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Abstract: Developing models to understand disease dynamics and predict the risk of disease out-
breaks to facilitate decision making is an integral component of plant disease management. However,
these models have not yet been developed for one of the most damaging diseases in Mediterranean
olive-growing areas (verticillium wilt (VW), caused by the fungus Verticillium dahliae Kleb.), although
there are parameters (e.g., level of V. dahliae inoculum in the soil, level of susceptibility of the olive
cultivar, isothermality, coefficient of variation of seasonal precipitation, etc.) that have previously
been correlated with the severity of the disease. Using the data from previous VW studies conducted
in the Guadalquivir Valley of Andalusia (one of the most damaged areas worldwide), in this work, a
set of fuzzy logic (FL) models is developed with the aforementioned disease and climatic parame-
ters, and the results are compared with machine learning (ML) models, of known effectiveness, to
predict the risk levels of VW appearance in an olive orchard. Under these conditions, both groups
of models were less effective than those previously studied with simpler models or models used
under controlled conditions. However, the accuracy achieved with the most efficient FL model (60%;
classification system based on fuzzy rules using the Ishibuchi method with a weighting factor) was
somewhat greater than the efficiency achieved with the most efficient ML model (59.0%; decision tree
classifier), in addition to being more appropriate (from a practical point of view) for the incorporation
into a decision support system by allowing the risk of appearance of each observation to be known
by providing rules for each of the combinations of the different parameters with similar precision.
Therefore, in this study, we propose the FL methodology as suitable to act as an expert system for the
future creation of a decision support system for VW in olives.

Keywords: disease risk prediction; fuzzy logic; inoculum density; isothermality; machine learning;
resistance; Verticillium dahliae

1. Introduction

Verticillium wilt (VW), caused by the fungus Verticillium dahliae Kleb., represents
the greatest phytopathological problem in olive cultivation as it causes yield losses and
tree mortality worldwide [1–4]. This disease especially affects cultivated olive groves in
Andalusia (southern Spain) [3], which is the world’s leading olive tree grower, producing
nearly half of the global olive oil production [5]. In this region, the spread of V. dahliae
and the increase in the incidence of VW has been incessant from 1975 to the present [6,7],
which has generated considerable concern in the olive sector, accentuated by the absence of
effective control methods. VW should be managed according to an integrated management
strategy that includes, as a preplanting (and the most effective) control measure, the
quantification of the pathogen in soil while avoiding planting in infested soils, and the
selection of cultivars resistant to or tolerant of V. dahliae [8,9]. After planting, the control
measures mainly focus on avoiding an increase in the pathogen inoculum through chemical,
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biological, physical, and cultural solutions [1,8,10–14]. However, such measures have not
proved to be fully successful due to, among other reasons, the wide range of hosts V. dahliae
presents, guaranteeing a constant expansion and multiplication in the soil and to its high
persistence in the soil in its non-parasitic phase as microsclerotia—this pathogen has a
parasitic phase in the host and a non-parasitic phase as microsclerotia, which can survive in
field soils for up to 15 years [2,15]. This, among the widespread presence of the defoliating
(D) pathotype of the pathogen in Andalusia, which is more virulent than the previously
dominant non-defoliating pathotype (ND) (V. dahliae consists of two pathotypes with
different degrees of virulence: D isolates cause defoliation in olives and cotton, whereas
ND isolates cause wilting but no defoliation), has determined inoculum density in the soil
(ID) as the main factor behind the spread of VW in olives [11,16].

On the other hand, it has also been firmly demonstrated that VW is conditioned by
the host plant [8,17]. However, the susceptibility of the host plant is also related to the
ID [8,11]. Thus, ‘Picual’ is extremely susceptible to V. dahliae when planted in soils with low
inoculum densities (<1 propagules per gram of soil; ppg), while ‘Arbequina’ is moderately
resistant to the pathogen under the same conditions. More than 250 olive cultivars have
been evaluated and the main sources of resistance have exclusively been found in the
cultivars ‘Frantoio’, ‘Empeltre’, and ‘Changlot Real’ [3,18].

Along with the ID and cultivar, the environment, broadly defined to include climate
and preplanting factors that influence inoculum availability, determines the severity of VW
epidemics. V. dahliae is a thermosensitive pathogen oscillating its optimum temperatures
between 22–25 ◦C, similar to for most pathogenic species of Verticillium [19]. As for the
disease, the severity of this is favored by temperatures > 20 and <25 ◦C in spring, followed
by summers with mild temperatures, not exceeding 30–35 ◦C [10,20]. Recent work has
shown the climatic factors that influence the occurrence of V. dahliae in Mediterranean olive
groves in the Granada province (Andalusia, southern Spain) [21]. The authors tested a
series of models with different combinations of climatic variables and demonstrated the
influence of temperature on the increase in VW by stating that certain trends in thermal
amplitudes generated this constant increase.

The interaction among various elements of the pathosystem indicate that VW progress
in olives is likely to be complex. In this sense, a fundamental goal in botanical epidemiology
is to predict the risk of disease at various spatio-temporal scales [22]. Thus, developing
models to understand disease dynamics and predict such a risk of disease outbreaks to
facilitate decision making is an integral component of plant disease management [23,24].
Among all the types of models used for this task, most of them are based on machine
learning (ML). Within this type of methodology, the decision tree classifier and artificial
neural networks are the models that are mainly used for herbaceous [25–28] or perennial
crops, but by using images for automatically detected and recognized diseases [29] or
a single set of parameters (i.e., disease or physiological parameters) under controlled
conditions [30,31]. To efficiently predict the risk of disease at various spatio-temporal scales
in the case of perennial crops, due to the complex interactions found, a more holistic view
of the pathogen, using long-term data and not short periods of time with few locations,
is needed. In this sense, fuzzy logic (FL) can handle the uncertainty of our knowledge
and thus, it is especially useful when evaluating a system requires human experience that
is expressed in ‘linguistic’ terms (e.g., a high risk of infection or low residual fungicide
protection) [32]. As an example, this technique has been satisfactorily used to determine
whether fungicide application is needed to control Plasmopara viticola, the causal agent of
downy mildew, in a vineyard [33].

Even though the key elements of VW epidemiology are known, no tools are available
for predicting the disease development in an orchard as influenced by the disease factors
and environmental conditions. In this work, a set of FL models are developed by using
disease and climatic parameters and compared with ML models of known effectiveness to
predict the risk levels of the appearance of VW in a southern Mediterranean olive orchard.
For that purpose, we use the dataset collected by [8,10–14] in the Guadalquivir Valley
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of Andalusia. Model outputs can be used by technicians and farmers to define the risk
of VW in a specific orchard and year, adapting crop management actions in the context
of integrated pest management. The subsequent creation of a decision support system
presents the utility of the generated models.

2. Materials and Methods
2.1. Data Collection and Parameters

In this study, we used the available data from previous studies conducted by the
AGR-216 group from the University of Córdoba in the Guadalquivir Valley of Andalu-
sia (Figure 1) during the last 30 years. These studies evaluated the effects of different
techniques on the management of VW in olives, such as the resistance of cultivars [8], solar-
ization [10], the level of inoculum in the soil [11], irrigation [12,13], biological control [14],
and fertigation [34].
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Figure 1. Location of studies conducted in the Guadalquivir Valley of Andalusia during the last
30 years by the AGR-216 group from the University of Córdoba, where the data serves to predict
verticillium wilt risk in olives.

The location and years of the previously mentioned (six) studies can be seen in Figure 1
and Table 1. The protocols for the sampling, isolation, and identification of V. dahliae used
to obtain the data, as well as the agronomic characteristics of fields, can be verified in the
mentioned studies.

The data were exclusively collected from the control treatments of the experiments
performed by [8,10–14]. Among all the disease parameters used, the disease incidence
(DI) was selected as the most appropriate according to the proposed objectives. Similarly,
the olive cultivar (Cv) and inoculum density of V. dahliae in the soil (ID) were selected
as disease parameters (Table 1). In the case of the Cv, a numerical value was assigned
according to the relative susceptibility index to VW (RSI) defined by [17] (Table 1). This
index was 26.3% in the case of the extremely tolerant ‘Frantoio’ olive cultivar, 31.5%
for ‘Changlot Real’ (tolerant), 75.8% for ‘Arbequina’ (moderately susceptible), 87.9% for
‘Hojiblanca’ (susceptible), and 100% for the extremely susceptible ‘Picual’ olive cultivar.
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As climatic parameters, the monthly mean temperature (T) and accumulated precipitation
(P) were selected. T and P were recorded by the meteorological stations near the trials
and were used to calculate the isothermality (Isot) and coefficient of variation of seasonal
precipitation (CvP), also as climatic parameters, respectively (Table 1). The isothermal
parameter describes the oscillation of the temperature between day and night in relation to
the oscillation between the summer and winter seasons, within the same year. The CvP,
instead, is the quotient of the standard deviation of the total monthly precipitation with
respect to the total monthly average precipitation [21]. The results of these parameters are
shown as concrete indices, that is, without being multiplied by 100 (Table 1).

Table 1. Locations, years, and data range of the disease and climatic parameters employed to predict
verticillium wilt risk in olives. Disease parameters were obtained from previous studies conducted in
the Guadalquivir Valley of Andalusia by the AGR-216 group from the University of Córdoba.

Locations/Years
Disease Parameters 1 Climatic Parameters 2

ReferencesDI
(%)

Cv
(%)

ID
(ppg)

T
(◦C)

P
(mm) Isot CvP

Marinaleda/1994–1997 40.3–87.7 87.9 14.1–28.6 4.1–29.4 0–68.8 0.1–0.8 1–3
[10,34]Lora del Río/1994–1997 39.3–95.3 100 0–13.3 8.3–37.1 0–16.1 0.1–1.1 1–1.6

Rute/1994–1997 8–34 100 0.5–3.6 8–27.4 0–21.4 −1.8–0.8 1–1.9
Córdoba/2015–2016 0–100 100 5.5–10.3 8.8–30.6 0–3.4 0.1–0.6 0.9–1 [34]
Córdoba/2011–2015 0–100 26.4–100 1.2–9.8 5–28.5 0–13.2 0–0.5 0.8–1.4

[12,13]Andújar/2011–2015 0–91.3 100 5.4–5.4 6.1–28.8 0–8.6 0.1–0.5 0.8–1.1
Córdoba/2001–2003 0–66.6 100 0–10 8–28.1 0–4.8 0.2–0.6 0.9–1.1 [11]
Utrera/2010–2011 4.0–96.0 26.4–100 21–21 10.8–22.5 0.6–6.8 0.1–0.7 0.9–0.9 [8]
Villanueva de la
Reina/2015–2018 0–93.3 26.4–100 0–80 5.8–28.1 0–4.8 0.1–0.7 0.8–1.2 [14]

1 The disease incidence (DI), olive cultivar (Cv), and inoculum density of V. dahliae in the soil (ID; propagules
per gram of soil) were selected as disease parameters. In the case of the Cv, a numerical value was assigned
according to the relative susceptibility index to VW (RSI) defined by [17]. RSI values were 26.3% in the case of the
‘Frantoio’ olive cultivar, 75.8% for ‘Arbequina’, 87.9% for ‘Hojiblanca’, and 100% for ‘Picual’. The protocols for
the sampling, isolation, and identification of V. dahliae used to obtain these data can be checked in the indicated
studies. 2 Monthly mean temperature (T), accumulated precipitation (P), isothermality (Isot), and the coefficient of
variation of seasonal precipitation (CvP) were selected as climatic parameters. The isothermal parameter describes
the oscillation of temperature between day and night in relation to the oscillation between the summer and winter
seasons, within the same year. The CvP, instead, is the quotient of the standard deviation of the total monthly
precipitation with respect to the total monthly average precipitation [21]. The results of these parameters are
shown as concrete indices, that is, without being multiplied by 100.

Finally, the dataset used consisted of 2366 data with a data range of 0–100% for DI,
26.4 to 100.0% for Cv, 0.0 to 80.0 for ID, 4.1–37.2 for T, 0.0–68.8 for P, −1.8–1.1 for Isot, and
0.8–3.0 for CvP (Table 1).

2.2. Modeling Approach and Software

The general response of the experimental measures of the parameters DI, Cv, ID, T, P,
Iso, and CvP was first explored by means of a cluster analysis. The purpose of this analysis
was to establish functional groups of correlated experimental measures and thus assign
each subset of measures a class or level of disease risk.

Then, the relationships between these classes and the studied parameters (DI, Cv, ID,
T, P, Iso, and CvP) were evaluated using FL models. Among all the learning models applied
to this methodology, in this work, those algorithms that focused on data classification
tasks were used. These algorithms were the fuzzy rule-based classification system using
the CHI method (FRBCS.CHI; [35]), classification system based on fuzzy rules using the
Ishibuchi method with the weight factor (FRBCS.W; [36]), genetic fuzzy system based
on genetic cooperative competitive learning (GFS.GCCL; [37]), fuzzy hybrid of genetics-
based machine learning (FH.GBML; [36]), and structural learning algorithm in a vague
environment (SLAVE; [38]). A 10-fold cross-validation was considered to validate these
FL models.
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Supervised ML algorithms were also fitted to the parameters as explanatory parame-
ters, and the DI or disease risk class was the response parameter, taking the lowest disease
risk class as the reference category. The dataset was split 4:1 into training and test sets,
respectively, and a 10-fold cross-validation was used to estimate the accuracy of the models,
with accuracy as the parameter for scoring. The best learned classifier in the test set was
then assessed and used to identify groups that were homogeneous in terms of disease risk.
The results are summarized as a final accuracy score, a confusion matrix, and a classification
report, which are common performance measures for machine learning classification of
severity classes in various plant diseases [26,31].

A cluster analysis and FL implementation were performed in the R software environ-
ment [39] using the version 2023.03.0+386 of RStudio [40] with cluster [41] and frbs [42]
packages, respectively. The ML algorithms were implemented simultaneously using the
Lazy predict library [43] in version 0.19.1 of the Python software [44].

3. Results
3.1. Clustering

The hierarchical cluster analysis yielded five functional groups (A–E) among the
2366 combinations (Figure 2). Group A consisted of 183 combinations with a very high
DI level and was associated with a very high ID, a moderate to high Isot, a moderately
susceptible Cv, and a low CvP. In the opposite case, with a very low DI level (group E),
1352 combinations were included, with Cv being predominantly tolerant; the ID with low
ppg values and the Isot and CvP were positioned with values that were medium to low.
The rest of the groups (B, C, and D) included 341, 231, and 259 combinations with severe,
moderate, and low levels of DI (severe, moderate, and low risks), respectively (Figure 2).
As a result of this analysis, five classes were defined as risk levels of VWO occurrence: very
severe, severe, moderate, low, and very low.

3.2. Fuzzy Logic (FL)

Between all the FL models employed, FRBCS.W was the best that described and
predicted the VW risk classes with an error of 40.0% and accuracy of 60.0% (Table 2). The
error and accuracy of the genetic algorithm GFS.GCCL was the highest and lowest of all
the algorithms used (70.0 and 20%, respectively). The results of the other algorithms can be
observed in Table 2.

Table 2. Accuracy of the fuzzy logic classification algorithms executed to discriminate among
verticillium wilt risk classes based on several disease and climatic parameters.

Algorithms Accuracy (Error)

Fuzzy Rule-Based Classification System using the CHI
method (FRBCS.CHI) 0.50 (0.55)

Fuzzy Rule-Based Classification System using the Ishibuchi
method with the weight factor (FRBCS.W) 0.60 (0.40)

Genetic Fuzzy System based on Genetic Cooperative
Competitive Learning (GFS.GCCL) 0.20 (0.70)

Fuzzy Hybrid of Genetics Based Machine Learning
(FH.GBML) 0.50 (0.46)

Structural Learning Algorithm in a Vague Environment
(SLAVE) 0.40 (0.60)

Based on the membership function from the FRBCS.W, some of the if-then rules with
high success factors are shown in Table 3 (35 rules out of a total of 205).
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Figure 2. Dendrogram showing the results of the cluster analyses and a heat map representation of
disease and climatic parameters in a study where the risk of verticillium wilt in olives was predicted
using the fuzzy logic model. The seven parameters selected for the heat map representation were
related to verticillium wilt (three parameters: final disease incidence (DI), the olive cultivar (Cv; RSI),
and the inoculum density of Verticillium dahliae in the soil (ID)) and climate (four parameters: the
monthly mean temperature (T; ◦C) and precipitation (P, mm), the temperature oscillation between day
and night in relation to the oscillation between the summer and winter seasons, within the same year
(isothermality; Isot), and the coefficient of variation of seasonal precipitation (CvP)). Agglomerative
cluster analyses were performed based on the Spearman’s correlation matrix calculated from values
of the different parameters using the Ward method. Cluster groupings of samples represented in
different colors were estimated on the basis of the average silhouette width according to the Mantel
statistic. In the heat map, for each column, the cells represent the relative values of each parameter
for each sample from six previous studies (nine experiments with 2366 data in total) conducted in the
Guadalquivir Valley of Andalusia during the last 30 years by the AGR-216 group from the University
of Cordoba.
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Table 3. Fuzzy if-then rules to discriminate among verticillium wilt risk classes based on disease and
climatic parameters. The fuzzy control system employed was the classification system based on fuzzy
rules using the Ischibuchi method with the weight factor (FRBCS.W; see Section 2.2 for details).

Rules No.
Rules 1,2

Risk
Success

Factor (%)Cv
(%)

ID
(ppg)

T
(◦C)

P
(mm) Isot CvP

1 Mod. susceptible Very low Low Very low High Very low Very low 38.0
2 Tolerant Very low Low Very low High Very low Low 23.0
3 Tolerant Very low Medium Very low High Very low Very low 39.0
4 Tolerant Very low High Very low High Very low Very low 39.0
5 Tolerant Very low Low Very low High Very low Severe 22.0
6 Tolerant Very low Very low Very low High Very low Moderate 39.0
7 Tolerant Very low Low Very low High Very low Very low 39.0
8 Tolerant Very low Very low Very low High Very low Low 23.0
9 Tolerant Very low Low Very low High Very low Severe 22.0

10 Tolerant Very low Low Very low High Very low Very severe 23.0
11 Tolerant Very low Low Very low High Very low Moderate 18.0
12 Tolerant High Very low Very low High Very low Severe 22.0
13 Tolerant Very low Very low Very low High Very low Low 23.0
14 Tolerant Very low High Very low High Very low Very low 39.0
15 Mod. susceptible Very low High Very low High Very low Very low 39.0
16 Tolerant Very low Very low Very low High Very low Low 23.0
17 Mod. susceptible Very low Very low Very low High Very low Very low 39.0
18 Tolerant Very low High Very low Very high Very low Very severe 23.0
19 Tolerant Very low High Very low High Very low Severe 22.0
20 Tolerant Very low High Very low High Very low Moderate 22.0
21 Mod. susceptible High Low Very low High Very low Very low 18.0
22 Tolerant Very low Very low Very low Medium Very low Low 23.0
23 Tolerant Very low Medium Very low Very low Very low Very severe 23.0
24 Tolerant Very low Medium Very low Very low Very low Moderate 18.0
25 Tolerant Very low Medium Very low Very low Very low Severe 22.0
26 Mod. susceptible Very low Very low Very low Very low Very low Low 23.0
27 Extrem. tolerant Very low Very low Very low Very low Very low Very low 39.0
28 Extrem. tolerant Very low Very low Very low Very low Very low Low 23.0
29 Tolerant Very low Medium Very low Very low Low Very severe 23.0
30 Mod. susceptible High Very low Very low Very low Very low Very low 39.0
31 Tolerant High Very low Very low Very low Very low Severe 22.0
32 Tolerant Very low High Very low Very high Very low Very low 39.0
33 Tolerant Very low High Very low Very high Very low Low 23.0
34 Mod. susceptible Very low Medium Very low Very low Very low Very low 39.0
35 Tolerant High Medium Very low Very low Very low Severe 22.0

1 As an example, the fuzzy logic terms for rule 1 should be as follows: If (Cv is Mod. Susceptible) and (ID is
Very low) and (T is Low) and (P is Very low) and (Isot is High) and (CvP is Very low) then (VW risk is Very low)
2. Two disease and four climatic parameters were used: the level of susceptibility of the olive cultivar (Cv; RSI),
the inoculum density of Verticillium dahliae in the soil (ID), the monthly mean temperature (T) and precipitation
(P), the isothermality (Isot), or the temperature oscillation between day and night in relation to the oscillation
between the summer and winter seasons within the same year (Isot), and the coefficient of variation of seasonal
precipitation (CvP).

Furthermore, the plot of membership functions when the FRBCS.W method was
employed can be seen in Figure 3. It shows that there are six input attributes that have five
linguistic terms (trapezoid) for each attribute. The normalized range of the data for each
parameter and the degree of the membership function are presented in the horizontal and
vertical axes, respectively.
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Figure 3. Normalized input membership functions for VW risk probability using different disease and
climatic conditions. Two disease and four climatic parameters were used: the level of susceptibility
of the olive cultivar (Cv; RSI), the inoculum density of Verticillium dahliae in the soil (ID; ppg), the
monthly mean temperature (T; ◦C) and precipitation (P, mm), the isothermality, or the temperature
oscillation between day and night in relation to the oscillation between the summer and winter
seasons within the same year (Isot), and the coefficient of variation of seasonal precipitation (CvP).
The fuzzy control system employed was the classification system based on fuzzy rules using the
Ischibuchi method with the weight factor (FRBCS.W; see Section 2.2 for details).

As an example, for the Cv parameter, the subset below the blue line represented all
the data belonging to extremely tolerant cultivars (rules 27 and 28; Table 3), those below
the first red line corresponded to data for tolerant cultivars (rules 2, 4–14, 16, 18–20, 22–25,
29, 31–33, and 35; Table 3), and the subsequent trapezoids represented those that were
considered as moderately susceptible (rules 1, 15, 17, 21, 26, 30, and 34; Table 3), etc. Each
trapezoid was determined by four values that corresponded to its four vertices, whose
values were equivalent to its x coordinate on the graph’s axis, being 0.00, 0.14, and 0.28 for
the subsets of the data corresponding to the extremely tolerant cultivars; 0.16, 0.31, 0.38,
and 0.52 for tolerant cultivars; 0.33, 0.49, 0.54, and 0.68 along with 0.47, 0.63, 0.71, and 0.85
(subsequent trapezoid) for moderately susceptible and susceptible cultivars, respectively;
and, 0.71, 0.86, and 1.00 for extremely susceptible cultivars. As can be seen, since these
are normalized data, the graphs of the six parameters considered in the study follow the
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same shape. This means that everyone in the model has the same influence when it comes
to providing the result, although the ranges of the values for each of the variables are
completely different (e.g., an RSI value of 26.35% can be in the same range as an ID of
0.2 ppg). Moreover, the areas of overlap that occurred between the trapezoids could result
in a value on the x axis belonging to two different trapezoids that were equivalent to two
different data regions (for example, moderately susceptible and tolerant in the case of the
Cv parameter). This occurred due to the fact that, for the same rule, the success factor was
different. Therefore, it was the logic we applied based on the knowledge we already had
about this disease that determined, along with its success factor, its validity.

3.3. Machine Learning (ML)

The results obtained for each of the ML models employed are shown in Supplementary
Table S1. Among them, the decision tree classifier was the algorithm that provided the best
results in terms of the accuracy and F1 value and, therefore, it was validated with the test
set for a final independent verification of the accuracy of the model. With the test sets, this
algorithm showed precision values of 92.0%, 56.0%, 48.0%, 59.0%, and 39.0% for the very
low, low, moderate, severe, and very severe classes, respectively, with an average F1 value
of 59.0% (Table 4).

Table 4. Classification report of a decision tree classifier directly run on the test set to discriminate
among verticillium wilt risk classes based on several disease and climatic parameters.

Precision Recall F1-Score Support

Very low 1 0.92 0.91 0.92 317
Low 0.56 0.64 0.60 53

Moderate 0.48 0.57 0.52 54
Severe 0.59 0.51 0.55 81

Very severe 0.39 0.38 0.38 40
avg/total 0.59 0.60 0.59 545

1 Risk of verticillium wilt occurrence in an olive orchard.

Moreover, the thresholds of the ID, Cv, T, P, Isot, and CvP parameters that discrimi-
nated between VW risk classes were determined by using the XGBoost library for Python
software [45]. The pruned tree generated by the classification tree contained five parameters
(ID, Cv, T, Isot, and CvP) with 13 terminal nodes (Figure 4). The ID parameter was the main
factor (i.e., the first division parameter) that differentiated between samples in the very
severe VW risk class from those samples belonging to the severe, moderate, low, and very
low classes, with a relative ID threshold of 13.15 ppg (Figure 4).
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at random from a total set of 2366 samples from six previous studies (eight experiments in total) 

Figure 4. Classification tree to discriminate among verticillium wilt risk classes based on disease and
climatic parameters. Two disease and four climatic parameters were used: the level of susceptibility
of the olive cultivar (Cv; RSI), the inoculum density of Verticillium dahliae in the soil (ID; ppg), the
monthly mean temperature (T; ◦C) and precipitation (P, mm), the isothermality, or the temperature
oscillation between day and night in relation to the oscillation between the summer and winter
seasons within the same year (Isot), and the coefficient of variation of seasonal precipitation (CvP).
Risk class indicates the severity of verticillium wilt symptoms from very low to very severe symptom
developments. The histogram for each terminal node represents the percentage of samples in each
severity class. The data include a training set of 473 samples selected at random from a total set of
2366 samples from six previous studies (eight experiments in total) conducted in the Guadalquivir
Valley of Andalusia during the last 30 years by the AGR-216 group from the University of Cordoba.
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4. Discussion

There are many advantages to predicting the risk of suffering from VW in an olive
orchard. Among them, one of the most important is the possibility of avoiding planting in
orchards where the conditions indicate a high risk of VW. Likewise, knowing the moment
at which said risk increases could facilitate the application of preventive control measures.
However, what is known to date about VW prediction has not been adequate enough to
obtain reliable models for olives, although there are parameters (e.g., level of V. dahliae
inoculum in the soil, susceptibility level of the olive cultivar, isothermality, etc.) that have
been previously correlated with the severity of the disease. In this study, these parameters
were used to develop VW risk assessment models by using the long-term data collected
from previous studies across diverse fields in the Guadalquivir Valley in Andalusia. Such a
risk was assessed by FL algorithms and the results were compared with ML algorithms
with a known high efficiency. Under these conditions, the accuracy of the most efficient
FL model (FRBS.W) turned out to be somewhat higher than the most efficient ML model
(decision tree classifier). Moreover, the FL model was the most adequate for allowing
us to understand the risk of appearance for each observation providing rules for each
of the combinations of the different parameters with a similar accuracy. Thus, it might
be adequate to function as an expert system for the future creation of a decision support
system for VW in olives.

According to the result obtained by the cluster analysis and the conclusions obtained
by [21], the isothermality is proportional to the risk of occurrence of VW in olives. The
combinations where this parameter obtained a higher value was when the risk of VW
occurrence was more severe. This was consistent with the results obtained in other studies
where it was observed that this disease was favorable to climatic fluctuations, in this case
temperature, rather than by an average temperature during a specific day [4,46]. It is
known that the optimum temperature for V. dahliae is in the range of 22–25 ◦C; therefore, it
was assumed that the high temperatures reached in summer suppressed the development
of the pathogen in the main Mediterranean olive areas [47,48].

As expected, the FL models used were effective in predicting VW risk when im-
plemented with the selected parameters of this study (Cv, ID, T, P, Isot, and CvP). This
technique was proposed by [49] with the aim of representing the knowledge of experts in a
set of fuzzy if-then rules to solve complex real-life problems. It is characterized by being
able to handle the uncertainty of our knowledge, allowing us to achieve the best possible
reasoning [50]. Thus, the FL model is currently applied in many scientific areas [51], in-
cluding plant pathology. In this area, this technic has been mainly used to develop expert
systems that help researchers, advisors, and farmers identify the pathogens associated with
observed symptoms [52]. Therefore, we can consider that the FL model has an intuitive
technology as a predictive model, is easy to transfer to farmers or field technicians, and,
most importantly, is suitable as the connection for a decision support system. The most
effective FL technique in this study (FRBCS.W) was developed in a similar way to that
developed by [33]. To perform this, first, a set of rules was developed resulting from a
combination between the different sublevels of each of the parameters considered in the
study. Subsequently, a result was obtained: a risk of VW development in this study or the
decision of whether to apply a fungicide to Plasmopara viticola in a vineyard in the study
by [33], obtaining the precision of the comparison between the results that the predictive
model provided and what an expert would do in the same case. However, the precision
levels of such an algorithm in this work were not very high (60.0%) compared to those
found in the previously mentioned work (99.2%; [33]). The lower precision value obtained
in this study could have been due to the number of classes that were considered (five:
very low, low, medium, high, and very high VW risks), while [33] only used two unique
solutions or classes: applying or not applying a fungicide. In general, the varied origin
of the data used in this study (field, microplots, etc.), among other aspects, could reduce
the accuracy of these models. It was possible that the behavior of the same cultivar or
the response of the plant to the same ID for the different trials was different and that this
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generated certain inconsistencies, both in the cluster analysis and the execution of the
model. If the results obtained were compared with the decisions that a real VW expert
would have made regarding the same combination of variables, the results could have been
different. In fact, according to Table 3, although most of the rules do not have a relatively
high success value, it makes sense to be guided by the theories it establishes if we focus
on the combination of the different parameters used. The risk conferred because of this
combination was equivalent to what really occurred in the development of the disease, and
therefore these theories would be quite useful to use for the prediction of VW for practical
purposes. Apart from these rules, this model graphically described each of the variables
(Figure 3). This would allow us to visually perceive the range of values where the new
data for each parameter would be located. By combining the linguistic terms (susceptible
cultivar, high ID, medium Isot, etc.), we could create rules that, when compared with the
results in Table 3, would present the risks existing in a specific olive orchard.

Among the ML algorithms evaluated in this study, the decision tree classifier yielded
the highest classification accuracy, and when it was used to determine the thresholds of the
different parameters that discriminated between the VW risk levels, the inoculum density
parameter was the best indicator (Figure 4). This algorithm was also used to determine
thresholds that discriminated between classes of VW severity for disease (e.g., density of
micropropagules [31]) or physiological (e.g., ethylene production [30]) parameters. In these
studies, higher accuracy results (73.0–75.0%) were achieved compared to those obtained in
this study (59.0%; Table 4). As previously mentioned, the varied origins of the data used in
this study (field, microplots, etc.), among other aspects, could also reduce the accuracy of
these models. However, in both decision trees used in this study, and in [31], the inoculum
density parameter was the best indicator for the detection of VW, as was previously
demonstrated [11]. However, according to the results obtained in this work, although the
threshold value of 13.2 ppg for V. dahliae in the soil is not exceeded, in the second level,
those plantations with cultivars with an RSI > 51.1% (e.g., Arbequina, Hojiblanca or Picual)
are at moderate to very severe risks of the appearance of VW, regardless of the values
of the rest of the parameters (Figure 4). However, if that ID threshold is exceeded, or it
remains the same, it is the coefficient of variation of precipitation (CvP) that becomes more
important in predicting what will occur. Depending on whether this parameter exceeds
the threshold of 1.7, we would have a very low to severe risk of disease onset. However, if
the inoculum density increases until it reaches the threshold level of 48.5 ppg, we would
have a very severe risk. These results reaffirm the importance of the ID parameter in the
development of VW.

Under the conditions of this study, the FL method was more adequate than the ML
method for better adjusting to the uncertainties presented by VW in olives. Although the
accuracy achieved with the FL method turned out to be somewhat higher that the accuracy
achieved with ML, this technique was especially useful for the evaluation of the selected
parameters, which required human knowledge expressed in linguistic terms to reach a
conclusion regarding the subsequent creation of decision support systems. Thus, the FL
method was adequate for the subsequent creation of decision support systems, which can
help olive farmers in the process of decision making for VW.

5. Conclusions

There are disease and climatic parameters that influence the infection of olive trees
by V. dahliae and the development of VW. However, the joint influence of both groups of
parameters on this disease is unknown. In this study, 2366 data of disease (inoculum density
and susceptibility of olive cultivar) and climatic (temperature, precipitation, isothermality,
and coefficient of variation of seasonal precipitation) parameters were used to predict the
risk of appearance of VW through the FL technique, and the results were compared with
ML algorithms of known high efficiency. The data were collected from previous studies and
corresponded to eight V. dahliae naturally infested olive orchards of different natures and
geographical locations. Among several FL and ML algorithms, the classification system



Agriculture 2023, 13, 2136 13 of 15

based on fuzzy rules using the Ishibuchi method with the weight factor (FRBCS.W) and
the decision tree classifier were the algorithms with higher accuracies (60.0 and 59.0%,
respectively). Although the accuracy of the FRBCS.W was almost similar to that observed
for the decision tree classifier, the FL algorithm turned out to be more intuitive and easier
to understand than the ML method, and thus, it could be useful for the prediction of VW
for practical purposes. In addition to providing rules for each of the combinations of the
different parameters, this model graphically described these parameters, allowing us to
visually perceive the range of values where the new data for each parameter would be
located. Based on the simple information provided by the farmer, the model could provide
a value (risk level) and reason (rule) that would allow the user to understand what was
occurring in the olive orchard and anticipate the disease. These techniques, along with
other newer network models for a potentially better detection accuracy, must be validated
with real data from commercial farms in future works with the aim of increasing their
levels of precision. In this way, if the data were exclusively obtained from field plots, the
number of inconsistencies would be reduced, the similarities between the data would be
greater, and the validity of the model would be higher. The following steps would be the
construction of a decision support system, which is a system that provides information
of interest in a concise manner, serving as a guide for the olive farmer to make decisions
based on the collected data.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agriculture13112136/s1, Table S1: Result of machine learning
algorithms implemented with the Lazy Predict library in Python software to discriminate among
verticillium wilt risk classes based on the following disease and climatic parameters: the level
of susceptibility of the olive cultivar (Cv; RSI), the inoculum density of Verticillium dahliae in the
soil (ID; ppg), the monthly mean temperature (T; ºC) and precipitation (P, mm), the isothermality,
or the temperature oscillation between day and night in relation to the oscillation between the
summer and winter seasons within the same year (Isot), and the coefficient of variation of seasonal
precipitation (CvP).

Author Contributions: Conceptualization, F.J.L.-E., J.R. and A.S.-R.; data curation, R.B.-C. and F.J.L.-
E.; formal analysis, R.B.-C. and A.S.-R.; funding acquisition, F.J.L.-E.; investigation, F.J.L.-E. and
A.S.-R.; methodology, A.S.-R. and J.R.; project administration, F.J.L.-E.; resources, F.J.L.-E.; validation,
A.S.-R.; writing—original draft, F.J.L.-E., R.B.-C. and A.S.-R.; writing—review and editing, A.S.-R.
and F.J.L.-E. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Seresco S.L. Company within the project CIP-OLIVE
(cloud-based integrated platform for monitoring pests; www.modem-ivm.eu (accessed on 8 August
2023)) partly funded by the Spanish Centre for Industrial Technological Development (CDTI).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data are contained within the article.

Acknowledgments: We especially wish to thank the Agroforestry Pathology group from the Univer-
sity of Cordoba (AGR-216) for permitting the authors to collect the data for this study.

Conflicts of Interest: The authors declare no competing financial interest.

References
1. Lahkim, L.T. Epidemiology and Control of Verticillium Wilt on Olive. Isr. J. Plant Sci. 2011, 59, 59–69. [CrossRef]
2. Keykhasaber, M.; Pham, K.T.K.; Thomma, B.P.H.J.; Hiemstra, J.A. Reliable Detection of Unevenly Distributed Verticillium dahliae

in Diseased Olive Trees. Plant Pathol. 2017, 66, 641–650. [CrossRef]
3. Montes-Osuna, N.; Mercado-Blanco, J. Verticillium Wilt of Olive and Its Control: What Did We Learn during the Last Decade?

Plants 2020, 9, 735. [CrossRef]
4. Jiménez-Díaz, R.; Cirulli, M.; Bubici, G.; Jiménez-Gasco, M.; Antoniou, P.; Tjamos, E. Verticillium Wilt, a Major Threat to Olive

Production: Current Status and Future Prospects for Its Management. Plant Dis. 2012, 96, 304–329. [CrossRef]
5. MAPA. Encuesta Sobre Superficies y Rendimientos de Cultivos. Available online: https://www.mapa.gob.es/es/estadistica/

temas/estadisticas-agrarias/agricultura/esyrce/ (accessed on 18 March 2023).
6. Ruiz-Torres, M.J. Situación Fitosanitaria y Control Del Olivar Andaluz En La Pasada Campaña. Vida Rural 2010, 304, 44–47.

https://www.mdpi.com/article/10.3390/agriculture13112136/s1
https://www.mdpi.com/article/10.3390/agriculture13112136/s1
www.modem-ivm.eu
https://doi.org/10.1560/IJPS.59.1.59
https://doi.org/10.1111/ppa.12647
https://doi.org/10.3390/plants9060735
https://doi.org/10.1094/PDIS-06-11-0496
https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/esyrce/
https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/esyrce/


Agriculture 2023, 13, 2136 14 of 15

7. Caballero, J.M.; Pérez-Hernández, J.; Blanco-López, M.A.; Jiménez-Díaz, R.M. Olive, a New Host of Verticillium dahliae, Kleb. In
Proceedings of the 5th Congress off the Mediterranean Phytopathological Union, Patras, Greece, 21–27 September 1980; pp. 50–52.

8. Trapero, C.; Serrano, N.; Arquero, O.; Del Río, C.; Trapero, A.; López-Escudero, F.J. Field Resistance to Verticillium Wilt in Selected
Olive Cultivars Grown in Two Naturally Infested Soils. Plant Dis. 2013, 97, 668–674. [CrossRef]

9. Pérez-Artés, E.; Mercado-Blanco, J.; Ruz-Carrillo, A.R.; Rodríguez-Jurado, D.; Jiménez-Díaz, R.M. Detection of the Defoliating
and Nondefoliating Pathotypes of Verticillium dahliae in Artificial and Natural Soils by Nested PCR. Plant Soil 2005, 268, 349–356.
[CrossRef]

10. López-Escudero, F.J.; Blanco-Lopez, M.A. Effect of a Single or Double Soil Solarization to Control Verticillium Wilt in Established
Olive Orchards in Spain. Plant Dis. 2001, 85, 489–496. [CrossRef] [PubMed]

11. López-Escudero, F.J.; Blanco-López, M.A. Relationship between the Inoculum Density of Verticillium dahliae and the Progress of
Verticillium Wilt of Olive. Plant Dis. 2007, 91, 1372–1378. [CrossRef]

12. Pérez-Rodríguez, M.; Alcántara, E.; Amaro, M.; Serrano, N.; Lorite, I.J.; Orgaz, F.; López-escudero, F.J. The Influence of Irrigation
Frequency on the Onset and Development of Verticillium Wilt of Olive. Plant Dis. 2015, 99, 488–495. [CrossRef] [PubMed]

13. Pérez-Rodríguez, M.; Serrano, N.; Arquero, O.; Orgaz, F.; Moral, J.; López-Escudero, F.J. The Effect of Short Irrigation Frequencies
on the Development of Verticillium Wilt in the Susceptible Olive Cultivar ‘Picual’ at Field Conditions. Plant Dis. 2016, 100,
1880–1888. [CrossRef]

14. Mulero-Aparicio, A.; Agustí-Brisach, C.; Varo, Á.; López-Escudero, F.J.; Trapero, A. A Non-Pathogenic Strain of Fusarium
oxysporum as a Potential Biocontrol Agent against Verticillium Wilt of Olive. Biol. Control 2019, 139, 104045. [CrossRef]

15. Wilhelm, S. Longevity of the Verticillium Wilt Fungus in the Laboratory and Field. Phytopathology 1955, 45, 180–181.
16. Roca, L.F.; Moral, J.; Trapero, C.; Blanco-López, M.Á.; López-Escudero, F.J. Effect of Inoculum Density on Verticillium Wilt

Incidence in Commercial Olive Orchards. J. Phytopathol. 2016, 164, 61–64. [CrossRef]
17. Arias-Calderón, R.; Rodríguez-Jurado, D.; Bejarano-Alcázar, J.; Belaj, A.; de la Rosa, R.; León, L. Evaluation of Verticillium Wilt

Resistance in Selections from Olive Breeding Crosses. Euphytica 2015, 206, 619–629. [CrossRef]
18. Garcia-Ruiz, G.M.; Trapero, C.; Del Rio, C.; Lopez-Escudero, F.J. Evaluation of Resistance of Spanish Olive Cultivars to Verticillium

dahliae in Inoculations Conducted in Greenhouse. Phytoparasitica 2014, 42, 205–212. [CrossRef]
19. Garber, R.H.; Presley, J.T. Relation of Air Temperature to Development of Verticillium Wilt on Cotton in the Field. Phytopathology

1971, 61, 204. [CrossRef]
20. Wilhelm, S.; Taylor, J.B. Control of Verticillium Wilt of Olive through Natural Recovery and Resistance. Phytopathology 1965, 55,

310.
21. Requena-Mullor, J.M.; García-Garrido, J.M.; García, P.A.; Rodríguez, E. Climatic Drivers of Verticillium dahliae Occurrence in

Mediterranean Olive-Growing Areas of Southern Spain. PLoS ONE 2020, 15, e0232648. [CrossRef]
22. Madden, L.V. Botanical Epidemiology: Some Key Advances and Its Continuing Role in Disease Management. Eur. J. Plant Pathol.

2006, 115, 3–23. [CrossRef]
23. Scherm, H.; Ngugi, H.K.; Ojiambo, P.S. Trends in Theoretical Plant Epidemiology. In Plant Disease Epidemiology: Facing Challenges

of the 21st Century; Springer: Dordrecht, The Netherlands, 2006; pp. 61–73.
24. Jeger, M.J.; Xu, X.-M. Modelling the Dynamics of a Plant Pathogen and a Biological Control Agent in Relation to Flowering

Pattern and Populations Present on Leaves. Ecol. Model. 2015, 313, 13–28. [CrossRef]
25. Malicdem, A.R.; Fernandez, P.L. Rice Blast Disease Forecasting for Northern Philippines. WSEAS Trans. Inf. Sci. Appl. 2015, 12,

120–129.
26. Fenu, G.; Malloci, F.M. Forecasting Plant and Crop Disease: An Explorative Study on Current Algorithms. Big Data Cogn. Comput.

2021, 5, 2. [CrossRef]
27. Bhatia, A.; Chug, A.; Singh, A.P. Hybrid SVM-LR Classifier for Powdery Mildew Disease Prediction in Tomato Plant. In

Proceedings of the 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 27–28
February 2020; pp. 218–223.

28. Mehra, L.K.; Cowger, C.; Gross, K.; Ojiambo, P.S. Predicting Pre-Planting Risk of Stagonospora Nodorum Blotch in Winter Wheat
Using Machine Learning Models. Front. Plant Sci. 2016, 7, 390. [CrossRef]

29. Aswini, E.; Vijayakumaran, C. A Comprehensive Analysis of the Developments and Applications of Deep Learning in Citrus
Plant Disease Detection. In Proceedings of the 2023 Second International Conference on Augmented Intelligence and Sustainable
Systems (ICAISS), Trichy, India, 23–25 August 2023; pp. 699–703.

30. Calderón, R.; Lucena, C.; Trapero-Casas, J.L.; Zarco-Tejada, P.J.; Navas-Cortés, J.A. Soil Temperature Determines the Reaction of
Olive Cultivars to Verticillium dahliae Pathotypes. PLoS ONE 2014, 9, e110664. [CrossRef]

31. Santos-Rufo, A.; Rodríguez-Jurado, D. Unravelling the Relationships among Verticillium Wilt, Irrigation, and Susceptible and
Tolerant Olive Cultivars. Plant Pathol. 2021, 70, 2046–2061. [CrossRef]

32. Chen, G.; Pham, T.T. Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems; CRC Press: Boca Raton, FL, USA, 2000.
33. Gonzalez-Dominguez, E.; Caffi, T.; Bodini, A.; Galbusera, L.; Rossi, V. A Fuzzy Control System for Decision-Making about

Fungicide Applications against Grape Downy Mildew. Eur. J. Plant Pathol. 2016, 144, 763–772. [CrossRef]
34. Pérez-Rodríguez, M.; Santos-Rufo, A.; López-Escudero, F.J. High Input of Nitrogen Fertilization and Short Irrigation Frequencies

Forcefully Promote the Development of Verticillium Wilt of Olive. Plants 2022, 11, 3551. [CrossRef] [PubMed]

https://doi.org/10.1094/PDIS-07-12-0654-RE
https://doi.org/10.1007/s11104-004-0378-1
https://doi.org/10.1094/PDIS.2001.85.5.489
https://www.ncbi.nlm.nih.gov/pubmed/30823124
https://doi.org/10.1094/PDIS-91-11-1372
https://doi.org/10.1094/PDIS-06-14-0599-RE
https://www.ncbi.nlm.nih.gov/pubmed/30699544
https://doi.org/10.1094/PDIS-09-15-1018-RE
https://doi.org/10.1016/j.biocontrol.2019.104045
https://doi.org/10.1111/jph.12382
https://doi.org/10.1007/s10681-015-1463-7
https://doi.org/10.1007/s12600-013-0353-6
https://doi.org/10.1094/Phyto-61-204
https://doi.org/10.1371/journal.pone.0232648
https://doi.org/10.1007/s10658-005-1229-5
https://doi.org/10.1016/j.ecolmodel.2015.06.015
https://doi.org/10.3390/bdcc5010002
https://doi.org/10.3389/fpls.2016.00390
https://doi.org/10.1371/journal.pone.0110664
https://doi.org/10.1111/ppa.13442
https://doi.org/10.1007/s10658-015-0781-x
https://doi.org/10.3390/plants11243551
https://www.ncbi.nlm.nih.gov/pubmed/36559663


Agriculture 2023, 13, 2136 15 of 15

35. Chi, Z.; Yan, H.; Pham, T. Fuzzy Algorithms: With Applications to Image Processing and Pattern Recognition; World Scientific:
Singapore, 1996; Volume 10.

36. Ishibuchi, H.; Yamamoto, T.; Nakashima, T. Hybridization of Fuzzy GBML Approaches for Pattern Classification Problems. IEEE
Trans. Syst. Man Cybern. Part B (Cybern.) 2005, 35, 359–365. [CrossRef] [PubMed]

37. Herrera, F. Genetic Fuzzy Systems: Status, Critical Considerations and Future Directions. Int. J. Comput. Intell. Res. 2005, 1, 59–67.
[CrossRef]

38. González, A.; Pérez, R.; Verdegay, J.L. Learning the Structure of a Fuzzy Rule: A Genetic Approach. Fuzzy Syst. Artif. Intell. 1994,
3, 57–70.

39. R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2018.
40. R Core Team; RStudio; Open Source. Professional Software for Data Science Teams—RStudio; RStudio: Boston, MA, USA, 2017.
41. Maechler, M.; Rousseeuw, P.; Struyf, A.; Hubert, M.; Hornik, K. Cluster: Cluster Analysis Basics and Extensions. Available online:

https://cir.nii.ac.jp/crid/1370290617548437512 (accessed on 28 July 2021).
42. Riza, L.S.; Bergmeir, C.; Herrera, F.; Benítez, J.M. Frbs: Fuzzy Rule-Based Systems for Classification and Regression in R. J. Stat.

Softw. 2015, 65, 1–30. [CrossRef]
43. Pandala, S.R. Lazy Predict—Lazy Predict 0.2.12 Documentation. Available online: https://pypi.org/project/lazypredict (accessed

on 12 May 2023).
44. Van Rossum, G.; Drake, F.L. The Python Language Reference; Python Software Foundation: Wilmington, DE, USA, 2011; Volume

109.
45. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [CrossRef]
46. Santos-Rufo, A.; Vega, V.; Hidalgo, J.C.; Hidalgo, J.J.; Rodríguez-Jurado, D. Assessment of the Effect of Surface Drip Irrigation on

Verticillium dahliae Propagules Differing in Persistence in Soil and on Verticillium Wilt of Olive. Plant Pathol. 2017, 66, 1117–1127.
[CrossRef]

47. Navas-Cortés, J.A.; Landa, B.B.; Mercado-Blanco, J.; Trapero-Casas, J.L.; Rodríguez-Jurado, D.; Jiménez-Díaz, R.M. Spatiotemporal
Analysis of Spread of Infections by Verticillium dahliae Pathotypes within a High Tree Density Olive Orchard in Southern Spain.
Phytopathology 2008, 98, 167–180. [CrossRef]

48. Levin, A.G.; Lavee, S.; Lahkim, L.T. Epidemiology of Verticillium dahliae on Olive (Cv. Picual) and Its Effect on Yield under Saline
Conditions. Plant Pathol. 2003, 52, 212–218. [CrossRef]

49. Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [CrossRef]
50. Bih, J. Paradigm Shift—An Introduction to Fuzzy Logic. IEEE Potentials 2006, 25, 6–21. [CrossRef]
51. Singh, H.; Gupta, M.M.; Meitzler, T.; Hou, Z.-G.; Garg, K.K.; Solo, A.M.G.; Zadeh, L.A. Real-Life Applications of Fuzzy Logic.

Adv. Fuzzy Syst. 2013, 2013, 581879. [CrossRef]
52. Shu-Hsien Liao Expert System Methodologies and Applications—A Decade Review from 1995 to 2004. Expert Syst. Appl. 2005, 28,

93–103. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TSMCB.2004.842257
https://www.ncbi.nlm.nih.gov/pubmed/15828663
https://doi.org/10.5019/j.ijcir.2005.23
https://cir.nii.ac.jp/crid/1370290617548437512
https://doi.org/10.18637/jss.v065.i06
https://pypi.org/project/lazypredict
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1111/ppa.12652
https://doi.org/10.1094/PHYTO-98-2-0167
https://doi.org/10.1046/j.1365-3059.2003.00809.x
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1109/MP.2006.1635021
https://doi.org/10.1155/2013/581879
https://doi.org/10.1016/j.eswa.2004.08.003

	Introduction 
	Materials and Methods 
	Data Collection and Parameters 
	Modeling Approach and Software 

	Results 
	Clustering 
	Fuzzy Logic (FL) 
	Machine Learning (ML) 

	Discussion 
	Conclusions 
	References

