21 3 3606 5
housewife 35 2 3014 6

informal sector 31 6 3496 11
not working 21 4 2904 6

other 21 4 3980 8
retired 7 4 5301 4

self employed 232 4 4115 7
temporarily employed 13 3 3717 9

20. transport mode I

cattle cart 56 4 4102 9
covered trucks 16 4 4349 4

open trucks 51 4 6849 5
other 197 4 2989 8

sacks on head 16 6 3542 7
sacks on wheelbarrow 10 2 2656 10

tractor 28 4 4842 7
wheelbarrows no sacks 7 3 2586 7
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Table 2. Mango value chain data summary.

Variables Levels (Subset)
Number of
Farmers or

Observations (n)

20. Average
Number of

Mango Trees
per Farmer

21. Average
Mango Price

(KES) per Fruit

Average Mango
PHL (%) per
Farmer per

Season

1. county

central 13 59 5 25
coast 345 19 5 32

eastern 389 71 7 25
northeastern 6 9 7 18

2. treatment control
non beneficiary 282 42 6 31

YieldWise beneficiary 471 49 6 27

3. farm ownership no 135 33 6 28
yes 618 49 6 28

4. labor costs
no 468 33 6 30
yes 285 69 7 25

5. who harvested
mango

buyer 411 58 6 27
farmer 181 24 6 33
other 161 43 7 27

6. inform when to
harvest

days after blooming 5 51 8 14
fruit color 165 70 7 30

fruit size or shape 49 22 6 43
other 521 41 6 27

test for maturity 13 44 6 29

7. frequency of
harvest

daily 53 100 7 31
fortnightly 231 36 6 29

monthly 52 44 6 34
other 109 51 5 28

weekly 308 44 7 26

8. methods of harvest
harvesting tools 49 57 9 25

other 160 35 5 25
traditional practices 544 49 6 30

9. how farmer
identified buyer

brokers 407 48 6 29
farmer-based
organization 12 169 12 12

other 81 48 4 33
own effort 253 38 7 26

10. harvested mango
graded

no 346 49 5 30
yes 407 44 7 27

11. market
destination

export 106 88 8 19
local market 362 45 6 29

other 239 34 5 31
processing 41 24 6 34

supermarket 5 63 14 25

12. storage after
harvesting

cold store 18 75 6 25
other 49 55 6 29

traditional practices 686 45 6 28

13. package for sale
other 314 46 6 31

plastic crates 320 50 7 24
traditional practices 119 39 6 34

14. receive
production training

no 534 41 6 31
yes 219 60 7 21

15. have bank account
no 374 35 6 31
yes 379 58 7 26



Agriculture 2023, 13, 1912 6 of 24

Table 2. Cont.

Variables Levels (Subset)
Number of
Farmers or

Observations (n)

20. Average
Number of

Mango Trees
per Farmer

21. Average
Mango Price

(KES) per Fruit

Average Mango
PHL (%) per
Farmer per

Season

16. have mobile
money account

no 95 29 5 32
yes 658 49 6 28

17. receive
remittances

no 467 47 6 28
yes 286 46 7 29

18. taken loan for
farm

no 695 44 6 29
yes 58 71 8 25

19. production PHL
practices

fruit fly traps 125 76 6 25
other 203 53 8 27
tarp 115 17 5 33

traditional practices 310 41 6 29

Table 3. Tomato value chain data summary.

Variables Levels
(Subset)

Number of
Farmers or

Observations (n)

21. Average
Income

(NGN) per
Farmer

22. Average
Labor Cost
(NGN) per

Season

23. Average
Frequency of

Pesticide
Applications
per Season

24. Average
Distance (km)

to Market

25. Average
Harvest (kg)
per Farmer
per Season

Average
Tomato

PHL (%) per
Farmer per

Season

1. treatment or
control

control 166 235,630 46,796 7 18 214 20
intervention 337 271,738 46,151 6 19 253 15

2. state
jigawa 134 309,038 43,330 6 21 185 22
kano 248 195,535 34,452 5 20 266 13

katsina 121 337,077 74,137 9 12 247 19

3. gender female 5 316,200 11,000 6 4 280 14
male 498 259,255 46,719 6 18 239 17

4. dry month

january 43 244,118 42,531 7 20 260 17
february 6 641,667 110,000 6 4 188 5
august 6 185,000 57,583 6 7 66 14

september 52 398,327 70,133 8 19 219 26
october 229 215,823 37,574 7 21 256 18

november 106 289,778 63,218 5 15 214 15
december 61 235,737 25,149 5 15 249 7

5. tomato
varieties

chibli 20 235,880 36,019 5 13 126 4
other 236 275,188 59,668 7 17 233 15
roma 65 296,261 25,218 5 21 229 17
uc82b 182 229,512 37,801 6 19 265 20

6. intercropped
with tomatoes

no 343 265,509 50,783 7 20 250 16
yes 160 247,628 36,890 6 15 217 19

7. main
fertilizers

npk 63 158,847 29,177 5 11 196 24
other 402 284,891 52,018 7 18 239 15
ssp 21 144,647 9266 5 39 404 15

urea 17 183,476 22,176 5 31 208 17

8. major pests
attacks

aphids 50 278,472 35,752 5 7 154 10
other 287 279,685 54,281 7 16 236 14

thrips bugs 18 203,922 21,406 5 9 228 6
tuta 148 221,799 37,630 6 27 278 26

9. pesticides
usage

combine 329 254,836 53,248 7 18 252 17
other 12 152,592 62,167 1 4 222 10
single 162 277,887 31,212 6 21 217 16

10. diseases
attack

leaf blight 41 177,815 29,810 4 11 238 10
leaf virus 92 180,828 26,667 6 32 326 18

nematodes 43 382,616 62,744 6 14 216 18
other 327 276,181 51,827 7 16 219 17

11. herbicides

glyphosate 77 193,075 33,197 6 32 240 15
manual 337 300,756 54,205 6 14 233 15

other 67 166,036 26,795 6 19 291 20
primextra 22 152,004 31,927 12 29 189 27
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Table 3. Cont.

Variables Levels
(Subset)

Number of
Farmers or

Observations (n)

21. Average
Income

(NGN) per
Farmer

22. Average
Labor Cost
(NGN) per

Season

23. Average
Frequency of

Pesticide
Applications
per Season

24. Average
Distance (km)

to Market

25. Average
Harvest (kg)
per Farmer
per Season

Average
Tomato

PHL (%) per
Farmer per

Season

12. irrigation
type

drip 104 226,746 36,039 6 26 250 17
flood 265 284,821 46,744 7 15 236 18
other 109 266,513 61,075 5 20 258 12

sprinkler 25 103,240 21,140 8 8 158 18

13. harvesting
containers

other 9 307,444 49,889 4 18 223 13
plastic crates 1 8500 23,000 6 1 170 2
raffia baskets 474 244,296 45,798 6 19 246 17

sacks 19 637,816 60,031 5 10 98 11

14. harvest
destination

agg center 9 243,889 52,333 7 8 99 34
buyer picks

up 164 264,128 54,764 7 29 296 17

market 197 216,168 30,184 6 11 202 17
other 133 320,247 59,567 7 16 235 14

15.
transportation

method

1-ton truck 198 273,308 39,966 6 16 254 15
2-ton truck 48 267,115 51,281 9 17 245 25
30-ton truck 2 850,000 25,000 10 237 400 23
5-ton truck 1 115,000 40,000 14 10 234 4
motorcycle 134 225,802 35,320 5 10 168 17

other 81 276,929 78,418 7 38 345 14
tricycle 39 237,174 45,420 6 10 182 19

16. YieldWise
services

credit 23 143,978 22,039 4 52 324 15
inputs 19 238,474 55,237 6 33 239 25

market access 73 151,985 37,607 5 10 234 15
none 177 326,968 63,824 7 18 208 17
other 186 254,787 33,542 6 17 259 15

training 25 259,562 59,340 6 11 267 24

17. information
channel

friend 15 234,557 26,273 7 25 240 27
market 5 239,200 45,000 11 6 280 30

neighbor 3 96,667 20,167 6 1 197 14
other 331 287,468 54,454 7 19 249 17
phone 3 186,000 33,333 4 35 227 27
posters 1 50,000 5000 3 2 50 33
radio 145 206,384 31,118 5 17 220 13

18. farmer group
member

no 180 283,348 47,792 5 14 208 16
yes 323 246,710 45,567 7 21 258 17

19. inputs on
credit

no 473 262,040 46,149 6 18 239 16
yes 30 224,833 49,753 8 16 248 24

20. contract with
Dangote

do not know 18 136,544 39,617 4 10 214 17
no 451 267,166 40,408 6 19 236 17
yes 34 227,653 128,929 9 15 301 7

2.2. Random Forest

Predictive models range from linear models to decision trees, neural networks, support
vector machines, cluster models, expert systems, etc. Each type has its strengths and
weaknesses. However, the Random Forest predictive model was deemed more appropriate
for this study’s objectives since it does not require any distributional assumptions [25] to
analyze the complex YWI data. Furthermore, Random Forests are more effective when
predictors are categorical and are not converted into dummy variables [24], as is the case
in the YWI datasets. They are robust to a noisy response [24], fast to execute, require
minimal storage [26], and, overall, are an effective tool in prediction [27]. Lastly, a Random
Forest analysis can create several predictive models called decision trees and then combine
them [21] to produce more precise predictions [22].

Random Forest models can be divided into two main categories: regression and clas-
sification. Regression Forests are used to predict a quantitative or continuous response,
whereas classification Forests are used to predict a qualitative or categorical response [28].
Because the response variables in this study are maize, mango, and tomato PHL (quan-
titative), the regression Random Forest was used. Fundamentally, the Random Forest
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regression model consists of recording the predictions of each regression tree, Tb, for a new
observation and then taking the average over B trees [23]:

f̂B(x) =
1
B

B

∑
b=1

Tb(x) (1)

where
Tb(x) = prediction outcome of each regression tree b for a new observation x
B = total number of regression trees in the Random Forest model
f̂B(x) = sum of Tb divided by B the for a new observation x
The Random Forest predictive model was built using R software (RStudio, Boston,

MA, USA). The overarching process used to attain the objectives of this study is shown
in Figure 1. Further, the specific procedures used in this study are detailed within the
following subsections. In addition, it should be noted that a first step in this study’s
procedures was to conduct an extensive screening and cleaning process, as described
by [19].
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2.3. Random Forest

To prevent the Random Forest model from overfitting and to accurately evaluate it, it
is important to split the data into a training set and a testing set [29]. The training set was
used to develop the model, while the test or validation set was used to evaluate the model’s
performance [24]. Several splitting rules can be used to partition data; however, empirical
studies show that the best results are obtained when 20–30% of the data are used for
testing and the remaining 70–80% are used for training [29]. Within this study, partitioning
the maize, mango, and tomato datasets was accomplished through the DataPartition()
function [30] and resulted in training sets of 269, 530, and 354 observations and test sets
of 112, 223, and 149 observations in the maize, mango, and tomato value chain datasets,
respectively (Figure 1 step 1).

2.4. Tuning the Random Forest Model

The Random Forest package and the Classification and Regression Training (caret)
package were first loaded to simplify the tuning process. Then, three key parameters were
considered to improve the model’s accuracy, namely: the random seed, the number of trees
to be built in the predictive model, and the number of predictors randomly sampled at
each split, also referred to as “mtry” in R.

Setting a random seed allows the results of the predictive model to be reproduced [28],
since the Random Forest predictive model is built by selecting predictors randomly. The
random seed was set as set.seed(1234) by using the set.seed() function [28]. The number of
trees specifies how many trees will be built to populate the Random Forest. The default
value is generally set at 500 [31], since a larger number of trees in a Forest only increases
its computational cost, has no significant performance gain [32], and could yield overfit-
ting [33]. Hence, the number of trees in this study was left to R’s default setting of 500 trees.
As for the number of predictors randomly sampled at each split, the RandomForest() func-
tion calculates this value by dividing the total number of predictors found in the dataset
by three for the regression Forest [28]. Since the maize dataset contained 22 predictors,
the mango dataset, 21, and the tomato dataset, 25, the resulting mtry values were seven
for the maize and mango value chain predictive models and eight for the tomato model.
Three Random Forest predictive models were built for each value chain’s dataset. Each
Random Forest predictive model’s significance was computed using the rfUtilities package
and the rf.significance() function. In addition to the significance of the predictive models,
the proportion of variance explained and predicted vs. actual plots was also generated to
assess further the accuracy of each Random Forest predictive model.

2.5. Variable Importance

The variable importance calculation identifies important predictors or variables highly
related to the response variable [34]. Hence, computing the variable importance was essen-
tial in achieving this study’s first objective, which consists of identifying the most critical
drivers of maize, mango, and tomato PHL. The variable importance was computed along
with the corresponding p-values by using the rfPermute package and the rfPermute() and
rp.importance() functions. The variable importance was expressed in units of “percent
increase in mean squared error (%IncMSE)”, which represents the mean decrease in accu-
racy in predictions when a given predictor or independent variable is excluded from the
predictive model [28]. Hence, the higher the %IncMSE, the greater the importance of the
corresponding variable in the predictive model. After computing the variable importance,
the critical drivers of PHL were identified as those variables whose %IncMSE were signif-
icant (p-value < 0.05) (see Appendix B). Critical drivers with the highest %IncMSE were
referred to as “most critical drivers”.

2.6. Predictions

Partial dependence plots were generated for each model as they are useful in interpret-
ing the complexity of the Random Forest model [35] by displaying the relationship between
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the predicted outcome (PHL) and predictors of interest (critical drivers) [36]. Partial de-
pendence plots were first generated by using the plotmo package, plotmo() function, and
method = "partdep" argument [37] to have an overall view of the changes in the predicted
PHL as a function of several variables contained in the dataset (Appendix C).

Additional partial dependence plots were also created to explore predicted PHL
changes by varying the levels or subsets of a given critical driver. This process entailed
altering a critical driver of interest in the test set while leaving all other critical drivers of
PHL unchanged and subsequently running the predict() function on the modified test sets.
The process of altering a critical driver of interest varied depending on whether the critical
driver was categorical or numerical. When a critical driver of interest was categorical, all
the levels of that critical driver were changed to a single level of interest (Figure 1 step 5),
then the predict() function was run to predict PHL as a function of the changes made. The
predicted PHL values were subsequently averaged over the total number of observations
(Figure 1 step 6) and plotted on a bar graph, with the predicted average on the vertical axis
and the chosen subset of the critical drivers on the horizontal axis. However, when the
critical driver was numerical, it was first altered by adding a constant to each observation
(Figure 1 step 5), then the predict() function was run to predict PHL as a function of the
changes made (Figure 1 step 6). The predicted PHL values were subsequently plotted in
a line graph, and placed on the vertical axis, while the altered values of the numerical
driver were placed on the horizontal axis. While creating partial dependence plots helps
understand the marginal effect that one or two critical drivers have on the predicted PHL,
adding more than two critical drivers to the plot makes it difficult to visualize. Therefore,
an online dashboard was created using the Shiny package to assess PHL by varying the
subsets of one or more critical drivers and the number of farmers.

3. Results
3.1. Random Forest Models

The proportion of variance explained (R-squared) was low for the predictive models of
the three value chains (Table 4). The low proportion of variance explained is also reflected
in the predicted vs. actual value plots of each crop chain (Figure 2).

Table 4. Summary of the Random Forest predictive model for each value chain.

Random Forest
Predictive Model

Value Chain
p-Value % Var Explained

(R-Squared)
Mean Squared

Residual

Maize 0.001 * 20 67
Mango 0.001 * 13 447
Tomato 0.001 * 21 327

* Indicates that the model is significant at p < 0.05.

Obtaining such low R-squared values in a Random Forest regression model is not
uncommon, especially when using a large dataset with irregular patterns [25], such as the
YWI dataset. The fact that the PHL values were estimated by farmers and not measured
likely led to errors, which in turn contributed to the lower R-squared values, as is sometimes
the case in social science studies [38]. One way to minimize the errors caused by estimating
would be to measure PHL by quantifying each crop’s total weight loss and subsequently
expressing it as a percentage of the total harvested weight [39]. The Random Forest model
summary also produced the mean squared residual values listed in Table 4, which can be
used to compare alternative predictive models to the Random Forest predictive models
used in this study.
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Figure 2. Predicted PHL vs. actual PHL.

3.2. Critical Drivers of PHL

Overall, the number of critical drivers of PHL in the mango and tomato value chains
shown in Figures 3b and 3c, respectively, is approximately three times larger than those
in the maize value chain shown in Figure 3a. Hence, these results suggest that perishable
crops have more critical drivers of PHL than nonperishable crops. Kiaya [40] supports
this notion, as PHL in nonperishable crops is primarily due to exogenous factors such as
moisture, insects, or rodents, while PHL in perishable crops is usually due to exogenous
factors and endogenous factors such as respiration, transpiration, and germination.

Additionally, the most critical drivers of PHL, labeled “the quantity (kg) of maize
harvested by a smallholder farmer” (Figure 3a), “the method used to know when to
begin mango harvest” (Figure 3b), and “the type of pest that attacked the tomato plant”
(Figure 3c), are all related to either pre-harvest or harvest activities. Hence, these results
suggest that PHL reduction efforts should start before a harvest and continue during the
harvest. Incidentally, several studies have attempted to understand how pre-harvest factors
affect PHL. For example, [41] looked at how physiological processes and field management
strategies influenced the ultimate quality of perishable crops. Similarly, [42] established
that the prevention of pre-harvest infection of maize by toxigenic A. flavus strains should
be a critical control point to reduce PHL due to aflatoxin contamination.

The per cent increase in mean squared error (%IncMSE) represents the mean decrease
of accuracy in predictions when a given predictor or independent variable is excluded from
the predictive model. YWI refers to critical drivers related to the YieldWise Initiative.
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Lastly, two types of critical drivers were ubiquitous across all three crop value chains
(Figure 3). First, the geographic location of the smallholder farmer (SHF) was labeled
as “zone” in the maize value chain, “province” in the mango value chain, and “state”
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in the tomato value chain. Second, the affiliation of a SHF with the YWI defined as
the “sample types” in the maize value chain, the “type of packaging” material in the
mango value chain, and the "YWI services" in the tomato value chain. These results also
indicate that the YWI played an important role as a driver of PHL reduction in the three
value chains [43]. While the geographic location of a SHF can be difficult to modify [44],
the various YWI services could be further explored to identify combinations that best
reduce PHL. For this purpose, an online dashboard was created and made accessible at
https://phldashboard.shinyapps.io/phldashboard/ (accessed on 8 May 2023). Screenshots
of the dashboard can be found in Appendix A.

3.3. Assessing the Critical Drivers of PHL

The assessment of the critical drivers of PHL was carried out through partial depen-
dence plots (Figure 4). These show the relationship between the most critical driver in
each value chain, the PHL of each crop, and the number of SHFs. In the maize value chain,
the results reveal that as the quantity of harvested maize increases, typically to more than
1000 kg, the maize PHL decreases, regardless of the change in the number of farmers.

In the mango value chain, counting the number of days after blooming to know when
to begin harvest was associated with the least PHL. Incidentally, several studies have used
the number of days after blooming to either determine the optimal mango harvest date to
mitigate PHL during storage [45] or know when mango fruit develops the best organoleptic
characteristics during ripening [46,47]. The partial dependence plot in Figure 4b also
reveals that the mango PHL increases as the levels change from “days after blooming” to
“fruit size or shape”. Moreover, the PHL increases monotonically as the number of farmers
at each level changes from 10 to 263. However, the PHL increase due to changes in the
levels (from "days after blooming" to “fruit size or shape”) is larger than the increase due
to changes in the number of farmers (from 10 to 223) at each level. These results suggest
that an optimum PHL mitigation practice or technology should be identified first before
increasing its adoption among farmers.

In the tomato value chain, Thysanoptera, ”thrips bugs”, and Emitteri, ”aphids”, are
equally associated with less PHL than the tomato leaf miner Tuta absoluta, “tuta”. Inciden-
tally, other studies have reported the lepidoptera “tuta” as a destroyer of tomato plants in
seven northern states in Nigeria, mainly due to SHFs lacking knowledge of integrated pest
management practices [48,49]. Like the maize and mango value chains, as the levels of the
"types of pest attack" change from Thysanoptera, “thrips bugs”, to Emitteri, “aphids”, and
then to Tuta absoluta, “tuta” (Figure 4c), the shift in tomato PHL is more pronounced than
when changing the number of farmers at each level.

In addition to the established relationship between the levels of various critical drivers
and PHLs, it should be noted that PHL is mainly impacted by the change in the levels of a
critical driver rather than the change in the number of SHFs at each level.

Since PHL is a multifaceted issue that requires considering multiple critical drivers at
a time, an online dashboard was created to explore the relationship between critical drivers,
the PHL of each crop, and the desired number of SHFs. The ability to insert a selected
number of farmers in the dashboard allows the user to predict PHLs based on a new,
arbitrary number of farmers that are not part of the YWI dataset. The online dashboard is
accessible at https://phldashboard.shinyapps.io/phldashboard/ (accessed on 8 May 2023)
and is described in Appendix A.

https://phldashboard.shinyapps.io/phldashboard/
https://phldashboard.shinyapps.io/phldashboard/
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4. Conclusions

This study used Random Forest modeling to analyze the YWI data collected by
the Rockefeller Foundation YieldWise Initiative in three value chains, namely maize in
Tanzania, mango in Kenya, and tomato in Nigeria. The following conclusions emerged
from this analysis.

1. Three critical drivers of PHL were identified in the maize value chain, nine in the
mango value chain, and ten in the tomato value chain. Hence, perishable crops such as
tomato and mango have more critical drivers to consider when attempting to reduce
PHL than nonperishable crops such as maize.

2. The most critical drivers of PHL were the quantity of maize harvested by a smallholder
farmer in the maize value chain, the method used to know when to begin mango
harvest in the mango value chain, and the type of pest that attacked the tomato plant
in the tomato value chain. It was then noted that the most critical drivers are all
related to pre-harvest and harvest activities in the field. Hence, PHL reduction efforts
should begin in the field before harvest and continue during harvest.

3. The critical drivers of PHL fall into two categories: passive critical drivers that are
difficult to manipulate, such as the geographic area within which a smallholder farmer
lives, and active critical drivers that are easier to manage, such as the services provided
by the YieldWise Initiative. Moreover, the geographic location of a smallholder
farmer and the smallholder farmers’ affiliation with the YieldWise Initiative were both
ubiquitous drivers across all three value chains.

4. PHL is impacted by changes in the levels of a critical driver as well as changes in the
number of smallholder farmers at each level, although the former has a much higher
impact. Hence, the optimum PHL mitigation practices or technologies should be iden-
tified first before attempting to increase their adoption among smallholder farmers.

5. An online dashboard was created to (a) visually display maize, mango, and tomato
PHLs in bar graphs for the numerous variables found in the YieldWise Initiative
dataset, (b) rank the critical drivers of maize, mango, and tomato PHL reduction, and
(c) explore the relationship between several critical drivers in each value chain, the
PHL of each crop, and a desired number of smallholder farmers.

While the data that led to the above conclusions were estimated by farmers and not
measured, applying the Random Forest regression algorithm to assess effects across the
three different agricultural commodity types is a strength of this research.
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Appendix A. YieldWise Initiative PHL Data Dashboard

This online dashboard serves as a quantitative information management tool that

• Provides a visual display of the maize, mango, and tomato postharvest losses (PHLs) in
the form of bar graphs as a function of the numerous variables found in the Rockefeller
YieldWise Initiative datasets.

• Ranks the critical drivers of the maize, mango, and tomato PHLs in order of importance.
• Predicts the maize, mango, and tomato PHLs as a function of their three most critical

drivers as well as the number of smallholder farmers of interest.

The dashboard can be accessed by copying the following link into a web browser:
https://phldashboard.shinyapps.io/phldashboard/ (accessed on 8 May 2023). This will
open the dashboard, which can be used as explained in Figures A1–A7 below.
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Figure A3. By selecting “Mango postharvest loss” as shown in the figure above, the user will access a list of variables. The user can then select a desired variable
such as the “county” variable selected in the figure above as an example. The user will then automatically see a bar graph of various PHL along the value chain,
categorized by counties. The number of farmers in each category of the county is also specified in the legend. Finally, the user can collapse the list of variables by
clicking on “Mango postharvest loss” one more time.
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Figure A4. By clicking on “Analyze mango”, as shown in the figure above, the user can “combine
factors”, which allows them to view PHL along the value chain as a function of combining multiple
desired variables as opposed to looking at only one variable. Or the user could also select “drivers of
mango PHL” to look at the critical drivers of mango PHL ranked in their order of importance, that is,
from the most critical driver or variable to the least. Finally, under “Analyze mango”, the user can
predict a PHL by selecting a given driver of PHL and a desired number of farmers.
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“county” AND “labor cost” variables.
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Figure A6. This figure shows the ranking of the drivers of mango PHL, i.e., “mango_factors” in the
first column, followed by their relative importance (expressed in percent in mean squared error) in
driving PHL, and the p-values in the third column. The critical drivers are factors with p < 0.05 (red
text in column 3).
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Figure A7. This figure illustrates how to predict PHL. The user will first have to click on the “predict
mango PHL” menu item circled in red. Then the user can select the desired subset or level of a
given driver, as well as a desired number of farmers circled in blue. Lastly the user will be able to
read the predicted PHL that will be displayed in the box circled in yellow based on the previously
made selections.
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The mango value chain was chosen as an example to illustrate how the dashboard
works. The user can conduct the same operations in the maize and tomato value chains on
the dashboard.

Appendix B. Variable Importance
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Figure A8. The vertical axis lists all explanatory variables found in each value chain dataset. The
horizontal axis shows the %IncMSE, which represents the importance of each explanatory variable.
The red bars represent the critical drivers of PHL or the explanatory variables with statistically
significant importance (p < 0.05).
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Appendix C. Partial Dependence Plots
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Figure A9. Partial dependence plots (PDP). PDPs illustrate the change in the response variables for
given subsets of a critical driver of the highest importance in each value chain. The response variables
are averages of the predicted PHLs and are located on the vertical axis. Each exhibit shows two 2D
plots of the partial dependence and four 3D plots of the combined relationships between multiple
critical drivers of PHL.
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