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izabella_antoniuk@sggw.edu.pl (I.A.); michal_kruk@sggw.edu.pl (M.K.)

2 Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering,
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Abstract: This research delves into the application of machine learning methods for predicting the
yield of potato varieties used for French fries in Poland. By integrating a comprehensive dataset
comprising agronomical, climatic, soil, and satellite-based vegetation data from 36 commercial potato
fields over five growing seasons (2018–2022), we developed three distinct models: non-satellite,
satellite, and hybrid. The non-satellite model, relying on 85 features, excludes vegetation indices,
whereas the satellite model includes these indices within its 128 features. The hybrid model, combin-
ing all available features, encompasses a total of 165 features, presenting the most-comprehensive
approach. Our findings revealed that the hybrid model, particularly when enhanced with SVM
outlier detection, exhibited superior performance with the lowest Mean Absolute Percentage Error
(MAPE) of 5.85%, underscoring the effectiveness of integrating diverse data sources into agricultural
yield prediction. In contrast, the non-satellite and satellite models displayed higher MAPE values,
indicating less accuracy compared to the hybrid model. Advanced data-processing techniques such
as PCA and outlier detection methods (LOF and One-Class SVM) played a pivotal role in model
performance, optimising feature selection and dataset refinement. The study concluded that machine
learning methods, particularly when leveraging a multifaceted approach involving a wide array of
data sources and advanced processing techniques, can significantly enhance the accuracy of agricul-
tural yield predictions. These insights pave the way for more-efficient and -informed agricultural
practices, emphasising the potential of machine learning in revolutionising yield prediction and
crop management.

Keywords: machine learning; yield prediction; potato

1. Introduction

The potato (Solanum tuberosum L.) is one of the basic species of cultivated plants in
the world. According to FAOSTAT data, the world potato production in 2021 reached
359 million t, and the pioneers in the cultivation of this species were China, India, and
Ukraine [1]. In 2021, the highest tuber yield per hectare was recorded in the United
States, approximately 51 t, New Zealand, 50.7 t, and Kuwait, 48.7 t. In Europe in 2021,
the countries with the highest yield of potato tubers were: France, the Netherlands, Belgium,
and Germany. In these countries, the discussed species yields were in the range of 40 to
45 t/ha [2].
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In recent years, a change in culinary preferences of consumers towards potatoes has
been observed, translating directly to trends in the cultivation of this plant. Currently,
the dynamic growth of the market of “convenience” food, as well as fried products can
be noted in developing and developed countries around the world [3]. The intensive
development of potato processing contributed to the increase in the demand for fast food.
Current trends in agricultural development strongly support precision agriculture. The idea
behind this is centred on the keywords: observation, measurement, and constant response
to inter- and intra-field crop variability [4]. In the case of industrial potato production,
precision agriculture—constant monitoring of crop condition—is needed because of the
desired good quality of the final raw material while maintaining a high level of commercial
yield. Despite the many tools developed to monitor and analyse potato growth and yield
over the last 20–30 years, with a peak in sensor development in the last 10 years, many fry
potato farms are looking for superior solutions. Widely tested and refined predictive tools
for estimating yield and quality prior to final harvest use advanced artificial intelligence
methods, among others. It is believed that crop growth monitoring and yield mapping
will become mainstream farm research and development in the coming years. Many input
parameters specific to specialised crops have become more readily available. For example,
remote sensing data on crop emergence date and aboveground biomass are being used to
better set model parameters [5,6]. Hybrid forms of sensor systems and crop growth models
will provide better information on crop growth during the season. This, combined with
weighing systems and cameras on harvesters, will provide site-specific information on the
yield and quality of harvested potatoes [7,8].

Research on the use of plant models in predicting potato yield at the field scale has
been conducted for over half a century, but their intensity has increased since the beginning
of the second decade of the 21st Century [9]. In these studies, it can be observed that
classical plant growth models primarily utilise ground-based data, including commonly
used factors such as nitrogen fertilisation levels, air temperature values, sunlight exposure,
and precipitation levels. This applies to a wide range of models such as SUBSTOR Potato,
CROPSYST-SIMPOTATO, and Potato Calculator [10–14]. It is noted that the limitations for
the practical application of such models at the field production scale are data availability,
the cost of data acquisition, and data quality issues. From another point of view, another
source of input data for predictive models is satellite imagery [14]. With the development of
satellite Earth observation systems, improved RS data availability for practical applications,
and the increased quality of these data in terms of spatial and temporal resolution, satellite
data have been increasingly incorporated into potato predictive models [15,16]. When it
comes to potato yield forecasting at field scale, there are few publications describing the
combined use of ground-based data (soil, agronomy, weather) and satellite data (vegetation
indices) as the input parameters for models [12,17–21]. In the practical application of
predictive models in agricultural decision support systems, the flexibility of data source
selection for modelling becomes an important functional requirement, considering the
aforementioned data availability and quality issues. Often, farmers do not have complete
sets of ground-based or satellite data. Therefore, there is a need to evaluate and compare
ground-based, satellite, and hybrid models that combine data from both types of sources.

Knowledge of yield determinants is important in the development of crop-management-
improvement models [1] for both prediction and classification. In the correct construction
of production models, it is useful to demonstrate good knowledge of the research object
and to have knowledge of yield determinants and potential disturbances, changing the
final modelling effect in an independent way [22,23]. The traits explaining varietal yield
or supporting potato yield potential in forecasting models in the literature are classified
according to the following categories [15,23,24]:

• Weather traits;
• Agricultural traits;
• Traits conditioned by genotype and phytophenological traits;
• Soil environment;
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• Spectral data, including vegetation indices;
• Indicators related to plant productivity.

Data on weather conditions during the growing season can be treated as a disturbance
over which both producers and predictive model developers have no direct influence.
The most-advantageous solution from the point of view of preparing climatic model data
is the selection of years in which the weather conditions represent the optimal case for
the place of cultivation and observation. The dominant meteorological features in the
prediction models are: total precipitation, average, minimum, and maximum daily air
temperatures, insolation, relative air humidity, evapotranspiration, etc. [23,25–27].

Agrotechnical features are nothing more than variants of potato cultivation, i.e., the
sum of mineral and organic fertilisation, the soil cultivation system, irrigation, plant pro-
tection, forecrops, etc. [23,28]. In the case of potato cultivation intended for processing, in-
cluding French fry varieties, agrotechnical requirements and recommendations are usually
prepared by companies purchasing the raw material. Such action guarantees an acceptable
level of tuber yield and an even quality of the yield taken from different suppliers.

Features associated mainly with genotype and phytophenological features (meaning
successive stages of development achieved by plants while growing in the field) are im-
portant for obtaining a satisfactory raw material in terms of quality [29]. Favourable soil
conditions are very crucial in potato cultivation. It is known that cultivated plants are
“more sensitive” to the abundance of available nutrients in the soil than to the ongoing fer-
tilisation [30,31]. It is also important to maintain the recommended pH and looseness of the
soil. Potato cultivation in the desired conditions reduces the occurrence of soil diseases [32],
as well as prevents bruises [33]. Features related to potato productivity are usually various
indicators, the interpretation of which allows for ongoing analysis of growth, yield, and
photosynthetic activity.

In yield-forecasting models, the following are most-often used: Photosynthetically
Active Radiation (PAR) and Leaf Area Index (LAI) [34,35]. Measuring these indicators is
relatively easy, and the final data are not difficult to interpret. Information obtained using
remote sensing and GIS methods is becoming increasingly important in the management
of potato cultivation and, thus, in the creation of reliable predictive models. Vegetation
indices calculated using these methods are a kind of quantitative measure that is correlated
with the amount of biomass or the condition of the vegetation. They are usually formulated
as a combination of two or three spectral channels (with red and near-infrared being the
most-common). Their values are added, divided, or multiplied in order to obtain one value
(index), which tells about the amount and condition of the vegetation [24,36]. A wide appli-
cation in tuber yield-forecasting models has been confirmed for the Normalised Difference
Vegetation Index (NDVI) [37], Normalised Difference Red Edge index (NDRE) [38], Potato
Productivity Index (PPI) [16], SAVI, RDVI, and EVI.

In recent years, a departure from the use of classic models for predicting the yield of
potato tubers, such as SUBSTOR, POTATO, Lintul-POTATO, etc., can be observed. Classical
regression models also do not fully fulfil their role, because the forecast errors generated
by such models are very high and, therefore, unacceptable in agriculture [23]. The trend
of scientific development in yield modelling runs in two directions. One of them is the
improvement by researchers of classic potato models—adapting them to specific climatic or
cultivation conditions [10]. The second approach involves modern and reliable modelling
techniques—Artificial Neural Networks (ANNs) [23,39], decision trees [37], and deep
learning [15,40]. It is worth emphasising that the most-important feature of neural models
is their ability to generalise the knowledge they acquire during a specific network learning
process. Designing the proper structure of a neural network and determining its parameters
requires the use of advanced optimisation algorithms. Solving a specific problem always
involves the choice of the type of network. Forecasting issues are usually implemented
using MLP models [23,24,41–45]. Neural modelling plays a significant role when solving
practical problems requiring a quick response is expected [46]. In addition, analysis carried
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out using nonlinear models, which include neural models, are characterised by a smaller
forecast error compared to classical methods [47].

Predicting crop yields is an important task for agriculture, and predictive models can
be useful in this process. However, there are some limitations and potential sources of error
that are worth considering. Here are some of them [48–52]:

• Dependence on historical data.
• Disregarding nonlinear factors.
• Variability of environmental conditions.
• Errors in measurements and other inputs.
• No consideration of changes in agricultural practices.
• Complexity of the interaction between factors.

It is important to understand these limitations and potential sources of error in crop
yield prediction. Models can be useful tools, but they should be used carefully, take into
account a variety of factors, and evolve with advances in knowledge and data availability.

The aim of this article was to create three models predicting the yield of French fry
potatoes grown in Poland using machine learning methods. The research focused on
several important scientific aspects, including a thorough analysis of empirical data, which
allowed the creation of predictive data aggregates. By subjecting the partial classification
results to detailed interpretations, it was possible to reject data introducing distortions and
noise in the prediction. Finally, based on the MAPE values, the most-accurate model for
predicting tuber yield was indicated.

2. Materials and Methods
2.1. Dataset Description

The data used in this work came from 114 commercial potato fields located in northern
Poland. Fields with potato cultivation varied in area from 6.5 to 156 ha. The cultivated
potato varieties were Innovator, Ludmilla, Ivory Russet and Zorba. The data covered
five growing seasons in the years 2018–2022, containing several types of information,
i.e., agronomical data, climatic data, satellite-based vegetation, satellite data, and soil data.
Source data were obtained from databases of different natures: public databases as open
data, private databases of farmers, and ERP databases of agricultural producers. The field
locations are presented in Figure 1. The structure of the potato dataset is shown in Table 1.

The data were divided into two sets, referred to as ground-based data (agronomic
and weather data) and satellite-based data. These two sets constituted the sets for the
non-integrated terrestrial and non-integrated satellite predictive models, respectively. Both
sets were the basis for the creation of the hybrid models.

2.1.1. Data Augmentation

The data augmentation process plays a crucial role in enhancing the performance of
machine learning models, especially when dealing with limited datasets. In the context of
predicting potato yield, data augmentation involves creating synthetic but realistic data
points based on the existing dataset. The augmentation procedure can be broken down into
several key steps and has been described below.

Augmentation loop: For each record in the dataset, the algorithm performs the follow-
ing steps multiple times (5 times), as determined by the number of copies specified:

1. A random change percentage (between 0.01 and 0.05) is chosen within a predefined
range, which determines the degree of modification for the augmentation.

2. Noise is generated based on the random change percentage and is applied to both
the features and the target variable. This noise addition simulates realistic variability
within the data.

3. The new synthetic record, created by applying noise, is then denormalized to bring it
back to the original data scale.

4. The synthetic record is appended to the augmented dataset along with its correspond-
ing textual data.
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Figure 1. Field locations for the data-collection process: map of Poland, with marked general field
placement areas (Top), and a close-up map for the area of Słupsk (A) and Poznań (B).

Table 1. Number of fields for the presented experiments, containing different potato varieties during
consecutive years.

Variety 2018 2019 2020 2021 2022 Total

Innovator 60 65 40 55 20 240
Ludmilla 20 30 30 20 15 115
Ivory Russet 5 10 0 0 0 15
Zorba 5 20 15 10 0 50

Total 90 115 95 85 35 420

2.1.2. BBCH-Scale

Part of the data was allocated to the growth stages of the crops cultivated. A uni-
versally available BBCH-scale was used in that aspect. The abbreviation BBCH derives
from the names of the original participating stakeholders: “Biologische Bundesanstalt,
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Bundessortenamt und Chemische Industrie”. The BBCH-scale is used to identify the phe-
nological development stages of plants. It was developed for a range of crop species, where
similar growth stages of each plant are given the same code. The phenological development
stages of plants are used in a number of scientific disciplines (crop physiology, phytopathol-
ogy, entomology, and plant breeding) and in the agriculture industry (risk assessment of
pesticides, timing of pesticide application, fertilisation, and agricultural insurance).

The BBCH-scale uses a decimal code system, which is divided into principal and sec-
ondary growth stages and is based on the cereal code system (the Zadoks scale) developed
by Jan Zadoks. The phenological development stages obtained from the producer were in
following ranges [53,54]:

(1) BBCH 0–10 (from planting to the beginning of emergence);
(2) BBCH 11–50 (from the beginning of emergence to the beginning of tuber setting);
(3) BBCH > 50 (from the beginning of tuber setting to harvest).

Based on the imported data, the BBCH phase limits in the ranges: (1), (2), and (3) were
assigned and later used to calculate the aggregated data.

2.1.3. Agronomic Data

The agronomic data were obtained from the Plantator System [55] by Seth Software,
as well as from the Plantator System operating during production in regard to: crop register,
harvest registration, and registration of hourly work results. The acquired data have
different formats, so in some cases, it was necessary to obtain a preprocessed dataset,
e.g., from soil test results (pdf) or the locations of crops (jpg). The agronomic data also
came from private grower databases. Information on the use of irrigation treatment in the
irrigated/non-irrigated structure was also an explanatory feature.

2.1.4. Climate Data

Information on the weather data was gathered from agrometeorological stations
situated near the cultivated areas. In cases where there were no local stations, relevant data
were acquired from public databases, specifically from weather stations managed by the
Institute of Meteorology and Water Management-National Research Institute (IMGW).

2.1.5. Soil Data

Depending on the season, the data regarding soil nutrient content came from different
soil testing laboratories. Similarly, the data regarding liquid and solid mineral fertilisa-
tion were obtained, resulting in the variability of the analysed components and different
units of measurement. All laboratories were nationally accredited for the soil parameters
analysed. The soil parameters considered were: the pH and the phosphorus, potassium,
and magnesium content. These are the range of parameters most often contracted for soil
analyses by agricultural producers in Poland.

2.1.6. Satellite Data

The crop vegetation data were obtained through satellite remote sensing. The primary
image database utilised in this study was the European Copernicus Sentinel 2 mission’s
image database. The Google Earth Engine (GE) platform served as the direct data collection
(“COPERNICUS S2 SR”). A Python script was developed by the authors to acquire, filter,
and process images and calculate the Vegetation Indices (VIs). The script was executed on
a local server, which communicated with the GEE service.

The secondary image database utilised in this study was the PlanetScope images
(Planet Labs), geometrically and atmospherically corrected. The images, clipped to the
analysed ROI, were downloaded via Planet’s dedicated Data API.

In the initial step, the images for each of the potato fields were filtered based on
cloud cover (threshold ranging from 7% to 13% depending on the year) using the QA60
band, for Sentinel and from the “cloud_percent” metadata for PlanetScope. The threshold
depended on the availability of images for a given ROI. If there were not at least 3 images for
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the ROI in the time period analysed, the threshold was automatically increased. The images
and corresponding reflectance values were analysed for the period between April 1 and
the end of September for each year under study. The VIs were then calculated for the
acquisition date using the obtained reflectance values.

The following vegetation indices were applied in this study: Enhanced Vegetation
Index (EVI), Normalised Difference Vegetation Index (NDVI), Renormalised Difference
Vegetation Index (RDVI), and Soil-Adjusted Vegetation Index (SAVI) [56]. These VIs are
widely used in the literature for predicting potato yield and were calculated according to
the Index DataBase. Finally, a total of 16 vegetation features were calculated for the 4 VIs,
including the minimum, mean, maximum, and standard deviation groups.

2.1.7. Selyaninov Hydrothermal Coefficient

The investigation of climate variation is a subject of keen interest among scientists in
various fields, such as hydrology, meteorology, agriculture, and forestry. All of them aim
to determine the most-accurate climatic conditions that will prevail in a specific region in
the future. Despite having greater computing power, the analysis of increasingly complex
models reveals that numerous environmental factors still need to be considered, rendering
the issue unresolved.

Central Europe’s different climate change scenarios suggest that an increase in tempera-
ture will be accompanied by a slight rise in annual precipitation, which will be redistributed
throughout the year. Winter precipitation is projected to increase while summer rainfall
to decrease. Given the limited retention capacity and a concomitant increase in evapora-
tion, the amount of water available to plants will be reduced during the growing season,
and there may be a depletion of reserves from the winter season. Moreover, the growing
variance of precipitation and temperatures should not be overlooked as it indicates that
unfavourable extreme situations for plant production are likely to occur more frequently.

One aspect that requires close monitoring is the evaluation of water availability in a par-
ticular area, particularly in extreme cases such as floods and droughts. Different indicators
are used to measure the severity of water scarcity, one of which is the Selyaninov Hy-
drothermal Coefficient (HTC). This coefficient assesses drought based on the formula [57]:

HTC = 10 ∑ niPi ∑ niti (1)

where:
n—the length of the period considered in days;
Pi—the rainfall on the i-th day (mm);
ti—the average daily temperature on the i-th day (°C).

Based on the above properties, three aggregated parameters for three vegetation stages
(BBCH-based) were generated to be used as additional prediction features. The rainfall and
temperature values used to calculate the HTC were taken from the IMGW net and our own
agrometeorological stations, as described in Section 2.1.4.

2.1.8. GDD Features

When plants are not subjected to extreme conditions such as abnormal drought or
disease, they usually grow incrementally, and the prevailing temperature heavily influences
their growth rate. The Growing Degree Days (GDDs) [58] parameter considers various
aspects of local weather, enabling farmers to anticipate and even regulate the pace at which
their plants mature, particularly in greenhouse settings.

Provided the plants are not affected by other environmental factors such as soil
moisture, their developmental rate from emergence to maturity hinges on the daily air tem-
perature. Specific developmental phases of plants and insects depend on the accumulation
of specific quantities of heat, allowing the prediction of when these events should occur
during a growing season, regardless of temperature differences across years. The GDDs are
defined as the number of degrees above the base temperature, which varies depending on
the crop species. The base temperature is the temperature at which plant growth is zero.
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To calculate the GDDs, each day’s maximum and minimum temperatures are added
and divided by two, and the base temperature is then subtracted. The GDDs are accumu-
lated by adding each day’s GDD contribution as the season progresses. GDDs can be used
for various purposes, including:

• Assessing a region’s suitability for cultivating specific crops;
• Estimating the growth stages of crops, weeds, or insects;
• Predicting the maturity and cutting dates of forage crops;
• Determining the optimal timing of fertiliser or pesticide application;
• Estimating heat stress on crops;
• Planning the spacing of planting dates to produce separate harvest dates.

These parameters can be calculated as shown in Equation (2):

GDD = ∑
i=1

niTavg (2)

where:
GDD—the Growing Degree Day (°C);
n—the length of the period considered in days;
Tavg—the average daily air temperature ≥ 0 (°C).

Similar to the HTC, aggregated parameters for the three vegetation stages (BBCH-
based) were generated based on this parameter.

2.1.9. Total Numerical features

After the initial analysis, a set of features was derived for the presented experiments.
Apart from the basic crop data (season, variety, acreage, location of cultivation, age of
cultivation, yield), we used the BBCH-scale (see Section 2.1.2).

A total of 250 potential explanatory features were derived for the target. The target
variable is defined as the total yield of the harvested crop (harvest) (potato). All numerical
data (both explanatory and dependent features) were aggregated to full years (2018, 2019,
2020, 2021, and 2022). The target variable was measured in tons (t). A summary of all
the numerical feature groups used in the prediction of potato yield before data pruning is
presented in Table 2.

Table 2. Summary of all the numerical feature groups used in the prediction of potato yield before
data pruning.

Group of Features No. of Features

Aggregated weather features 7
Weather features 92

Soil features 17
Agrotechnical treatment features 6

Vegetation indexes GE 64
Vegetation indexes PL 64

Total 250

2.1.10. Data Pruning: Addressing Missing Values

In this study, a common challenge of dealing with missing values in the dataset was
encountered. Any data analysis, irrespective of the statistical methods applied, is only as
robust as the quality and completeness of the data being analysed. In this case, the dataset
initially comprised 250 features collected for predicting potato yield.

The initial step was to identify the extent of missing data in the dataset. This process
of quantification was carried out by calculating the percentage of missing values in each
variable. It is crucial to note that the quantity of missing values can considerably influence
the performance and accuracy of AI models.
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In order to maintain the integrity of our study, we established a cutoff threshold of
50%. Any variable with more than 50% missing values was deemed unreliable for our
analysis due to the massive information gap. The rationale behind this decision was that
imputing more than 50% of the data of a variable can introduce a substantial amount of
bias and distortion in the prediction model. It also raises concerns about the reliability and
validity of the subsequent findings, as more than half of the information would be synthetic
or based on estimates. This decision was rooted in a balance between retaining valuable
data and ensuring the reliability and robustness of our models. The rationale for choosing
this specific threshold was multi-faceted:

• Data integrity: When more than half of the data for a variable are missing, the integrity
and representativeness of that variable become questionable. With over 50% missing
data, any form of imputation would largely be based on speculation, rather than
trends or patterns inherent in the data.

• Statistical significance: Variables with significant missing data can potentially skew
the results and lead to unreliable conclusions. By setting the threshold at 50%, we
aimed to maintain variables that had a statistically significant amount of data, thereby
ensuring that our models were built on solid and representative foundations.

• Balance between data retention and quality: The 50% threshold strikes a balance
between retaining as much data as possible and ensuring the quality of the dataset.
This threshold allowed us to keep a substantial portion of the dataset while avoiding
the pitfalls of basing our analysis on largely imputed or speculative data.

• Benchmarking against standard practices: This threshold is in line with common
practices in data science and statistical analysis, where a 50% cutoff is often used as a
standard for determining the viability of a variable in a dataset.

By implementing this threshold, we aimed to enhance the robustness and reliability of
our predictive models. This approach allowed us to use a dataset that was both compre-
hensive and credible, leading to more-accurate and -trustworthy outcomes in our study.

After a rigorous examination, it was confirmed that 85 out of 250 features had missing
data exceeding the 50% threshold. Therefore, to ensure the reliability of the succeeding
analysis, as well as to maintain the robustness of the model, it was decided to exclude those
features from the dataset.

Thus, the pruned dataset contained only 86 features, ready for further analysis and
AI model training. This data-reduction method helped to maintain the data quality while
ensuring that the future predictive model would not suffer from the adverse impacts of
missing values and imputation bias.

Moving forward, these 165 features will be used to develop our artificial-intelligence-
based prediction models. The retained features were carefully selected from the dataset
after excluding those with excessive missing data. The list of the remaining 165 features
includes the following:

Taking this strategic approach to data management was meant to ensure the most-
accurate and -meaningful results from the AI models in the prediction of potato yield.
The final list of numerical feature used in potato yield prediction is presented in Table 3,
with a summary of the number of final numerical feature groups provided in Table 4.



Agriculture 2023, 13, 2259 10 of 25

Table 3. List of the number of numerical feature groups used in the prediction of potato yield after
data pruning.

Variable Type List of Variables

Agrotechnical treatment features (4 items) Liquid fertilisation, spraying, planting,
broadcast fertilisation

Weather features (23 items)

Average temperature (°C), rainfall (mm), air
temperature1 (°C), air temperature2 (°C), air
temperature3 (°C), solar panel (mV),
precipitation (mm), wind speed AVG (m/s),
wind speed Min (m/s), wind speed Max (m/s),
battery (mV), leaf wetness time (min), HC
serial number, HC air temperature AVG (°C),
HC air temperature Max (°C), HC air
temperature Max (°C), HC relative humidity
AVG (%), HC relative humidity AVG (%), HC
relative humidity AVG (%), Dev point
temperature AVG (°C), Dev point temperature
Max (°C), vapour pressure deficit AVG (mBar),
vapour pressure deficit Min (mBar)

Aggregated weather features (6 items) HTC 0–10, HTC 11–50, HTC > 50, GDD 0–10,
GDD > 50, GDD 11–50

Soil features (4 items) Soil pH H2O, phosphorus (mg/100 g),
potassium (mg/100 g), magnesium (mg/100 g)

Vegetation indices GE (calculated based on
Sentinel via Google Earth) (64 items)

EVI_GE_0_10_Max, EVI_GE_11_50_Max,
EVI_GE_50_Max, EVI_GE_daily_Max,
NDVI_GE_0_10_Max, NDVI_GE_11_50_Max,
NDVI_GE_50_Max, NDVI_GE_daily_Max,
RDVI_GE_0_10_Max, RDVI_GE_11_50_Max,
RDVI_GE_50_Max, RDVI_GE_daily_Max,
SAVI_GE_0_10_Max, SAVI_GE_11_50_Max,
SAVI_GE_50_Max, SAVI_GE_daily_Max,
and so on, for mean, Min, StdDev variants

Vegetation indices PL (calculated based on
PlanetScope via Planet Labs) (64 items)

EVI_PL_0_10_Max, EVI_PL_11_50_Max,
EVI_PL_50_Max, EVI_PL_daily_Max,
NDVI_PL_0_10_Max, NDVI_PL_11_50_Max,
NDVI_PL_50_Max, NDVI_PL_daily_Max,
RDVI_PL_0_10_Max, RDVI_PL_11_50_Max,
RDVI_PL_50_Max, RDVI_PL_daily_Max,
SAVI_PL_0_10_Max, SAVI_PL_11_50_Max,
SAVI_PL_50_Max, SAVI_PL_daily_Max,
and so on, for mean, Min, StdDev variants

Table 4. Summary of the number of final numerical feature groups used in prediction of potato yield
after data pruning.

Group of Features No. of Features

Aggregated weather features 4
Weather features 23

Soil features 4
Agrotechnical treatment features 6

Vegetation indexes GE 64
Vegetation indexes PL 64

Total 165
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2.2. Data Imputation

Data imputation, or the process of filling in missing data points in datasets, is a critical
aspect of predictive modelling [59], particularly in the field of agricultural yield predictions.
The robustness and accuracy of Artificial Intelligence (AI) models depend highly on the
quality and completeness of the underlying datasets. In the case of predicting potato yield,
incomplete datasets can lead to inaccurate models and predictions, thus impeding the
optimisation of crop production.

In the context of AI, missing data could induce significant bias, reduce the statistical
power, and ultimately distort the representation of the real-world scenario that the AI
model is attempting to capture. This issue is particularly pertinent in agricultural datasets,
where factors such as weather conditions, soil properties, and crop health measures can
be highly variable and sometimes difficult to measure consistently. Without adequate
data in these areas, AI models may not accurately reflect the complex interactions and
dependencies among these factors, leading to erroneous predictions of potato yield.

Methods of Data Imputation

Data imputation is a critical step in the preprocessing phase of predictive modelling,
especially when dealing with incomplete datasets. In the context of this research, we
implemented a hybrid approach that combines regression and mean/median imputation
strategies. This method intends to balance the bias introduced by mean/median imputation
with the variance captured through regression techniques.

The proposed hybrid procedure, outlined in Algorithm 1, iteratively applies polyno-
mial interpolation to create multiple imputations of the missing data, followed by median
aggregation to ensure robustness. This method is particularly suitable for datasets with
nonlinear relationships among the variables, such as the one used for predicting potato
yield in this study. By applying a polynomial approach, we aimed to capture the intri-
cate patterns inherent in the data, thereby enhancing the accuracy of our imputations.
The decision to use this technique was based on preliminary analysis indicating significant
nonlinear interactions among the predictive features.

Algorithm 1 Hybrid imputation procedure.

1: procedure HYBRIDIMPUTATION(DataFrame, ColumnName)
2: ProcessedColumn← DeepCopy(DataFrame[ColumnName])
3: ProcessedColumn← AddIndexColumn(ProcessedColumn)
4: ImputationTargets← [ColumnName]
5: ThresholdValidValues← 86
6: IterationCount← 0
7: while CountNonMissing(ProcessedColumn[ImputationTargets]) <

ThresholdValidValues do
8: TempColumn← InterpolateColumn(ProcessedColumn, IterationCount)
9: ProcessedColumn← MergeColumns(ProcessedColumn, TempColumn)

10: IterationCount← Increment(IterationCount)
11: end while
12: DataFrame[ColumnName]← ComputeMedian(ProcessedColumn[ImputationTargets])
13: return DataFrame
14: end procedure

2.3. Data Normalisation

Data normalisation is an essential preprocessing step while dealing with machine
learning or artificial intelligence algorithms. It is performed to bring all features into the
range of 0 to 1, maintaining the distribution and relationships of the original raw data.
This normalisation process helps to scale down the values of different scale attributes to
a standard scale, which, in turn, enhances the performance of the model by allowing it
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to converge faster during training. Additionally, it mitigates the risk of the model being
influenced disproportionately by different features.

The particular method of normalisation used in this study was the Min–Max normali-
sation. This method re-scales features to a fixed range, typically 0 to 1, or alternatively −1
to 1 if there are negative values. This transformation preserves the original distribution of
the data while ensuring that the impact of outliers is minimised.

The Min–Max normalisation is defined by the following formula [60,61]:

Xnorm =
X− Xmin

Xmax − Xmin
(3)

where:

- Xnorm is the normalised value;
- X is the original value;
- Xmin is the minimum value in the feature column;
- Xmax is the maximum value in the feature column.

Each data value in the dataset is replaced by its corresponding normalised value, lead-
ing to a new dataset where all feature columns are within the same range. By implementing
the Min–Max normalisation method, it is ensured that the model is less biased and, hence,
more accurate in predicting potato yield based on the given features.

2.4. Prototyping the 3 AI Models: Non-Satellite, Satellite, and Hybrid

The accurate prediction of agricultural yields such as potato can greatly benefit both
the farmers and the supply chain stakeholders. Utilising Artificial Intelligence (AI) methods
for these predictions can potentially provide robust and reliable estimations. In this research,
we investigated the effectiveness of different AI regression algorithms in constructing the
predictive models. The objective was to gain insights into the strengths and limitations of
various methods and subsequently guide future applications of AI in agriculture.

Three different models were considered in this study, namely non-satellite, satellite,
and hybrid models. These models differed in their variable selections, which influenced
their representation of real-world conditions.

The non-satellite model uses 37 features, which do not include vegetation indices.
In contrast, the satellite model uses 128 features consisting exclusively the vegetation in-
dices. These two models served as a basis for comparison to evaluate the contribution of
vegetation indices in improving prediction accuracy. The hybrid model takes a compre-
hensive approach by including all 86 features available, thus merging the characteristics of
both non-satellite and satellite models.

In constructing these models, a range of regression algorithms was applied, including
Linear Regression [62], Ridge [63], Lasso [64], Elastic Net [65], the XGBoost Regressor [66],
the Random Forest Regressor [67], the MLPRegressor [68] with different hidden layer sizes,
the SGDRegressor [69], and Support Vector Regression (SVR) [70] with different parameters.
These algorithms were chosen due to their diverse underlying principles, which provides a
broad perspective on the prediction problem.

In the following sections, we detail the construction of these models and discuss the
potential implications of our findings. The models were constructed using the Python
programming language with the aid of powerful libraries such as scikit-learn and XGBoost.

2.5. Data Partitioning: Training, Validation, and Testing

An essential aspect of building robust and generalizable AI models is data partitioning.
This process involves dividing the available dataset into distinct subsets: the training,
validation, and test sets.

The training set is utilised to train the model, which essentially involves the adjustment
of the model’s parameters based on the input–output pairs in the data. The validation set is
used during model training to provide an unbiased evaluation of the model’s performance.
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It allows for the tuning of hyperparameters and helps in model selection. Importantly,
the validation set serves as a checkpoint to prevent overfitting, which occurs when the
model learns the training data too well and performs poorly on unseen data. Finally,
the test set is a separate data subset that is only used once the model has been trained and
validated. It offers an objective evaluation of the final model’s performance, representing
how well the model is likely to perform on unseen, real-world data.

In this study, due to the forecasting nature of the task for upcoming years, we split the
data based on the years:

• df_train—data from the years 2018 and 2019;
• df_val—data from the year 2020;
• df_test—data from the year 2021.

The model was trained using “df_train”, while its performance was monitored on
“df_val”. Lastly, “df_test” was set aside for the final evaluation of the model, providing a
benchmark of its performance on unseen data that did not participate in training. As such,
our main focus was on the results obtained on “df_test”.

2.6. Feature Selection

In this study, feature selection was executed using multiple methods including step-
wise regression (stepwisefit), the Pearson correlation, the Chi-squared (χ2) test, and Prin-
cipal Component Analysis (PCA) [71–74]. These techniques were designed to select the
most-relevant features for the task of predicting future years, thus potentially improving
model accuracy, computational efficiency, and model interpretability.

2.6.1. Stepwise Regression

The stepwise regression [75] method was applied first for feature selection. Stepwise
regression is an iterative process of adding and removing predictor features based on their
statistical significance in a regression model. The technique starts from an initial model and
takes steps to modify it by adding or removing predictors. The statistical significance of a
predictor is typically measured by the p-value of the F-statistic when testing the models
with and without the predictor.

In general, the stepwise regression process can be described as follows:

1. Fit the initial model.
2. If any predictors not in the model have p-values less than the entry tolerance (e.g.,

0.05), add the one with the smallest p-value and repeat this step. If not, proceed to the
next step.

3. If any predictors in the model have p-values greater than the exit tolerance (e.g., 0.10),
remove the one with the largest p-value, and go back to the previous step. If not, stop.

It should be noted that the stepwise regression method is heuristic and does not
guarantee that the final model is globally optimal, meaning that it has the best possible fit
to the data. A different initial model or a different sequence of steps could lead to a better
fit. In this sense, stepwise models are locally optimal, but not necessarily globally.

In this study, the stepwise regression function, “stepwisefit”, was tested using a range
of penter and premove values. Specifically, 90 different pairs of penter and premove
were used, from (0.01, 0.06) to (0.9, 0.95). The goal of this testing was to explore how
different thresholds for adding and removing features would impact the feature sets that
the stepwise regression selected. However, only unique feature sets were extracted, which
means that there may not necessarily be 90 distinct feature sets as a result of this procedure.
The exact thresholds tested in this study are listed in Table 5.

It should be noted that different penter and premove values can have significant
impacts on the stepwise regression outcomes. Lower penter values mean that the bar
for adding a feature to the model is set higher, as it needs to have a higher level of
statistical significance to be included. Similarly, higher premove values mean that the
bar for removing a feature from the model is set lower, as it can be excluded even if its
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significance is still relatively high. Therefore, different combinations of the penter and
premove values can lead to diverse sets of selected features, providing a broad exploration
of possible models.

Table 5. penter and premove values for stepwise regression.

No. Penter Premove

1 0.01 0.06
2 0.02 0.07
3 0.03 0.08
4 0.04 0.09

. . . . . . . . .
87 0.87 0.92
88 0.88 0.93
89 0.89 0.94
90 0.9 0.95

2.6.2. Pearson Correlation

In addition to stepwise regression, the Pearson correlation method was also used for
feature selection [71,76]. It measures the linear relationship between two features, ranging
from −1 to 1, where 1 means a perfect positive linear relationship, −1 means a perfect
negative linear relationship, and 0 means no linear relationship.

In this study, if the absolute value of the Pearson correlation between two features
exceeded 0.95, one of the two correlated features was removed from the set of predictive
features. This was performed to mitigate the issue of multicollinearity, which can affect the
performance and interpretability of the model.

2.6.3. Chi-Squared Test

The Chi-squared test was also applied as a feature-selection method [71]. This statisti-
cal test measures the independence between categorical features. In the context of feature
selection, the Chi-squared test can be used to select those features that are most likely to be
independent of each other and dependent on the target variable.

In this study, if the p-value of the Chi-squared test was greater than 0.05, the corre-
sponding feature was added to the set of predictive features. Otherwise, the feature was
blocked and not included in the set of predictive features.

2.6.4. Principal Component Analysis

Lastly, Principal Component Analysis (PCA) was utilised as a feature-selection and
dimensionality-reduction method. PCA transforms the original features into a new set of
features, which are linear combinations of the original ones [72,77]. These new features (or
principal components) are uncorrelated with each other.

In this study, PCA was performed for different numbers of principal components (3, 4,
5, 6, 7, 8, 9, 10). The goal was to assess whether generating artificial features through PCA
would enhance the performance of the model. This was performed both for the full set of
features and the features selected by stepwise regression.

The advantage of PCA lies in its ability to transform a high-dimensional dataset into
a lower-dimensional one while retaining most of the important information. However,
the interpretability of the model can be compromised because the new features (principal
components) are artificial and are not directly interpretable in terms of the original features.

3. Outlier Detection

Outlier detection is an important step in data preprocessing. Outliers are unusual
data points that deviate significantly from the rest of the data. While some outliers may be
errors and, hence, require correction, others may carry important information about the
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data. In the presented study, two methods for outlier detection were used: Local Outlier
Factor (LOF) and One-Class SVM [78].

Both methods have their own strengths and are appropriate for different types of
datasets. In general, the LOF is good at detecting outliers that are in low-density regions,
while One-Class SVM is effective at identifying outliers that are far away from the majority
of the data.

3.1. Local Outlier Factor

The LOF method measures the local density deviation of a given data point with
respect to its neighbours [79]. It considers as outliers the samples that have a substantially
lower density than their neighbours. The number of neighbours considered (parameter
“n_neighbours”) is typically set to be 20% of the total number of samples. The outline of the
methods is presented in Algorithm 2.

Algorithm 2 Pseudocode for local outlier factor.

1: procedure LOF(X, n_neighbours)
2: for x ∈ X do
3: Calculate the distance to the n_neighbours nearest neighbours of x
4: Compute the reachability distance of x
5: Compute the local reachability density of x
6: end for
7: for x ∈ X do
8: Compute the LOF of x as the average ratio of the local reachability densities of

the neighbours of x to the local reachability density of x
9: end for

10: Return the LOF of each sample
11: end procedure

3.2. One-Class SVM

One-Class SVM [77] is a method associated with the SVM family, but it is suited for
the problem of outlier detection. The class of interest is modelled with a tight sphere in the
feature space characterising the normal behaviour, and those instances that fall outside this
sphere are considered outliers. The parameters used in the experiments are kernel = “rbf”,
gamma = “0.1”, and nu = 0.5. Algorithm 3 presents the general overview of this procedure.

Algorithm 3 Pseudocode for One-Class SVM.

1: procedure ONECLASSSVM(X, nu, kernel, gamma)
2: Initialise One-Class SVM with parameters nu, kernel, and gamma
3: Fit SVM to the data X
4: Predict the labels (1 for inliers, −1 for outliers) for X
5: Return the predicted labels
6: end procedure

4. Results and Discussion

In the presented experiments, a total of three models were prepared: the non-satellite,
satellite, and hybrid one, where the first two take into account only subsets of feature, either
excluding or including vegetation data, while the final model incorporates all potential
features. Table 6 outlines the dataset organisation for different models, while Table 7 shows
the parameter configurations used in each case.
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Table 6. Dataset organisation for all prepared models.

Model (Number) Training Set
(Samples/Features)

Validation Set
(Samples/Features)

Test Set
(Samples/Features)

NSM Without Outlier
Detection (1) 205/37 95/37 120/37

NSM With Outlier
Detection Using Local

Outlier Factor (2)
200/37 95/37 120/37

NSM With Outlier
Detection Using

One-Class SVM (3)
103/37 95/37 120/37

SM Without Outlier
Detection (4) 205/128 95/128 120/128

SM With Outlier
Detection Using Local

Outlier Factor (5)
201/128 95/128 120/128

SM With Outlier
Detection Using

One-Class SVM (6)
104/128 95/128 120/128

HM Without Outlier
Detection (7) 205/165 95/165 120/165

HM With Outlier
Detection Using Local

Outlier Factor (8)
200/165 95/165 120/165

HM With Outlier
Detection Using

One-Class SVM (9)
120/165 95/165 101/165

Table 7. Setup of parameters used for the prepared models. Model numbers refer directly to the
method organisation presented in Table 6.

Model
Number

Is_Stepwise
Fit_Used

Penter
|Premove

Is_Pearson
_Used

Is_Chi2
_Used Is_PCA

n_PCA_
Components

(1) True 0.8|0.85 False False True 5

(2) False N/A|N/A False False True 5

(3) True 0.3|0.35 False False True 5

(4) True 0.5|0.44 False False False 0

(5) True 0.4|0.45 False False False 0

(6) True 0.4|0.45 False False False 0

(7) True 0.6|0.65 True False False 0

(8) True 0.2|0.25 False False False 0

(9) True 0.1|0.15 False False True 5

4.1. Non-Satellite Model

The Non-Satellite Model (NSM) leverages 37 features excluding the vegetation indices
data. The list of features is outlined in Table 8.
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Table 8. Summary of the number of numerical feature groups used in non-satellite model.

Group of Features No.

Aggregated weather features 4
Weather features 23

Soil features 4
Agrotechnical treatment features 6

Total 37

The modelling for the non-satellite data considered three different scenarios: (a) with-
out outlier detection, (b) with outlier detection using the Local Outlier Factor method,
and (c) with outlier detection using the One-Class SVM method.

In the case of modelling without outlier detection, the Mean Absolute Percentage Error
(MAPE) was found to be 17.31% using SVR. It is important to note that 32 (5 PCs) features
were identified as significant in this scenario.

In the case of modelling with outlier detection using the Local Outlier Factor, the Mean
Absolute Percentage Error (MAPE) was found to be 16.99% using SVR. It is important to
note that only five (PCs) features were identified as significant in this scenario.

In the third scenario, when the One-Class SVM method was incorporated, the Mean
Absolute Percentage Error (MAPE) was found to be 18.47% using XGB. In addition, 18 fea-
tures were identified as significant for the model built using the modified datasets.

4.2. Satellite Model

The Satellite Model (SM) takes into account the vegetation indices, containing a total of
128 features. The model creation for the satellite data considered the same three scenarios
as for the non-satellite model.

In the case of modelling without outlier detection, the Mean Absolute Percentage Error
(MAPE) equalled 14.87% using Ridge, and 92 features were identified as significant for the
model built using the modified datasets.

In the case of modelling with outlier detection using the Local Outlier Factor, the Mean
Absolute Percentage Error (MAPE) equalled 15.43% using Ridge, and 83 features were
identified as significant for the model built using the modified datasets.

In the final scenario with the One-Class SVM method, the Mean Absolute Percentage
Error (MAPE) equalled 16.38% using Ridge, and 102 features were identified as significant
for the model built using the modified datasets.

4.3. Hybrid Model

The Hybrid Model (HM) takes into account all 165 features. This includes both
vegetation indices and the features used in the non-satellite model. The modelling process
for the whole set of data (hybrid model) considered the same three scenarios, including
the approach without outlier detection, as well as two additional ones, using the LOF and
One-Class SVM for this problem.

In the case of modelling without outlier detection, the Mean Absolute Percentage
Error (MAPE) was found to be 6.10% using XGB. It is important to note that 79 features
were identified as significant in this scenario.

Before applying the Local Outlier Factor method for outlier detection, the dimensions
of the training, validation, and test datasets were as presented in Table 6. After applying
the Local Outlier Factor method, the Mean Absolute Percentage Error (MAPE) was found
to be 6.94% using Random Forest. It is important to note that 80 features were identified as
significant in this scenario.

In the final scenario, with the initial dataset dimensions as with the LOF method,
One-Class SVM was applied. In that case, the training dataset was reduced, indicating that
the method identified and removed 11 records as outliers. In this case, the Mean Absolute
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Percentage Error (MAPE) was found to be 5.85% using XGB. In addition, 57 features were
identified as significant for the model built using the modified datasets.

4.4. Models Comparison

Although it is believed in agricultural practice that the potato is one of the plants with
low production requirements, potato varieties for frying purposes need cultivation manage-
ment at a very high level [80]. Choosing a good variety is a key element in determining the
plant’s behaviour under field conditions. The information related to the traits responsible
for the quality of the product—ready to eat—is “written” in the genotype: high nutritional
value and good sensory properties. Most quality traits of tubers are strongly influenced by
a number of factors acting on the potato during the growing season [81]. It is known that
yield plays a key role in the cultivation of potatoes for frying purposes, as it generates farm
profitability [82].

Yield, or the product extracted from the crop, can be considered in various aspects.
Potential (theoretical) yield is achieved when the main abiotic factors: CO2 concentration,
solar radiation, and air temperature, are used by the plants with the greatest efficiency [81].
To estimate the potential yield, additional aspects must be taken into account. It should
be assumed that a particular variety is grown in an environment that is optimal for it,
with sufficient water and nutrients, as well as effective control of all biotic stresses. Potential
yield is important for crops and environments where irrigation, the amount and distribution
of rainfall, or a combination of irrigation and rainfall ensure that water deficits do not reduce
yields [83]. Determining the level of potential yield is difficult, but feasible. Simulation
modelling, the results of detailed agronomic experiments, yield tests, and knowledge of
the maximum yields achieved by farmers are used to achieve this goal [84,85].

Actual yield is the real harvest achieved by most producers under actual production
conditions. Real yield is determined relatively easily, but accurate analytical results can only
be obtained by ongoing monitoring of yield potential during the growing season. The inte-
gration of several methods then comes to the rescue: remote sensing, geospatial analysis,
and modelling combined with method validation through field experiments [81,84].

Maintaining high yield potential in the era of climate change is a very difficult task.
The relationship between potential, achievable, and real potato yield is well explained by,
i.e., yield gap analysis [86]. The yield gap shows the relationship between quantitative
differences in potential, attainable, and actual yield at a specific spatial and temporal
scale [85]. This analysis makes it possible to reliably identify unused food production
capacity [81,87].

The above considerations show that yield prediction, regardless of the purpose of
the forecast, is necessary and important [88]. Most valuable, from the point of view of
agricultural practice, are models that allow the prediction of pre-harvest yields, in the
current agronomic season [23,41,71]. In the case of potato production for French fries,
the prediction of the actual yield of tubers before harvest provides the producer with
a range of valuable information. They can be the basis for considering the amount of
potential profit, the degree of fulfilment of the contract agreement, and the security of
storage space [23,37]. The prediction of potential tuber yield, made before harvest, is
also crucial for breeders of new varieties and seed companies [23,89]. The results of the
analyses will indicate the “fit” of the tested genotypes to local growing conditions while
maintaining a high level of controllable factors. The yield gap forecast provides valuable
knowledge to institutions that track national and global food resources. It allows estimating
food shortages, especially in poor countries with malnourished populations. Currently,
it is believed that actual potato yields only reach 2/3 of their potential. Breeders of new
varieties are far less likely to fill the gaps with improved, high-yielding genotypes than they
could [33,81]. Effective planning and management of potato production now require the
use of effective forecasting tools [90]. Tuber-yield-forecasting products must be carefully
prepared and well thought out. The greatest difficulties in working with forecasting models
are the selection of an appropriate prediction method and the selection of independent
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variables that realistically affect tuber yield. It is important that all of the variables tested are
readily available to the average user of such models and describe the relationships between
phenomena in potato cultivation in a way that is understandable to the producer [16,23,24].

An important measure of prediction quality is the MAPE. The MAPE is defined as
the average variance between the significant values in the dataset and the projected values
in the same dataset [91]. The interpretation of the magnitude of this error is as follows: a
MAPE of less than 10% indicates a very good model fit; when the MAPE is in the range of
10–20%, the degree of model fitness is good. A forecasting model that achieves a MAPE
error of more than 30% should be rejected due to the poor mapping of predicted values to
the actual ones [45,92]. In agricultural research, an acceptable upper limit for the MAPE’s
magnitude is around 15% [23,41,42].

Current trends in potato yield forecasting are mainly directed toward the use of various
spectral indices and GIS data as independent variables for model construction [16,37,38].
Al Gaadi et al. [93] assessed crop condition and predicted potato tuber yield in Saudi
Arabia. Two vegetation indices, NDVI and SAVI, were generated from Landsat-8 and
Sentinel 2 satellite images acquired from different stages of potato growth. Yield samples
were collected 2–3 days before harvest and correlated with the final yield. Based on this,
yield-prediction models and yield maps were developed. The results showed that the
difference between predicted yield values and actual yield values (prediction error) ranged
from 7.9 to 13.5% for Landsat-8 images and from 3.8 to 10.2% for Sentinel-2 images. Since
the prediction errors in the above cases did not exceed 15%, the models created by the
authors can be used in practical applications. Li et al. [94] attempted to improve potato
yield predictions using Unmanned Aerial Vehicle (UAV) remote sensing by incorporating
variety information into machine learning methods. The research was conducted in the
state of Minnesota—the northern part of the United States. Although the authors failed
to generate accurate predictive models, very interesting research conclusions were drawn.
Firstly, it was discovered that UAV-based spectral data from early in the growing season
at the tuber initiation stage (late June) were more correlated with the commercial yield
of potatoes than spectral data from later in the growing season at the tuber maturation
stage. Secondly, it was established that combining high-spatial-resolution UAV images
and variety information using machine learning algorithms can significantly improve
potato yield prediction, when compared with methods excluding the variety information.
The work on yield prediction in potato cultivation is difficult, but research shows that
the most-accurate models can be achieved with the compilation of multiple variables:
agrotechnical, soil, spectral, and meteorological.

In this study, three distinct models were used—non-satellite, satellite, and hybrid. Each
of these models was evaluated in three different scenarios: (a) without outlier detection,
(b) with outlier detection using the Local Outlier Factor method, and (c) with outlier
detection using the One-Class SVM method. The comparative summary of the non-satellite,
satellite, and hybrid models is presented in Table 9.

The comparative analysis of the non-satellite, satellite, and hybrid models in potato
yield prediction revealed distinct trends in model performance across various scenarios.
The hybrid models consistently showed superior predictive accuracy, evidenced by their
significantly lower Mean Absolute Percentage Error (MAPE) values in all scenarios. This
enhanced performance is likely attributed to the comprehensive integration of both satellite
and non-satellite data features, suggesting the critical role of a diverse feature set in
predictive modelling.

In scenarios where Principal Component Analysis (PCA) was applied, particularly
in the non-satellite and hybrid models with Support Vector Machine (SVM) for outlier
detection, there was a notable reduction in the number of features used. This indicates that
PCA is effective at refining feature sets, thereby potentially improving model performance.
Specifically, the hybrid model with SVM outlier detection not only achieved the lowest
MAPE, but also demonstrated the impactful role of PCA in optimising the feature set for
enhanced predictive accuracy.



Agriculture 2023, 13, 2259 20 of 25

Table 9. Comparative summary of non-satellite, satellite, and hybrid models.

Type Model
Outlier

Detection
No. of

Features MAPE
PCA
Used

PCA
No. of Features

Non-satellite SVR N/A 32 17.31% True 5

Non-satellite SVR LOF 37 16.99% True 5

Non-satellite XGB SVM 18 8.47% True 5

Satellite Ridge N/A 92 14.87% False 0

Satellite Ridge LOF 83 15.43% False 0

Satellite Ridge SVM 102 16.38% False 0

Hybrid XGB N/A 79 6.10% False 0

Hybrid Random Forest LOF 80 6.94% False 0

Hybrid XGB SVM 57 5.85% True 5

Conversely, the non-satellite models, which lacked satellite-derived vegetation indices,
exhibited higher MAPE values. This observation underscores the importance of vegetation
indices in yield prediction, highlighting their contribution to model accuracy.

The satellite models presented an interesting trend, where an increase in the number
of features, as seen in the SVM scenario, did not correspond to a decrease in the MAPE.
This contrasts with the hybrid models, where a more judicious feature selection yielded
better results. This suggests that increasing the number of features does not inherently
enhance model performance; rather, the relevance and effective integration of these features
are crucial.

The influence of outlier detection methods, namely the Local Outlier Factor (LOF) and
SVM, varied across the models. While the hybrid models benefited significantly from SVM
outlier detection, the impact on the non-satellite and satellite models was less pronounced.
This difference in impact reiterates the necessity of context-specific approaches in outlier
management for predictive modelling.

In summary, the hybrid models, especially with SVM for outlier detection, emerged as
the most-effective strategy, achieving the lowest MAPE (5.85%) and, thereby, indicating
the highest prediction accuracy among the evaluated models. This analysis reinforces
the need for the careful selection and integration of features, coupled with appropriate
data preprocessing techniques, to enhance the performance of machine learning models in
agricultural yield prediction.

5. Conclusions

The comprehensive study on predicting potato yield using machine learning methods,
specifically in the context of Polish potato varieties used for French fry production, yielded
significant insights. The research highlighted the effectiveness of integrating diverse
datasets, including both satellite and non-satellite data, in enhancing the accuracy of yield
predictions. The hybrid model, which combined these datasets, demonstrated superior
performance over models that utilised either non-satellite or satellite data alone. This
superiority was evident in its lower Mean Absolute Percentage Error (MAPE) (5.85%),
suggesting a higher prediction accuracy. The results clearly indicated that a multifaceted
approach, utilising a broad spectrum of data sources, significantly improved the model’s
ability to predict yield accurately.

Advanced data processing techniques, such as feature selection and outlier detection,
were found to play a pivotal role in the performance of the predictive models. The applica-
tion of Principal Component Analysis (PCA) and outlier detection methods, including the
Local Outlier Factor (LOF) and One-Class SVM, contributed to improvements in model
accuracy. This underscores the importance of sophisticated data processing in machine
learning applications for agricultural yield prediction.
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The comparative analysis of the non-satellite, satellite, and hybrid models, as presented
in the table “Comparative summary of non-satellite, satellite, and hybrid models”, provided
critical insights. The analysis revealed that the hybrid model, especially when coupled with
SVM for outlier detection, emerged as the most-effective in predicting potato yield. This
model achieved the lowest MAPE, indicating its high accuracy and reliability. In contrast,
the non-satellite and satellite models, while beneficial in certain scenarios, did not match
the comprehensive accuracy of the hybrid model. The findings from this comparative
analysis reinforce the conclusion that a combined approach, utilising an extensive array
of features and data sources, is essential for developing robust and accurate agricultural-
yield-prediction models.

In conclusion, this study illustrated the potential of machine learning methods in
revolutionising agricultural yield predictions. The integration of varied data sources, cou-
pled with advanced data-processing techniques, offers a pathway towards more-efficient,
-informed, and -sustainable agricultural practices. As the field of agricultural technol-
ogy continues to evolve, these findings provide a foundation for further research and
development in yield prediction and crop management.
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