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Abstract: Fruit and vegetable inspection aids robotic harvesting in modern agricultural production.
For rapid and accurate detection of fresh shiitake mushrooms, picking robots must overcome the
complex conditions of the growing environment, diverse morphology, dense shading, and changing
field of view. The current work focuses on improving inspection accuracy at the expense of timeliness.
This paper proposes a lightweight shiitake mushroom detection model called Mushroom You Only
Look Once (MYOLO) based on You Only Look Once (YOLO) v3. To reduce the complexity of the
network structure and computation and improve real-time detection, a lightweight GhostNet16 was
built instead of DarkNet53 as the backbone network. Spatial pyramid pooling was introduced at the
end of the backbone network to achieve multiscale local feature fusion and improve the detection
accuracy. Furthermore, a neck network called shuffle adaptive spatial feature pyramid network
(ASA-FPN) was designed to improve fresh shiitake mushroom detection, including that of densely
shaded mushrooms, as well as the localization accuracy. Finally, the Complete Intersection over
Union (CIoU) loss function was used to optimize the model and improve its convergence efficiency.
MYOLO achieved a mean average precision (mAP) of 97.03%, 29.8M parameters, and a detection
speed of 19.78 ms, showing excellent timeliness and detectability with a 2.04% higher mAP and
2.08 times fewer parameters than the original model. Thus, it provides an important theoretical basis
for automatic picking of fresh shiitake mushrooms.

Keywords: picking robot; fresh mushroom sorting; YOLOv3; detection model; lightweight

1. Introduction

Mushrooms are an important foodstuff for humans; their cultivation is a significant
part of the agricultural development of many countries and is growing rapidly [1]. In
Europe, the average mushroom consumption per person is about 3.5 kg per year. The
European mushroom market is expected to expand at the highest compound annual growth
rate (CAGR) of 8.07% during the period 2017–2023. According to the analysis report of Zion
Market Research, the total capital of the global mushroom market exceeded $59.48 billion
in 2021, with a CAGR of more than 9.2% from 2016 to 2020. Global mushroom consumption
is expected to reach 20.84 million tons in 2026, with a CAGR of 6.41%. Therefore, if manual
sorting of mushrooms is still used, a lot of labour will be wasted [2,3]. Fresh shiitake
mushroom picking is a key aspect of mushroom production, which is still predominantly
manual, labour intensive, inefficient, and costly. The use of picking robots to replace manual
labour can improve production efficiency and reduce costs. The prerequisite for automated
robotic picking is the rapid and accurate detection of fresh shiitake mushrooms. Visual
detection is one of the optimal means of achieving these goals, and related issues have
become popular research topics in recent years [4]. Therefore, it is of great research value
and relevance to investigate a visual detection algorithm that can accurately detect fresh
shiitake mushrooms in mushroom sheds.

For fruit and vegetable testing, numerous studies based on traditional machine vision
theory have emerged. Arefi et al. [5] extracted foreground information in Red-Green-Blue
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(RGB) space and combined the Intensity-Hue-Saturation (IHS) and Luminance In-phase
Quadrature (YIQ) spaces to obtain combined features to detect ripe tomatoes, but the
detection performance was poor for small targets. Wei et al. [6] performed feature extraction
of images in Ohta space and fed the extraction results into the Otsu thresholding algorithm
for automatic detection to achieve the automatic recognition of fruits by a picking robot
in a natural environment. Lu and Sang [7] used the segmentation results of citrus color
difference maps and normalized RGB maps under different illuminations to build contour
segments and derive partial order relationships for citrus detection, but the detection speed
was slow. Xiong et al. [8] combined Fuzzy C-Means (FCM) with a one-dimensional random
signal histogram to reject the nighttime image background and used the Otsu algorithm to
segment the litchi, thereby determining the picking point and providing technical support
for the vision system of the picking robot. The above-mentioned traditional identification
methods have solved the detection problems of some fruits and vegetables to a certain
extent. Still, there is limited research on detecting fresh shiitake mushrooms with diverse
morphology, dense growth, shading, and variable field of view. In addition, the traditional
methods rely excessively on manual extraction of features and scene information and have
poor real-time performance, robustness, and generalization capabilities; thus, they cannot
satisfy the actual working needs of picking robots.

In recent years, with the rapid development of deep learning, its application in image
recognition has been increasing. Compared with manual feature extraction methods,
neural networks can extract multilevel features of images though unsupervised or weakly
supervised learning, which has stronger generalization ability and enables significant
improvement in target detection performance [9]. Currently, deep learning-based image
detection algorithms fall into two main categories. The methods in one class are based on
region suggestion and include faster regions with convolutional neural network features
(Faster R-CNN) [10] and region-based fully convolutional networks (R-FCNs) [11]. The
core idea is to first obtain a suggested region and then perform accurate classification
and location prediction within that region. Lamb and Chuah [12] proposed a low-cost
strawberry detection system based on convolutional neural networks, but the detection
speed was only 1.63 frames. Yu et al. [13] combined ResNet-50 [14] with a feature pyramid
network (FPN) [15] as the backbone network of mask regions with a convolutional neural
network (Mask R-CNN) [16] for the real-time detection of strawberries in unstructured
environments. Lin et al. [17] combined Red-Green-Blue-Depth (RGB-D) sensors with a
modified FCN for guava detection and localization. Mu et al. [18] combined a Faster R-
CNN with ResNet-101 and used migration learning to detect unripe tomato fruits. In their
novel identification approach for kiwis, Liu et al. [19] fused aligned RGB and near-infrared
(NIR) pictures with a Faster R-CNN. These methods can accurately classify and predict
the positions of fruits and vegetables, but the detection speed is slow and does not satisfy
the real-time requirements of picking robot operations. The methods in the other class
are region-free suggested methods such as You Only Look Once (YOLO) [20], Single-Shot
MultiBox Detector (SSD) [21], and CenterNet [22]. The methods in this class transform the
localization and classification of the detection process into a regression problem, which in
turn improves the detection speed. Koirala et al. [23] proposed the MangoYOLO model
for the real-time detection of mangoes and estimation of their yield, but its recognition
scenario was rather homogeneous. Li et al. [24] improved YOLOv4-tiny [25] and combined
it with migration learning to perform training in stages to detect ripe grapes. Lu and
Sang [26] added a convolutional attention module called the convolutional block attention
module (CBAM) [27] to the YOLOv4 feature fusion network and included adaptive layers
and large-scale feature maps to detect the ripeness of apples. Wang et al. [28] proposed
the DSE-YOLO model for the detection of strawberries at different growth stages, but
this method increased the number of model parameters. Although the methods in the
region-free proposal class have faster detection speeds than those in the region suggestion
class, their network structures are complex, contain numerous parameters, require higher
equipment performance, and consume more computational resources.
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In summary, despite the emergence of numerous deep learning-based fruit and veg-
etable detection methods, most of them are only applicable to a single scene or target, cannot
guarantee detection speed and accuracy simultaneously, and require high-performance
equipment. Due to the complex environment in mushroom sheds, fresh shiitake mush-
rooms are of various forms, exhibit dense growth, are easy to shade, and have variable
fields of view, all of which can seriously affect the detection accuracy and effectiveness of
the picking robot. Based on the above-mentioned analysis, improving the detection speed
while ensuring adequate detection accuracy was the focus of this study and is a research
hotspot in the field of fruit- and vegetable-picking robots [29–31].

In this study, we took the image detection problem of fresh shiitake mushrooms in a
mushroom shed as the research object, transformed the localization and classification loss
of fresh shiitake mushrooms in the detection process into a regression problem, and pro-
posed a lightweight fresh shiitake mushroom detection model called MYOLO to promote
the development and application of fresh shiitake mushroom-picking robots. The main
contributions of this study are as follows.

(1) To improve the detection speed with guaranteed detection accuracy, the YOLOv3
backbone network Darknet53 was replaced with the lightweight GhostNet16 to compress
the model. Spatial pyramid pooling (SPP) was introduced at the end of the backbone
network to enrich the expression capability of the final feature map and improve the
detection and classification accuracy of small fresh shiitake mushrooms.

(2) A feature fusion network called ASA-FPN was designed that consisted of a FPN,
shuffle attention network (SANet), and adaptive spatial feature fusion (ASFF) to improve
the detection and localization accuracy of the model for fresh shiitake mushrooms and to
enhance its ability to detect densely occluded fresh shiitake mushrooms.

(3) CIoU was used as the regression loss function of the bounding box to improve
the problem of slow regression during model training. In addition, migration learning
was utilized in the training process to improve the accuracy and generalization ability of
the network.

The remainder of this paper is organized as follows. Section 2 describes the image
acquisition, annotation, and dataset partitioning methods as well as the improvement of the
lightweight YOLOv3-based structural model. Section 3 introduces the experimental design.
Section 4 presents the experimental results and analysis. Finally, Section 5 summarizes the
conclusions and topics for future work.

2. Materials and Methods
2.1. Image Acquisition

A fresh shiitake mushroom dataset was collected in a mushroom plantation from
April to June 2022, and 1803 fresh shiitake images were acquired using Shengyue indus-
trial cameras (Camera model AHD10802P-USB, manufacturer is Weixin Vision, country
of origin is China) and mobile phones with a camera resolution of 720 × 480. The mobile
phones were not fixed according to the resolution of the shooting angle. The fresh shiitake
mushroom images were collected mainly during the daytime, and the filming simulated
the picking process of picking robots by constantly adjusting the filming angle and distance.
The dataset was divided into two main parts: images of fresh shiitake mushrooms on
mushroom stakes and images of picked mushrooms, which included different types, sizes,
and distribution densities of fresh shiitake mushrooms. With reference to national regula-
tions and common market classification methods in China, the mushrooms were classified
into three categories according to the cracks and shapes of their heads: cracked-surface
mushrooms, plane-surface mushrooms, and malformed-surface mushrooms (including
malformed cracks and planes) [32]. According to field surveys, the market value of cracked-
surface mushrooms is much higher than that of plane-surface mushrooms, and the value of
the malformed mushrooms is the lowest [33]. Thus, fresh mushrooms need to be sorted
after harvesting. To improve production efficiency, simultaneous picking, detection, and
sorting of fresh mushrooms was considered in this study. Due to the low production of
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malformed mushrooms, some fresh malformed mushroom images were collected via the
Internet, considering the versatility of the visual system. Finally, 1416 images of fresh
mushrooms were acquired through field photography and Internet collection, including
274 cracked-surface mushrooms, 351 plane-surface mushrooms, 278 malformed fresh mush-
rooms, and 513 mixed fresh mushrooms (multiple species, dense shading, multiple fields
of view, etc.). The species classifications and shapes of fresh shiitake mushrooms are shown
in Figure 1.
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Figure 1. Varietal classification and shapes of various fresh shiitake mushrooms. (a) Cracked-surface
mushroom; (b) Plane-surface mushroom; (c) Dense overlap; (d) Malformed plane-surface mushroom;
(e) Malformed cracked-surface mushroom; (f) Large field of view.

2.2. Image Datasets

The datasets used in this study were in the PASCAL.VOC2007 format. The regions of
fresh shiitake mushrooms in the images were manually labelled with rectangular boxes
using the LabelImg software to obtain an Extensible Markup Language (XML) file in
VOC format; examples of various types of fresh shiitake mushroom labelling are shown
in Figure 2. The labelling was conducted with fresh shiitake mushrooms in a manually
observable, full-labelling manner, with all shielded shiitake mushrooms in the image
labelled according to their visible size and identified by human eye observation. After
labelling, the training, validation, and test sets were allocated according to a 6:1:3 ratio,
where 638 images were randomly selected as the training set, 141 as the validation set, and
425 as the test set.
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Figure 2. Example labels for various types of fresh shiitake mushrooms.

In this study, the dataset was expanded using data augmentation techniques to in-
crease the variety of the experimental data, boost the model generalizability, and prevent
overfitting. The fresh shiitake mushroom images were extended by using the following
five techniques: rotation, Gaussian noise, contrast enhancement, brightness variation, and
mosaic data enhancement [34,35], as shown in Figure 3. The first four enhancement tech-
niques were implemented through the built-in Python-based OpenCV functions, whereas
the mosaic method involves random cropping of four images stitched together into one
new image as the training data. After these operations, the training set was expanded
to 3184 images, the validation set to 563 images, and the test set to 662 images. The test
set included a selection of data randomly adjusted for changes in brightness to simulate
light sources.

Agriculture 2023, 13, x FOR PEER REVIEW 5 of 23 
 

 

 
Figure 2. Example labels for various types of fresh shiitake mushrooms. 

In this study, the dataset was expanded using data augmentation techniques to in-
crease the variety of the experimental data, boost the model generalizability, and prevent 
overfitting. The fresh shiitake mushroom images were extended by using the following 
five techniques: rotation, Gaussian noise, contrast enhancement, brightness variation, and 
mosaic data enhancement [34,35], as shown in Figure 3. The first four enhancement tech-
niques were implemented through the built-in Python-based OpenCV functions, whereas 
the mosaic method involves random cropping of four images stitched together into one 
new image as the training data. After these operations, the training set was expanded to 
3184 images, the validation set to 563 images, and the test set to 662 images. The test set 
included a selection of data randomly adjusted for changes in brightness to simulate light 
sources. 

 
Figure 3. Various types of data enhancement effects. 

2.3. Problems with the YOLOv3 Model 
YOLO [20] is a single-stage object detection method based on a regression model pro-

posed by Redmon, which uses the Overfeat algorithm proposed by Sermanet in 2013 to 
make predictions based on global image information. YOLOv3 [36] is an improved ver-
sion of the YOLO network structure in which the complete connection layer and last pool-
ing layer are removed from YOLO and a fully convolutional network structure is adopted, 

Figure 3. Various types of data enhancement effects.

2.3. Problems with the YOLOv3 Model

YOLO [20] is a single-stage object detection method based on a regression model
proposed by Redmon, which uses the Overfeat algorithm proposed by Sermanet in 2013 to
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make predictions based on global image information. YOLOv3 [36] is an improved version
of the YOLO network structure in which the complete connection layer and last pooling
layer are removed from YOLO and a fully convolutional network structure is adopted,
enabling the network to extract higher-resolution features. Its network consists of the
backbone DarkNet53, neck FPN and three-branch prediction structure. DarkNet53 is a
feature extraction network involving ordinary convolution, which improves the learning
ability of the network by adding a residual structure between the convolution layer and
the lower sampling layers to reduce the loss caused by gradient disappearance. Due
to the use of ordinary convolution, the number of network parameters in DarkNet53
increases dramatically with the number of convolutional layers, which can generate many
nonessential calculations and directly affect the detection speed of the model. In addition,
the model uses an FPN as the neck network, predicts three feature layers at different scales
using three branches, and fuses differently sized feature layers obtained by downsampling.
This approach enhances the reuse of information from different feature layers, but there
is variability between different feature scales, and when there are both small and large
targets in the image, the contradiction between features at different layers will lead to poor
detection and localization accuracy, and the ability to detect variable fields of view and
densely occluded groups is also relatively weak.

2.4. Model Improvements
2.4.1. MYOLO Network Structure

To address the above-mentioned problems of the YOLOv3 model; overcome the
effects of complex conditions such as diverse morphology, dense growth, easy occlusion,
and variable field of view of fresh shiitake mushrooms; and improve the detection and
localization accuracy of fresh shiitake mushrooms further, this paper proposes a new
lightweight fresh shiitake mushroom detection model called MYOLO. This model is based
on YOLOv3, and the “M” denotes that fresh shiitake mushrooms are the detection targets.
MYOLO mainly consists of a backbone network, a neck network and a prediction network,
the backbone network is responsible for extracting picture information, the neck network
performs further feature extraction (such as location, category) on the obtained picture
information, the prediction network is located behind the backbone network and neck
network (as shown in Figure 4a), predicts the target and scores. MYOLO utilizes the
regression idea of the YOLOv3 model, with few ghost modules (the principle will be
described in Section 2.4.2) as the main body to build a lightweight GhostNet16, as well
as SPP modules. The lightweight backbone network of MYOLO is formed. The network
compresses the model and reduces the operational computation required for general
convolution while maintaining accuracy to improve the real-time detection performance.
Through the introduction of the SPP module, local and global features can also be effectively
fused to enhance the detection and classification accuracy of the model further for small,
fresh shiitake mushrooms. Furthermore, to utilise the features extracted by the backbone
network further to improve the detection and localisation accuracy of MYOLO for fresh
mushrooms and to enhance the detection of densely occluded fresh mushrooms, a new
neck network called ASA-FPN, consisting of FPN, SANet, and ASFF, was designed. SANet
is located after Concat, the key position of FPN, at the intersection between different scales
of information in a feature fusion network, which is conducive to obtaining rich feature
information and improving the localization accuracy of the model. ASFF is located at
the end of the FPN and can effectively suppress the inter-scale variability and improve
the accuracy of detecting densely occluded fresh shiitake mushrooms by MYOLO. The
MYOLO model ASFF network outputs three prediction layers afterwards for use in the
prediction network, and its network architecture is shown in Figure 4.
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Figure 4. MYOLO network structure.

After prediction layers Y1, Y2, and Y3 are processed in the prediction network, the
images are divided into 52 × 52, 26 × 26, and 13 × 13 grids, respectively, and three anchor
frames are generated for each grid. During the training process, the anchor frame providing
the target information is chosen as the prediction result after the sizes and locations of
the anchor frames are continually changed. Prediction layer Y1 has a small grid, which is
effective for finding tiny targets in the picture; prediction layer Y2 has a moderate grid,
which is good for detecting intermediate targets; and prediction layer Y3 has a large grid,
which is good for detecting large targets. The final prediction parameters for the picture
are included in each channel of the prediction layer. The specific structure of the prediction
layer (with a 13 × 13 grid as an example) is shown in Figure 5. The prediction parameters
of each prediction layer include the prediction frame centre coordinates (X, Y), prediction
frame length and width (W and H, respectively), prediction frame confidence level (C),
score of fresh shiitake mushrooms in the prediction frame (Score), and the number of
predicted bounding boxes for which each grid is responsible (B).
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2.4.2. GhostNet16 Network Structure

GhostNet [37] is a novel end-to-end network architecture proposed by Huawei Noah’s
Ark (Noah’s Ark Lab is a laboratory based in China where Huawei conducts basic research
on artificial intelligence. http://dev3.noahlab.com.hk/index.html, accessed on 6 February
2023), which is based on a series of low-computation linear transformations to provide
additional low-redundancy features. GhostNet is mainly stacked by Ghost Bottleneck,
which consists of a Ghost module, squeeze-and-excitation (SE) module [38], and depthwise
(DW) separable convolution [39], as shown in Figure 4c. When the step size is 1, the Ghost
module in front of the Ghost Bottleneck acts as an extension layer to increase the number
of channels, and the Ghost module behind it acts as a compression layer to reduce the
number of input channels to match the Shortcut path. The SE module is also used in the
Ghost Bottleneck to adjust the weights of each channel adaptively to strengthen the critical
channels and suppress the minor ones, thereby improving the network performance. When
the step size is 2, a downsampling layer and DW separable convolution with a step size of 2
are used to build the Shortcut path to achieve a lightweight model. The above-mentioned
mechanism reduces the number of parameters in the model and improves timeliness [40].

Figure 6 illustrates the process of extracting and generating feature maps by using
the Ghost module. Here, ∅z denotes a low computational linear transformation process,
z denotes the zth linear operation to generate the feature map, and i denotes the ith feature
extraction performed by the backbone network. Suppose that the input feature map
size is ci

input ∗ wi
input ∗ hi

input, which is divided into si parts, the output feature map size

is ci
output ∗ wi

output ∗ hi
output, the convolution kernel is ki ∗ ki, and the size of each linear

operation kernel is di∗di. The ordinary convolutional computation used by DarkNet53 is
Ti

c, as shown in Equation (1); the Ghost module used by GhostNet is Ti
g, as expressed in

Equation (2). Assuming that ki is equal to di and that si is much smaller than ci
output (which

is exactly what happens in practice), the compression ratio ri calculated using ordinary
convolution and the Ghost modules can be derived according to Equations (1) and (2),
as shown in Equation (3). Based on Equation (4), when the backbone network needs to
perform feature extraction n times, the computation required by the Ghost module will be
exponentially reduced compared with ordinary convolution (Rn), and the timeliness will
be significantly improved.

Ti
c = ci

input ∗ k2
i ∗ ci

output ∗ hi
output ∗ wi

output (1)

Ti
g =

ci
output

si
∗ hi

output ∗ wi
output ∗ (ci

input ∗ k2
i + (si − 1) ∗ d2

i ) (2)

ri =
Ti

c
Ti

g
≈

si ∗ ci
input

si + ci
input − 1

≈ si > 1 (3)

Rn = r1 ∗ r2 ∗ r2 . . . rn−1 ∗ rn � min(si)
n (4)

Agriculture 2023, 13, x FOR PEER REVIEW 8 of 23 
 

 

2.4.2. GhostNet16 Network Structure 
GhostNet [37] is a novel end-to-end network architecture proposed by Huawei 

Noah’s Ark (Noah’s Ark Lab is a laboratory based in China where Huawei conducts basic 
research on artificial intelligence. http://dev3.noahlab.com.hk/index.html, accessed on 6 
February 2023), which is based on a series of low-computation linear transformations to 
provide additional low-redundancy features. GhostNet is mainly stacked by Ghost Bot-
tleneck, which consists of a Ghost module, squeeze-and-excitation (SE) module [38], and 
depthwise (DW) separable convolution [39], as shown in Figure 4c. When the step size is 
1, the Ghost module in front of the Ghost Bottleneck acts as an extension layer to increase 
the number of channels, and the Ghost module behind it acts as a compression layer to 
reduce the number of input channels to match the Shortcut path. The SE module is also 
used in the Ghost Bottleneck to adjust the weights of each channel adaptively to 
strengthen the critical channels and suppress the minor ones, thereby improving the net-
work performance. When the step size is 2, a downsampling layer and DW separable con-
volution with a step size of 2 are used to build the Shortcut path to achieve a lightweight 
model. The above-mentioned mechanism reduces the number of parameters in the model 
and improves timeliness [40]. 

Figure 6 illustrates the process of extracting and generating feature maps by using 
the Ghost module. Here, ∅  denotes a low computational linear transformation process, 𝑧 denotes the 𝑧𝑡ℎ linear operation to generate the feature map, and 𝑖 denotes the 𝑖th fea-
ture extraction performed by the backbone network. Suppose that the input feature map 
size is 𝑐 ∗ 𝑤 ∗ ℎ , which is divided into 𝑠  parts, the output feature map size 
is 𝑐 ∗ 𝑤 ∗ ℎ , the convolution kernel is 𝑘 ∗ 𝑘 , and the size of each linear 
operation kernel is 𝑑 *𝑑 . The ordinary convolutional computation used by DarkNet53 is 𝑇 , as shown in Equation (1); the Ghost module used by GhostNet is 𝑇 , as expressed in 
Equation (2). Assuming that 𝑘  is equal to 𝑑  and that 𝑠  is much smaller than 𝑐  
(which is exactly what happens in practice), the compression ratio 𝑟  calculated using or-
dinary convolution and the Ghost modules can be derived according to Equations (1) and 
(2), as shown in Equation (3). Based on Equation (4), when the backbone network needs 
to perform feature extraction 𝑛 times, the computation required by the Ghost module 
will be exponentially reduced compared with ordinary convolution (𝑅 ), and the timeli-
ness will be significantly improved. 𝑇 = 𝑐 ∗ 𝑘 ∗ 𝑐 ∗ ℎ ∗ 𝑤  (1)

𝑇 = 𝑐 𝑠 ∗ ℎ ∗ 𝑤 ∗ (𝑐 ∗ 𝑘 + (𝑠 − 1) ∗ 𝑑 ) (2)

𝑟 = 𝑇𝑇 𝑠 ∗ 𝑐𝑠 + 𝑐 − 1 𝑠 1 (3)

𝑅 = 𝑟 ∗ 𝑟 ∗ 𝑟 ∙∙∙ 𝑟 ∗ 𝑟 ≫ min (𝑠 )  (4)

 
Figure 6. Process of extracting and generating feature maps by using the Ghost module. (a) Ordinary 
convolution; (b) Ghost module. 

Figure 6. Process of extracting and generating feature maps by using the Ghost module. (a) Ordinary
convolution; (b) Ghost module.

http://dev3.noahlab.com.hk/index.html


Agriculture 2023, 13, 392 9 of 23

Based on the above-mentioned analysis, to solve the problem of the large number of
DarkNet53 parameters in the backbone network of YOLOv3, we built a lightweight Ghost-
Net16 as the backbone network of MYOLO by drawing on the GhostNet network structure.
The GhostNet16 network parameters are listed in Table 1, and the network structure is
shown in Figure 4a. Because the neck network of MYOLO requires three different scales of
feature inputs to provide multiscale information for prediction and classification, feature
layers 5, 11, and 16, which were adjusted by the SE module, were used as input features for
the MYOLO neck network.

Table 1. Hardware and software configuration.

Feature Layer Input Component Units Stride Attention

0 416 × 416 × 3 Conv2d 3 × 3 2 Add
1 208 × 208 × 16 G-bneck 3 × 3 1 No
2 208 × 208 × 16 G-bneck 3 × 3 2 No
3 104 × 104 × 24 G-bneck 3 × 3 1 No
4 104 × 104 × 24 G-bneck 5 × 5 2 Add
5 52 × 52 × 40 G-bneck 5 × 5 1 Add
6 52 × 52 × 40 G-bneck 3 × 3 2 No
7 26 × 26 × 80 G-bneck 3 × 3 1 No
8 26 × 26 × 80 G-bneck 3 × 3 1 No
9 26 × 26 × 80 G-bneck 3 × 3 1 No

10 26 × 26 × 80 G-bneck 3 × 3 1 Add
11 26 × 26 × 112 G-bneck 3 × 3 1 Add
12 26 × 26 × 112 G-bneck 5 × 5 2 Add
13 13 × 13 × 160 G-bneck 5 × 5 1 No
14 13 × 13 × 160 G-bneck 5 × 5 1 Add
15 13 × 13 × 160 G-bneck 5 × 5 1 No
16 13 × 13 × 160 G-bneck 5 × 5 1 Add

2.4.3. SPP Network Structure

To fuse local and global features effectively and improve the model detection perfor-
mance for small fresh shiitake mushrooms, the spatial pyramidal pooling (SPP) structure
was incorporated into the backbone network of MYOLO [41–43]. SPP is a structure consist-
ing of three different scales of maximum pooling layers, as shown in Figure 7. These are
H: feature map height, W: width, and C: number of channels. First, the input H ×W × C
feature map is executed three times with different convolution kernel sizes in block pooling
to extract feature information from different sizes of perceptual fields; second, the feature
map is obtained by pooling operation to normalize its size. Next, the three feature maps are
merged with the original feature map on the channels to obtain the H ×W × 4C feature
map. Finally, the spliced feature map is passed on the subsequent network to increase the
perceptual field, enrich the expression capability of the final feature map, and enhance the
detection performance of the model for small fresh shiitake mushrooms further.

2.4.4. ASA-FPN Network Structure

The new neck network, ASA-FPN, designed in this study consists of three main
components: FPN, SANet, and ASFF. The main structure of FPN was shown in Figure 4
and will not be repeated here, and the SANet and ASFF networks introduced are further
analysed, as described below.
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To improve the detection and localization accuracy of fresh shiitake mushrooms in
complex environments, an attention mechanism based on feature grouping and channel
replacement (SANet) [44] was introduced at the intersection of information at different
FPN scales. The network structure of SANet is shown in Figure 8. First, input X is split into
groups according to the channel dimensions; second, for split features Xk, they are further
split into two branches along the channel dimension for learning channel attention features
Xk1 and null domain attention features Xk2. Xk1 is extracted using a combination of GAP,
Scale, and Sigmoid. Xk2 is first extracted using the group norm (GN) for spatial-level feature
extraction, followed by enhancement using Fc(·). After the two attention calculations, Xk is
obtained by fusing the two types of attention features through Concat. Next, the channel
shuffle operation is used for inter-group communication. Finally, the feature map output
has the same size as the input. The above-mentioned attention mechanism gives higher
weight to the fresh shiitake mushroom feature information to suppress the influence of the
background information, improving the accuracy of fresh shiitake mushroom detection
and localization in complex scenes.
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In an FPN, multiscale prediction still faces conflicts, although simple feature fusion
can improve feature layer information. An ASFF network [45] was incorporated at the end
of the ASA-FPN. The new fusion network can adaptively learn the weight information at
different scale feature levels to reduce conflicts when there are densely distributed objects.
In Figure 9, a 13 × 13 × 256 feature map is used as an example. First, to solve the different-
scale problem, 52 × 52 × 64 and 26 × 26 × 128 feature maps are unified in dimension and
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downsampled to a 13 × 13 × 256 feature map (if the upsampling of the unified dimension
transformation is also performed from the deep feature map to the shallow feature map).
Subsequently, the feature maps of each layer are compressed by the 1× 1 convolution block
to generate three 13 × 13 × 16 feature maps and then by the Softmax function to extract
the 13 × 13 × 3 multi-scale feature-level weight information. Then, it is multiplied by the
downsampled feature layers P1, P2, and P3 (each feature map is multiplied times only
13 × 13 × 1 feature maps) and the outputs are summed. Finally, the effective feature maps
responsible for target prediction are obtained. Through the above-mentioned operation, the
inter-scale variability can be effectively suppressed to improve the accuracy of the detection
network for densely shaded fresh shiitake mushrooms, reducing the missed detection rate.
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3. Experimental Design
3.1. Network Training

Table 2 displays the hardware and software combinations utilized in this work for
model training and testing. We used migration learning for establishing the model pa-
rameters to increase the recognition accuracy of the network [13]. Initialization provides
the network with fast learning capabilities, eliminates network overfitting, and improves
the generalization of the network for fresh shiitake mushroom detection in a mushroom
shed environment.

Table 2. Hardware and software configuration.

Hardware or Software Configuration

CPU Intel i9-10700H
RAM 24 GB
SSD 256 GB

Operating system Window 10
GPU NVIDIA GeForce GTX 2080Ti 11 GB

Development environment Python 3.8, Pytorch 1.12,
CUDA 11.3

The MYOLO network was first used to train the PASCAL.VOC2007 dataset for
200 stages. After the training was completed, the higher mean average precision (mAP)
weight file was then selected as the pretraining model for the MYOLO network. Before
training, the sizes of the nine anchor boxes were calculated using the K-means clustering
algorithm [46], where (42, 22), (67, 44), and (71, 89) correspond to prediction layer Y1; (108,
63), (137, 101), and (99, 148) correspond to prediction layer Y2; and (210, 132), (157, 184), and
(254, 253) correspond to prediction layer Y3, as shown in Figure 10. The above operation
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makes the actual size of the anchored box closer to the size of fresh shiitake mushrooms in
the dataset, which is conducive to improving the detection and localization accuracy. In the
training process, the epoch was set to 400 and the batch size was set to 16. The stochastic
gradient descent [47] optimizer was used for training, with the initial learning rate set to
0.001, momentum set to 0.937, and weight decay set to 0.0001, and the cosine annealing
method was employed to update the learning rate. The model was saved once at the end
of each epoch, and the performance metrics of the detection model were recorded in real
time through the matplotlib tool, with the training taking a total of 4 h 45 min.
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3.2. Loss Function

During the model training process, there is an uncertainty error between the predicted
and true values. The objective of the loss function is to reduce this error continuously
so that the value predicted by the model is as close to the corresponding true value as
possible. The loss function of MYOLO consists of three main components: bounding box
loss, confidence loss, and category loss. Among them, the bounding box loss function
is regressed by the CIoU [48] function to improve the convergence efficiency, which is
calculated as follows:

Loss = LCIoU + Lcon f + Lclass (5)

LCIoU = 1− IoU +
ρ2(p, g)

c2 + βv (6)

IoU =
A ∩ B
A ∪ B

(7)

v =
4
π2

(
arctan

wg

hg − arctan
wp

hp

)2
(8)

β =
v

(1− IoU) + v
(9)

where A and B are the areas of the two boxes; IoU denotes the degree of overlap between
the two boxes; p and g are the centroids of the predicted and actual boxes, respectively; c is
the diagonal length of the smallest external rectangular box in the box; β is the weight; v is
the parameter measuring the consistency of the length, width, and ratio; and w and h are
the width and height of the box, respectively.

Lcon f = ∑S2

i=0 ∑B
j=0 Iobj

i,j log(pi)− λnoobj ∑S2

i=0 ∑B
j=0 Inoobj

i,j log(1− pi) (10)

Lclass = −λclass ∑S2

i=0 ∑B
j=0 Iobj

i,j ∑ni∈classes BCE(n, n∗) (11)

BCE(n, n∗) = −n log n∗ − (1− n) log(1− n∗) (12)
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where S is the number of grids; B is the number of prior frames in each network; n and n∗

are the values of the actual and predicted categories of the jth a priori box of the ith grid,
respectively; BCE(n, n∗) is the cross entropy loss; Iobj

i,j is 1 for the jth a priori box of the ith

grid with a target and 0 for no target; Inoobj
i,j is the jth a priori box of the ith grid, which is

1 when there is no target and 0 when there is a target; p is the probability that the target
exists in the current prior frame; λnoobj is the loss of confidence weights without objects;
and λclass denotes category loss weights.

3.3. Model Evaluation

In this study, to verify the accuracy of the MYOLO detection model, fresh shiitake
mushroom recall (R), precision (P), F1 score, average precision (AP), and mAP were used
as evaluation indicators [49]. The specific formulae for the above-mentioned indicators are
as follows:

R =
TP

TP + FN
(13)

P =
TP

TP + FP
(14)

P =
TP

TP + FP
(15)

AP =
∫ 1

0
P(R)dR (16)

where TP is the number of fresh shiitake mushrooms detected correctly, FP is the number
of fresh shiitake mushrooms detected incorrectly, and FN is the number of fresh shiitake
mushrooms missed. For each category in the target detection, a P− R curve can be plotted
based on the accuracy and recall.

4. Experimental Results and Analysis
4.1. Experimental Results

The loss curves during training and validation set mAP values are shown in Figure 11.
As shown in Figure 11a and Table 3, MYOLO uses CIoU as the bounding box loss

function, and the training time is shortened by 29 min compared to MYOLO-R, which
improves the regression speed and convergence effect during model training. At the
same time, the mAP of MYOLO is increased by 7.3% compared to MYOLO-N in Table 3,
indicating that the introduction of transfer learning also greatly improves the accuracy of
model detection [50–52]. In addition, the loss curves of MYOLO(Train) and MYOLO(Val)
demonstrate that the rate of decline is the fastest in the first 150 rounds of training and then
gradually becomes slower. Although the experiment was set to train for 400 rounds, the
validation set loss had stabilized after 230 rounds, and after 300 rounds, the validation set
loss started to increase slowly while the training set loss was still decreasing, indicating that
the model had been overfitted [53]. Figure 11b depicts the change curve of the validation
set mAP (IoU threshold set to 0.5) during the training process. As the number of training
rounds increases, the mAP curve also increases gradually, reaching a peak near round 220,
and the curve has a decreasing trend after round 270. Therefore, in this study, the maximum
value of mAP for each of the 20 rounds before and after the 220th round was taken as the
final model weight. After testing, the maximum value appeared in the 222nd round, when
mAP = 96.66%.
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Figure 11. Loss curves and validation set mAP values during training. (a) Loss curve during training;
(b) Validation set mAP curve during training.

The final model was tested using the test set, which contained images of three types of
fresh shiitake mushrooms in a mushroom shed in various complex situations, as shown in
Figure 2. The P-R curves of the three types of fresh shiitake mushroom images (Figure 12)
indicate that the model achieved AP values of 96.15% for cracked-surface mushrooms,
95.60% for plane-surface mushrooms, and 98.39% for malformed-surface mushrooms, in
addition to an mAP of 97.03% and an average detection speed of 19.78 ms. The above-
mentioned test results prove that the detection accuracy and speed of the proposed model
satisfy the practical requirements of a picking robot and that it can be applied to the
automated detection of fresh shiitake mushrooms in mushroom sheds.
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Figure 12. P− R curves of the YOLO-M detection model. (a) Cracked-surface mushroom; (b) Plane-
surface mushroom; (c) Malformed-surface mushroom.

Table 3. Training time and migration learning experiment results (IoU threshold set to 0.5).

Model CIOU Migration
Learning mAP Training Time

(Epoch = 400)

YOLOv3 ×
√

94.85% 5 h 52 min
MYOLO-R ×

√
96.31% 5 h 14 min

MYOLO
√ √

97.03% 4 h 45 min
MYOLO-N

√
× 89.73% 4 h 47 min
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4.2. Ablation Experiments

Ablation experiments are usually conducted on complex neural networks to explore
the effects of network-specific substructures or training strategies and parameters on model
generation and are important guides in the design of neural network structures [54]. To
evaluate the effectiveness and feasibility of the lightweight model, MYOLO, proposed
in this paper, the performance of GhostNet16, SPP, and ASA-FPN networks was verified
individually by performing ablation experiments. As the MYOLO model is derived from
YOLOv3, it was used as the benchmark for the ablation experiments.

Table 4 shows the results of the ablation experiments performed on GhostNet16, SPP,
and ASA-FPN networks using the test set. YOLO-A is the model with GhostNet16 applied;
YOLO-B is the model with GhostNet16 and SPP applied; and YOLO-C is the model with
GhostNet16, SPP, and ASA-FPN applied. YOLO-A exhibits no significant change in mAP
compared to YOLOv3, but the number of model parameters is reduced by 38.65 MB, and
the detection speed is reduced by 19.19 ms compared to Darknet53, which shows that
utilizing the lightweight GhostNet16 as a backbone network can reduce the number of
model parameters without affecting the detection accuracy. Furthermore, mAP improved by
0.74% for YOLO-B compared to YOLO-A and 1.39% for MYOLO compared to YOLO-B. The
experimental results demonstrate that the models using SPP and ASA-FPN can improve
the detection performance without significantly affecting the number of model parameters.
The proposed MYOLO model improves the mAP by 2.18% and decreases the number of
model parameters by 32.16M. Therefore, the ablation experiments show that MYOLO is
effective and feasible, considering the balance between model parameters and accuracy.

Table 4. Test results obtained for the four algorithms on the test set (IoU threshold set to 0.5).

Model FPN GhostNet16 SPP ASA-FPN mAP Total
Parameters Speed

YOLOv3
√

× × × 94.85% 61.53 M 35.94 ms
YOLO-A

√ √
× × 94.90% 22.88 M 17.45 ms

YOLO-B
√ √ √

× 95.64% 23.93 M 18.01 ms
YOLO-M ×

√ √ √
97.03% 29.37 M 19.78 ms

Figure 13 presents the detection results for the different models in the mushroom
shed. The different species of fresh shiitake mushrooms are indicated by the different
coloured bounding boxes; the yellow boxes correspond to missed fresh shiitake mushroom
detections. Here, A1–A3 are the YOLOv3 detection results, B1–B3 are the YOLO-A detection
results, C1–C3 are the YOLO-B detection results, and D1–D3 are the MYOLO detection
results. Figure 13 demonstrates that the replacement of the backbone network, GhostNet16,
does not influence the detection effect, but like in the original model, missed detection
is more serious for dense occlusions and large field-of-view situations, as shown in B1
and B2. YOLO-B can detect small fresh shiitake mushrooms more accurately but still has
some problems with mushroom localization, as depicted in C3. Using the ASA-FPN neck
network MYOLO can detect mushrooms more accurately in dense occlusions and complex
environments to maintain better detection, localization accuracy, and improves the missed
detection under a large field of view effectively, as demonstrated by column D.
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4.3. Multiscene Detection Performance Analysis

To demonstrate the detection performance of MYOLO under complex conditions
such as diverse morphologies of fresh shiitake mushrooms, dense growth, occlusion,
and variable fields of view, the test set was further classified to construct the above-
mentioned complex scenarios. Accordingly, the performance of MYOLO was tested against
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those of four mainstream target detection algorithms: Faster RCNN, SSD, YOLOv3, and
YOLOv5-m [55].

The test set consisted of 663 images of fresh shiitake mushrooms, which were divided
to obtain 239 images of dense occlusion, 241 images of different lighting, and 135 images of
large fields of view. The detection results are shown in Figure 14. The average accuracy
of YOLO-M for the test set was 97.03%, better than those of all other target detection
algorithms. The lightened YOLO-M target detection model outperformed the other algo-
rithms in different scenarios for the detection of cracked-surface mushrooms, plane-surface
mushrooms, and malformed-surface mushrooms, indicating that YOLO-M can better detect
and classify fresh mushrooms. Compared with the mAP of YOLOv3, that of YOLO-M
is improved by 3.56% for the detection of dense occlusion, which indicates that the ad-
dition of ASFF solves the problem of dense occlusion of fresh shiitake mushrooms to a
certain extent. The largest difference was in the large field-of-view case, where the mAP for
YOLO-M is 9.64%, 10.88%, 5.00%, and 3.70% higher than the mAP values for Faster RCNN,
SSD, YOLOv3, and YOLOv5-m, respectively, proving the powerful ability of YOLO-M to
extract fresh shiitake mushroom surface features in the large field-of-view case and the
effectiveness of SPP and SANet incorporation.
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Figure 14. Detection results for each algorithm in different scenarios (IoU threshold set to 0.5).

Figure 15 reveals that all five detection algorithms mentioned above are more accurate
in identifying the species of fresh shiitake mushrooms when the actual scene contains more
species of fresh shiitake mushrooms. Lowercase A is a mixed scene, lowercase B is a dense
occlusion scene, lowercase C and D are different lighting scenes, and lowercase E is a large
field of view scene. For cases in which the target is small owing to the shooting distance,
MYOLO achieves higher accuracy than the other algorithms, as depicted in Figure 15a,e.
Both Faster-RCNN and MYOLO can accurately identify fresh shiitake mushrooms even
when they are densely distributed and in the presence of shading, which reflects the high
adaptability of both, as revealed by Figure 15b. Regarding the effects of light intensity,
MYOLO also ensures good stability in detection; in particular, when there is insufficient
light, fresh shiitake mushrooms that are obscured can be detected, as shown in Figure 15d.
For densely obscured fresh shiitake mushrooms, as shown in Figure 15b,c, MYOLO also
showed its stability, and the rest of the models produced missed detections when occluded,
while MYOLO did not. Under large field-of-view conditions, all fresh shiitake mushrooms
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are detected as plane-surface mushrooms as the back pattern of fresh shiitake mushrooms
is not obvious at a distance; when the camera comes closer, fresh shiitake mushrooms
are classified correctly, as shown in Figure 15a,d,e. Although some small fresh shiitake
mushrooms are still missed in the large field-of-view situation, Figure 15e shows that
MYOLO minimizes the missed detection. Thus, MYOLO can accurately detect fresh
shiitake mushrooms in various complex environments, and its prediction of the position
and category of frames is accurate and has strong robustness.
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4.4. Feasibility Analysis of Picking Robot Applications

To demonstrate the feasibility of using MYOLO in picking robot applications, we
compared its time performance and model complexity with those of four mainstream target
detection algorithms—Faster RCNN, SSD, YOLOv3, and YOLOv5-m—on a test set, and
the results are shown in Table 5. After the lightweighting process, MYOLO had an mAP of
97.03%, the number of model parameters was 29.8 MB, detection speed was 19.78 ms, and
the number of floating point operations (FLOPs) was 21.36 G. The above-mentioned metrics
indicate that MYOLO has higher detection performance than models such as YOLOv3 and
can better detect and classify fresh shiitake mushrooms. Although YOLOv5-m is superior
in terms of detection time and total number of model parameters, its detection accuracy
is not sufficiently high. The detection speed of MYOLO is 19.78 ms, which is ideal for
porting and embedded development, and the model inference speed can guarantee that
the real-time requirements for the detection and classification process are satisfied, which
can meet the practical needs of picking robots for fresh shiitake mushroom detection tasks.

Table 5. Algorithm detection performance comparison (IoU threshold set to 0.5).

Algorithm FLOP
(G)

Total
Parameters

(M)

Speed
(ms)

F1
(%)

mAP
(%)

Faster-RCNN 370.21 137.1 129.65 89.30 90.31
SSD 62.75 26.3 23.02 85.67 87.48

YOLOv3 66.17 62.0 35.94 92.01 94.85
YOLOv5-m 21.38 21.3 17.95 92.33 95.36

MYOLO 21.36 29.8 19.78 94.02 97.03

4.5. Discussion

Unlike fruits such as strawberries [12], pomegranates [17] and kiwi fruit [19], fresh
shiitake mushrooms differ not only in size, shape and compactness of different categories,
but also in different growing periods within the same category. In addition, fresh shiitake
mushrooms grow in the environment of mushroom sheds and are susceptible to complex
environmental influences such as light changes, overlaps, shadows, and occlusion. Because
of these factors, accurate shiitake mushroom detection is very challenging. Most of the
experimental images come from indoor shooting, and a small part comes from the network,
so the difference between the images is more obvious, which increases the difficulty of
detection greatly. Liu et al. [32] used the YOLOvX algorithm to detect the quality of
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shiitake mushrooms, and the mAP was as high as 99.96%, but they did not classify shiitake
mushroom varieties, and their experimental scene was too rationalized (moving shiitake
mushrooms to a specific shooting site after picking), which did not conform to the actual
picking scene. Zhang et al. [56] combined the YOLOv3 algorithm with the Rao-1 algorithm
for automatic detection of damaged apples; although the mAP is 5.03% higher than the
original method, it does not consider that the complexity of the network model is too
high, and the detection speed is not reliable in actual deployment. Bazame et al. [57] used
lightweight YOLOv3 to classify and detect coffee cherries, and although the detection speed
was improved, the mAP was only 84%, resulting in frequent false or missed detections
in the detection task. The above author’s improvement of YOLO cannot balance the
relationship between detection speed and detection accuracy, and is not suitable for the
algorithm deployment of sorting robots.

From the results of Table 4 and Figure 5, it can be seen that the detection of various
fresh shiitake mushrooms by the MYOLO detection model has achieved good results, and
its mAP reaches 97.03% under the total test set, 94.95% under the secret shadow test set,
94.03% under different light datasets, and 94.90% under the large field of view dataset. The
above results not only indicate that the MYOLO network model can adapt to changes in
image quality and complex environment, but also prove its robustness. At the same time,
the time performance and model complexity of MYOLO are also compared with the other
four detection models in Table 5, the detection speed of MYOLO is 19.78 ms and the model
complexity is 21.36 G, which met the speed requirements of real-time picking.

From what has been discussed above, it can be seen that MYOLO can detect fresh
shiitake mushrooms in complex scenarios, balancing the relationship between detection
speed and detection accuracy, which ensures detection accuracy while meeting the require-
ments of detection speed, it overcomes the disadvantages of the current YOLO algorithm
in fruit and vegetable detection effectively [32,56,57]. So MYOLO is convenient for network
deployment to mobile devices, and it is more applicable to the detection of fresh shiitake
mushrooms. For crop detection in other applications (such as: crop classification and
localization, disease degree estimation, etc.), Zhang et al. [58] combined YOLOv5x and
SE for weed crop classification and lettuce localization, for which the mAP was as high as
97.3%, detection speed was 19.3 ms, detection speed and accuracy reached a good balance.
Gao et al. [59] used the automatic tandem dual BlendMask deep learning framework and
ResNet-50 and FPN as the backbone network of the blank mask to evaluate the severity of
Fusarium head blight in wheat, and the average accuracy of Fusarium head wilt severity
classification reached 91.80%. In future research, methods applied in other aspects of crop
detection can also provide ideas for the algorithm improvement of picking robots.

5. Conclusions and Future Work

For the visual perception element of a picking robot, this study proposed a lightweight
MYOLO detection model to address the problems of diverse morphology, dense growth,
easy occlusion, and variable field of view in the detection of fresh shiitake mushrooms,
providing a theoretical basis for a vision detection system for picking robots. A lightweight
GhostNet16 was constructed as the backbone network in the MYOLO model to improve
the network detection speed for fresh shiitake mushrooms. SPP was introduced to improve
the detection accuracy of the model for small fresh shiitake mushrooms. In addition,
a new feature fusion network, ASA-FPN, was designed to improve the detection and
localization accuracy of fresh shiitake mushrooms and to increase the detection of fresh
shiitake mushrooms under large field-of-view conditions to a certain extent. The results
showed that the MYOLO model has high accuracy and speed for detecting different
categories of fresh shiitake mushrooms.

In addition, the recognition results of four models were compared on 663 images. The
comparison metrics revealed that the F1 value of MYOLO was 4.72%, 8.35%, 2.01%, and
1.69% higher than those of Faster RCNN, SSD, YOLOv3, and YOLOv5-m, and the mAP
was 6.72%, 9.55%, 2.18%, and 1.67% higher, respectively; the detection speed was 19.78 ms,
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which is 31.15, 3.38, and 6.45 times higher than those of the first three types of models.
With high detection accuracy and real-time performance, MYOLO can meet the needs of
picking robots for real-time detection of multiple categories of fresh shiitake mushrooms in
mushroom sheds.

In the future, we will continue to improve the MYOLO model in terms of fresh shiitake
mushroom grade classification, light intensity, and the effects of various complex environments.
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