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Abstract: Nitrogen (N) fertilizer application is one of the causes of soil acidification at tea plantations.
However, the effect of N fertilizer application on the soil acidification characteristics of tea plantations
with different acidities remains unclear. In this study, field experiments were conducted to investigate
the effects of different nitrogen fertilizer application rates on the pH, pH buffer capacity (pHBC), ex-
changeable total acidity (ETA), exchangeable base cations (EBCs), and cation exchange capacity (CEC)
in the topsoil of non-acidified (NA), mildly acidified (MA), and heavily acidified (HA) tea plantations.
The results showed that the exchangeable Al3+ (E-Al) and CEC were HA > MA > NA in all tea plantations,
whereas the EBCs and base saturation percentage (BSP) were HA < MA < NA. In the tea plantations with
pH > 4.0, the pH, EBCs, and BSP showed decreasing trends with increasing N fertilizer application,
whereas E-Al showed an increasing trend. In the tea plantations with pH < 4.0, the soil pH showed a
small increasing trend with the increase in N fertilizer application, whereas the soil exchangeable
H+ (E-H), E-Al, and CEC showed decreasing trends. Meanwhile, in the pH range of 4–6, the soil
acid–base buffer curve rose sharply, and an excessive application of N fertilizer (N900) significantly
reduced the pHBC. In addition, a stepwise regression analysis showed that the BSP, EBCs, and
exchangeable Mg2+ (E-Mg) had significant direct effects on the soil pH, whereas the CEC and N
application had significant direct effects on the soil pHBC. In conclusion, a decrease in the BSP and an
increase in E-Al were the main mechanisms of acidification at tea plantations, whereas a decrease in
the BSP caused by the application of N fertilizer was the main cause of exacerbated soil acidification
in non-acidified tea plantations.

Keywords: soil acidification; tea plantation; N fertilization; pH buffer capacity; exchangeable function

1. Introduction

Soil acidification is a serious aspect of soil degradation worldwide and has been
reported in various ecosystems and regions [1,2]. Soil acidification induces soil nutri-
ent imbalances [3] and losses of natural flora and fauna species [4], reduces agricultural
production [5] and reduced belowground processes [6,7], and increases greenhouse gas
emissions [8]. Soil acidification is ascribed to a combination of high-N fertilization [9],
plant uptake and the removal of base cations from the soil [10], and acid deposition [11].
The overuse of N fertilizer is the dominant factor that has resulted in soil acidification in
conventional agricultural systems aimed at maximizing profits [12,13]. It is thought that
accelerated soil acidification due to N fertilization is directly caused by the production of
protons via nitrification after ammonium nitrogen fertilization occurs [14]. In addition, un-
der heavy rainfall, nitrate nitrogen ions (NO3

−) leach out of the soil and carry away a large
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number of base ions, leaving more H+, which is the indirect cause of the soil acidification
caused by nitrogen fertilizer application [15].

The tea plant (Camellia sinensis) is an important cash crop that is cultivated in many
tropical and subtropical countries. Owing to its high economic value, tea cultivation has
been rapidly expanding in China [16]. The optimal soil pH for tea growth is 4.5–5.5 [17]. Tea
growth is inhibited when the soil pH is lower than 4.0, and both the quality and quantity
of the tea that is produced are negatively affected [18]. Nitrogen (N) fertilizer is applied
to improve the yield and quality of tea because N is required for the production of amino
acids, which are key quality indicators of tea [19]. High rates of N fertilization, as high as
444 kg ha−1, further accelerate soil acidification [20]. In China, 46.0% of soil samples had a
pH < 4.5, indicating that the soil acidification trend of tea plantations is severe [21].

Most studies have shown that the higher the amount of nitrogen fertilizer that is
applied, the more serious the soil acidification [22]. However, the soil acidification rate
may be reduced by less nitrate leaching because the nitrification rate is typically inhibited
by a low soil pH [23]. Additionally, rather than the total production of protons, soil
acidification strongly depends on the soil buffering capacity and the depletion of the soil
base cation pool. The soil acid–base buffer system mainly depends on the soil pH [24].
Therefore, a basic soil pH has an important effect on the degree of soil acidification caused by
nitrogen application.

The transformation of soil nutrients and microbial activities are significantly affected
by soil pH. The nutrient transformation and microbial activities are different in soils with
different pH values [25]. Most previous studies have been carried out under the same pH
conditions; therefore, the responses of the soil acidification characteristics of tea plantations
with different pH values to N fertilizer application is not completely clear. In addition, the
effect of fertilization on soil properties can be more accurately evaluated using the multiyear
positioning test. At present, there are few studies on the effect of the long-term application
of N fertilizer on the soil properties at tea plantations. In this study, we conducted three
field experiments that considered a range of N additions in Guizhou, the province with the
largest tea planting area in China, and 86.9% of the soil samples had soil pH values < 4.5 [21].
We tested the soil pH, exchangeable total acidity (ETA), exchangeable base cations (EBCs),
and soil acid–base buffering capacity (pHBC). Our objectives were (1) to reveal the contri-
bution of N fertilization to soil acidification at tea plantations at different pH levels, (2) to
evaluate the main factors controlling the soil pH at tea plantations, and (3) to provide a
reference for rational N application and acidification improvement at tea plantations.

2. Materials and Methods
2.1. Description of the Study Site

The experimental sites were located in the main region for green tea cultivation in
Guizhou Province, Southwest China, and all field experiments were conducted from 2016
to 2020. The Guiding test site (GD) was located in Baoguan Township, Guiding County,
Qiannan Prefecture, Guizhou Province (107◦8′53.8′′ E, 26◦13′44.6′′ N, altitude 1244 m). The
experimental site has a subtropical monsoon climate with a frost-free period of 280 days,
an average annual temperature of 13.2 ◦C, and an average annual precipitation of 1200 mm.
The soil at the site was a yellow soil and was classified as an Acrisol in the World Refer-
ence Base for Soil Resources (WRB). Before the experiment, tea plants of the ‘Niaowang’
variety grew in the studied field for 10 years, and the planting density was approximately
60,000 plants ha−1. A N-P-K ternary compound fertilizer (N-P-K: 15/6.5/12.4, 400 kg ha−1)
and urea (120 kg ha−1) were applied annually before the experiment.

The Meitan test site (MT) was located in Xinglong Town, Meitan County, Zunyi City,
Guizhou Province (107◦33′4.4′′ E, 27◦45′33.3′′ N, altitude 831 m). The experimental site
has a subtropical monsoon climate with a frost-free period of 284 days, an average annual
temperature of 15.3 ◦C, and an average annual precipitation of 1100 mm. The soil at the
site was a yellow soil and was classified as an Acrisol in the World Reference Base for Soil
Resources (WRB). Before the experiment, tea plants of the ‘Fuding’ variety grew in the
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studied field for 35 years, and the planting density was approximately 60,000 plants ha−1.
An organic–inorganic compound fertilizer (N-P-K 11/2.2/3.3, 3000 kg ha−1) was applied
annually before the experiment.

The Xixiu test site (XX) was located in Jichang Township, Xixiu District, Anshun City,
Guizhou Province (106◦4′33.1′′ E, 26◦5′20.4′′ N, altitude 1233 m). This experimental site
has a subtropical monsoon climate with a frost-free period of 250 days, an average annual
temperature of 13.9 ◦C, and an average annual precipitation of 1200 mm. The soil at the
site was yellow soil and was classified as an Acrisol in the World Reference Base for Soil
Resources (WRB). Before the experiment, tea plants of the ‘Fuding’ variety grew in the
studied field for 34 years, and the planting density was approximately 60,000 plants ha−1.
A total of 750 kg ha−1 of a N-P-K ternary compound fertilizer, 450–675 kg ha−1 of urea,
and 1500 kg ha−1 of organic fertilizer (rapeseed cake) were applied annually before
the experiment.

The surface (0–20 cm) soil properties that existed at each site before the experiment
are shown in Table 1. According to the impact of the pH on the growth of tea plants, the
pH was divided into three levels: pH < 4 was heavily acidified (HA), 4 < pH < 4.5 was
mildly acidified (MA), and pH > 4.5 was non-acidified (NA). The pH value of the soil at
the Guiding test site (GD) was NA, the soil at the Meitan test site (MT) was MA, while the
soil at the Xixiu test site (XX) was HA.

Table 1. Soil properties that existed at each site before the experiment.

Test Site pH SOM
(g kg−1)

CEC
(cmol kg−1)

TN
(g kg−1)

AN
(mg kg−1)

AP
(mg kg−1)

AK
(mg kg−1)

GD 5.01 19.0 9.30 1.44 110.2 14.60 187.0
MT 4.14 28.7 14.2 1.76 147.9 41.30 118.1
XX 3.74 68.4 24.8 3.29 181.6 54.20 181.3

Note: SOM—soil organic matter; CEC—cation exchange capacity; TN—total nitrogen; AN—alkali-hydrolyzed
nitrogen; AP—available phosphorus; AK—available potassium.

2.2. Experimental Design

The experiment consisted of five treatments, and each treatment was repeated three
times according to a randomized complete block design (RCBD). The area of each plot was
22.5 m2 (1.5 m × 15.0 m). The treatments included N0 (P 43.7 kg ha−1 and K 83.9 kg ha−1),
N150 (N 150 kg ha−1, P 43.7 kg ha−1, and K 83.9 kg ha−1), N300 (N 300 kg ha−1, P 43.7 kg ha−1,
and K 83.9 kg ha−1), N600 (N 600 kg ha−1, P 43.7 kg ha−1, and K 83.9 kg ha−1), and
N900 (N 900 kg ha−1, P 43.7 kg ha−1, and K 83.9 kg ha−1). The fertilizers used in the
test included urea (46.0% N), superphosphate (7.0% P), and potassium sulfate (41.9% K).
Nitrogen fertilizer was applied in three stages: base (30%), spring (40%), and summer
(30%). The base fertilizer was applied from October to November every year, the spring
fertilizer was applied in early February of the following year, and the summer fertilizer
was applied in May–June every year. Phosphorus and potassium fertilizers were applied as
a base fertilizer in October–November every year. All fertilizers were applied in the band
furrows (at a depth of 15–20 cm) about 20–30 cm from the roots of the tea plants and then
covered with soil after their application.

2.3. Sampling and Measurement

Soil samples from depths of 0–20 cm were collected between rows of tea trees from
10 randomly selected spots in the main experimental area before fertilization. Soil samples
were collected before the experiment in October 2016, and the soil samples for this study
were collected in October 2020. The soil samples were composited, and visible impurities
and roots were removed. Then, the samples were naturally air-dried, ground, and passed
through 2 mm and 0.15 mm sieves to determine their chemical properties. The chemical
properties of the soil were determined according to the method described by Bao [26]. The
soil pH was measured with a 1:2.5 extraction mixture (soil/water, w/v) using a pH meter
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(FE20K, Mettler Toledo, Zurich, Switzerland). The organic matter (OM) was determined
by oxidation with potassium dichromate and titration with ferrous ammonium sulfate.
The total N (TN) was determined using the Kjeldahl method. The available nitrogen (AN)
was measured using the alkaline hydrolysis diffusion method. The available phosphorus
(AP) was extracted using a 0.03 mol L−1 NH4F–0.025 mol L−1 HCl solution and analyzed
using an ultraviolet-visible spectrophotometer (T6 New Century, Beijing, China) via a
molybdenum blue colorimetric analysis. The available potassium (AK) contents were
extracted using 1 mol L−1 NH4AC (pH 7.0) and measured using a flame photometer
(AP1200, Shanghai, China). The exchangeable total acids (E-Al and E-H) were determined
using 1 mol L−1 potassium chloride solution drenching and NaOH-neutralization titration.
The CEC was determined using a 1 mol L−1 ammonium acetate exchange and a distillation
method. EBCs were extracted using a 1 mol L−1 ammonium acetate (pH 7) solution, the Ca
and Mg in the extracts were determined using atomic absorption spectrophotometry, and
the K and Na were determined using flame photometry.

Three of the treatments (N0, N300, and N900) were selected for the soil acid–base buffer
titration curve. A 0.5 g soil sample was weighed into each of the 15 beakers (numbered
1–15). Then, 0, 0.25, 0.5, 1.0, 2.0, 4.0, 6.0, and 9.0 mL of a 0.1 mol L−1 HCl solution was
added to beakers 1–8, and 0.25, 0.5, 1.0, 2.0, 4.0, 6.0, and 9.0 mL of a 0.1 mol L−1 NaOH
solution was added to beakers 9–15, and finally deionized water was added to fix the
volume to 25.0 mL. The solutions were shaken well, and the pH values were measured after
30 min of standing. The pHBC was determined by the linear fitting of the data between
two inflection points [27]. The calculation formula was as follows:

pHBC = 1/|a|

where pHBC indicates the acid–base buffer capacity at the end of the test and a is the slope
of the linear fitting equation.

2.4. Statistical Analysis

The experimental data were calculated using Excel 2010. Variance, correlation, and
stepwise regression analyses were performed using SPASS 20.0. Differences between
treatments were analyzed using a one-way ANOVA combined with Duncan’s multiple
range test (p < 0.05).

3. Results
3.1. Effect of N Fertilizer Application Rates on Soil pH values of Tea Plantations

At the NA and MA plantation, the pH of each treatment was N0 < N150 < N300 <
N600 < N900, whereas at the HA plantation the pH of the N0 treatment was significantly
lower than those of the N600 and N900 treatments, and there was no significant difference
between the N application treatments. Compared with the N0 treatment, the pH decreased
by 11.3–45.0% at the NA plantation and by 1.4–12.7% at the MA plantation, whereas the
pH increased by 3.1–41.7% at the HA plantation for the N fertilizer application treatments
(Figure 1). The results of the linear fit of the soil pH and N application rates (Table 2)
showed that the coefficient of determination of the NA and MA equations reached a highly
significant level (p < 0.01), and the slope of the NA equations was 3.3 times higher than that
of the MA equation, whereas the coefficient of determination of the HA equation did not
reach significance (p > 0.05). This indicates that the lower the degree of acidification at tea
plantations, the greater the effect of nitrogen fertilizer application on the pH. The results
of fitting the quadratic equation for one variable to the soil pH and N application rates
(Table 2) showed that the coefficients of determination of the equations reached a highly
significant level (p < 0.01) at all experimental sites, with the pH values corresponding to
the inflection points of the equations for the NA, MA, and HA plantations, which were
3.72, 3.82 and 4.04, respectively. This indicates that the pH decreased continuously with
increasing nitrogen application when the soil pH was > 4.0, whereas the pH showed an
increasing trend with the increasing nitrogen application when the soil pH was < 4.0.
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Figure 1. Effect of N application rate on soil pH at tea plantations with different degrees of acidifica-
tion. Note: the different lowercase letters indicate significant differences at p < 0.05 for different N
application rates at the same degree of acidification.

Table 2. Response equations of soil pH to N application rate at tea plantations with different degrees
of acidification.

Soil Acidification Degree Response Equation of Soil pH to
Nitrogen Application Rate R2 pH Value Corresponding to the

Inflection Point of the Equation

NA y = −0.0020x + 6.3069 0.9350 ** —
MA y = −0.0006x + 4.3967 0.9398 ** —
HA y = 0.0001x + 3.9074 0.5472 —
NA y = 1 × 10−6x2 − 0.0033x + 6.4443 0.9626 ** 3.72
MA y = 4 × 10−7x2 − 0.001x + 4.4404 0.9684 ** 3.82
HA y = −5 × 10−7x2 + 0.0006x + 3.8566 0.9601 ** 4.04

Note: ** represents significance at 0.01 probability level.

3.2. Effect of N Fertilizer Application Rates on Soil pHBC Values of Tea Plantations

Figure 2 shows the soil acid–base titration curves for different N fertilizer application
rates. The results show that all curves were “S” shaped (Figure 2). In the pH range of
4–6, the soil acid–base buffer curves rose sharply, indicating that the soil acid–base buffer
capacity was weak in this pH range. When the soil pH was <4 or >6, the soil acid–base
buffer curves became flat, indicating that the soil acid–base buffer capacity was sharply
enhanced. The soil pHBC was calculated via a linear fitting of the soil acid–base buffer
curve in the pH range of 4–6 (Table 3). The pHBC values of the NA, MA, and HA soils were
1.09–1.38 cmol kg−1, 1.21–1.52 cmol kg−1, and 1.52–3.54 cmol kg−1, respectively. Compared
with the N0 treatment, the pHBC values of the N300 and N900 treatments decreased by
20.9% and 20.2% in the NA soils, respectively. The pHBC was reduced by 57.2% and
47.9% in HA soils in the N900 treatment compared with the N0 and N300 treatments,
respectively, whereas the pHBC was not different in the MA soils. This indicates that
heavy soil acidification increased the pHBC, whereas an excessive application of N fertilizer
reduced the pHBC.
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Figure 2. Titration curves with different N application rates at tea plantations with different degrees
of acidification. Note: on the X axis, negative values indicate the amount of acid, and positive values
indicate the amount of alkali.

Table 3. Soil pH buffering capacity under different N application rates at tea plantations with different
degrees of acidification.

Soil Acidification Degree Treatments
Linear Fitting Equation pHBC

a b R2 (cmol kg−1)

NA
N0 0.7240 5.7981 0.9628 ** 1.38 ± 0.055 a

N300 0.9348 4.9919 0.9415 ** 1.09 ± 0.195 b

N900 0.9106 4.9938 0.9684 ** 1.10 ± 0.089 b

MA
N0 0.8321 5.1636 0.9562 ** 1.21 ± 0.071 a

N300 0.7086 4.6700 0.9370 ** 1.52 ± 0.407 a

N900 0.7576 4.6164 0.9722 ** 1.32 ± 0.057 a

HA
N0 0.277 3.7981 0.9336 ** 3.54 ± 0.206 a

N300 0.3646 3.9676 0.9830 ** 2.91 ± 0.794 a

N900 0.6876 4.0471 0.9838 ** 1.52 ± 0.385 b

Note: the different lowercase letters indicate significant differences at p < 0.05 for different N application rates at
the same degree of acidification. ** represents significance at 0.01 probability level.

3.3. Effect of N Fertilizer Application Rates on Exchange Performances of Tea Plantations
3.3.1. Exchangeable Total Acidity

Both E-Al and ETA showed HA > MA > NA at all the tea plantations (Table 4). In NA
soils, the E-H, E-Al, and ETA contents increased continuously with increasing N application
rates, whereas the contents for the N900 treatment were 4.9, 3.0, and 3.2 times higher than
those of the N0 treatment, respectively. In the MA soils, the E-Al and ETA contents kept
increasing with increasing N application rates, whereas in the N900 treatment, the contents
significantly increased by 33.1% and 29.3%, respectively, compared to the N0 treatment.
In the HA soils, the E-H, E-Al, and ETA contents all tended to decrease with increasing N
application rates, whereas for the N900 treatment, the contents significantly decreased by
27.0%, 19.0%, and 19.2%, respectively, compared to the N0 treatment.

3.3.2. Exchangeable Base Cations

The CEC showed HA > MA > NA at tea plantations with different acidities, whereas
the E-Ca, E-Mg, E-K, E-Na, TEB, and BSP showed NA > MA > HA (Tables 5 and 6). The
application of N fertilizer significantly reduced the E-Ca, E-Mg, E-K, E-Na, TEB, and BSP
in NA soils, whereas the N900 treatment significantly reduced these values by 65.4%,
67.3%, 60.8%, 37.9%, 65.0%, and 63.7%, respectively, compared with the N0 treatment.
The E-Ca, E-Mg, TEB, and BSP trended to increase and then decrease with increasing N
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application rates in the MA soils. Compared to the N150 treatment, the E-Ca, E-Mg, TEB,
and BSP of the N900 treatment were significantly reduced by 41.9%, 42.9%, 41.1%, and
42.7%, respectively. However, the application of N fertilizer reduced the CEC, and the
CEC of the N900 treatment was significantly reduced by 14.9% compared to that of the
N0 treatment.

Table 4. Effects of N application rates on soil exchangeable acids at tea plantations with different
degrees of acidification.

Soil Acidification Degree Treatments E-H
(cmol kg−1)

E-Al
(cmol kg−1)

ETA
(cmol kg−1)

NA

N0 0.054 ± 0.024 b 0.87 ± 0.149 b 0.92 ± 0.173 b

N150 0.241 ± 0.114 a 2.15 ± 0.329 ab 2.39 ± 0.321 ab

N300 0.157 ± 0.058 ab 3.11 ± 1.683 a 3.27 ± 1.626 a

N600 0.238 ± 0.140 a 3.47 ± 0.664 a 3.71 ± 0.660 a

N900 0.265 ± 0.073 a 2.64 ± 0.417 a 2.90 ± 0.345 a

MA

N0 0.258 ± 0.173 a 6.13 ± 0.173 b 6.38 ± 0.000 b

N150 0.072 ± 0.026 a 5.89 ± 1.453 b 5.96 ± 1.478 b

N300 0.059 ± 0.006 a 6.78 ± 0.074 ab 6.84 ± 0.080 ab

N600 0.090 ± 0.000 a 6.63 ± 0.400 ab 6.72 ± 0.400 ab

N900 0.092 ± 0.002 a 8.16 ± 0.158 a 8.25 ± 0.160 a

HA

N0 0.178 ± 0.014 a 13.29 ± 0.249 a 13.47 ± 0.235 a

N150 0.124 ± 0.019 bc 11.29 ± 0.977 b 11.41 ± 0.990 b

N300 0.148 ± 0.023 ab 11.40 ± 1.137 b 11.54 ± 1.158 b

N600 0.099 ± 0.016 c 10.15 ± 0.769 b 10.25 ± 0.767 b

N900 0.130 ± 0.023 bc 10.76 ± 0.359 b 10.89 ± 0.376 b

Note: the different lowercase letters indicate significant differences at p < 0.05 for different N application rates at
the same degree of acidification.

Table 5. Effects of N application rates on EBCs at tea plantations with different degrees of acidification.

Soil Acidification Degree Treatments E-Ca
(cmol kg−1)

E-Mg
(cmol kg−1)

E-K
(cmol kg−1)

E-Na
(cmol kg−1)

NA

N0 9.33 ± 1.23 a 1.53 ± 0.404 a 0.904 ± 0.271 a 0.116 ± 0.022 a

N150 5.03 ± 2.54 b 0.83 ± 0.503 b 0.558 ± 0.172 b 0.104 ± 0.023 ab

N300 5.00 ± 2.49 b 0.53 ± 0.252 b 0.546 ± 0.199 b 0.085 ± 0.018 ab

N600 3.83 ± 1.63 b 0.43 ± 0.115 b 0.388 ± 0.036 b 0.072 ± 0.007 b

N900 3.23 ± 0.68 b 0.50 ± 0.200 b 0.354 ± 0.072 b 0.072 ± 0.014 b

MA

N0 3.45 ± 0.21 ab 0.45 ± 0.071 ab 0.384 ± 0.181 a 0.098 ± 0.005 a

N150 4.65 ± 0.92 a 0.70 ± 0.141 a 0.384 ± 0.109 a 0.087 ± 0.031 a

N300 3.15 ± 0.35 ab 0.50 ± 0.000 ab 0.185 ± 0.009 a 0.058 ± 0.010 a

N600 2.85 ± 0.78 ab 0.35 ± 0.071 b 0.467 ± 0.118 a 0.080 ± 0.000 a

N900 2.70 ± 0.85 b 0.40 ± 0.141 b 0.269 ± 0.036 a 0.065 ± 0.010 a

HA

N0 2.53 ± 0.32 a 0.23 ± 0.058 a 0.350 ± 0.036 a 0.072 ± 0.004 a

N150 3.00 ± 0.75 a 0.30 ± 0.000 a 0.388 ± 0.118 a 0.087 ± 0.011 a

N300 2.67 ± 0.42 a 0.30 ± 0.000 a 0.354 ± 0.018 a 0.065 ± 0.004 a

N600 2.57 ± 0.72 a 0.23 ± 0.058 a 0.222 ± 0.027 a 0.065 ± 0.004 a

N900 2.53 ± 0.47 a 0.27 ± 0.058 a 0.234 ± 0.009 a 0.101 ± 0.023 a

Note: the different lowercase letters indicate significant differences at p < 0.05 for different N application rates at
the same degree of acidification.



Agriculture 2023, 13, 849 8 of 14

Table 6. Effects of N application rates on BSP at tea plantations with different degrees of acidification.

Soil Acidification Degree Treatments TEB
(cmol kg−1)

CEC
(cmol kg−1)

BSP
(%)

NA

N0 11.89 ± 1.41 a 14.9 ± 0.70 a 80.2 ± 12.19 a

N150 6.53 ± 3.20 b 14.4 ± 1.27 a 44.7 ± 20.68 b

N300 6.16 ± 2.98 b 16.1 ± 2.18 a 37.5 ± 14.41 b

N600 4.73 ± 1.82 b 15.6 ± 1.67 a 29.8 ± 9.29 b

N900 4.16 ± 1.02 b 14.3 ± 0.68 a 29.1 ± 7.27 b

MA

N0 4.38 ± 0.33 ab 18.7 ± 0.40 a 23.4 ± 2.24 b

N150 5.82 ± 1.20 a 16.2 ± 1.19 a 35.8 ± 4.77 a

N300 3.89 ± 0.33 ab 16.1 ± 1.27 a 24.4 ± 4.02 ab

N600 3.75 ± 0.73 ab 17.3 ± 2.83 a 21.6 ± 0.69 b

N900 3.43 ± 0.96 b 17.0 ± 1.45 a 20.5 ± 7.39 b

HA

N0 3.62 ± 0.39 a 30.2 ± 3.04 ab 12.2 ± 1.05 a

N150 3.76 ± 0.89 a 32.3 ± 1.80 a 11.7 ± 3.36 a

N300 3.38 ± 0.41 a 30.0 ± 2.43 a 11.4 ± 2.06 a

N600 3.08 ± 0.76 a 27.7 ± 1.14 bc 11.1 ± 2.27 a

N900 3.11 ± 0.53 a 25.7 ± 0.92 c 12.1 ± 1.76 a

Note: the different lowercase letters indicate significant differences at p < 0.05 for different N application rates at
the same degree of acidification.

3.3.3. Inter-Subject Effect Test

The results of a two-way ANOVA showed that the N application rate had a significant
effect on the pH, BSP, pHBC, TEB, E-Ca, E-Mg, E-K, and E-Na, whereas there was no
effect on the E-H, E-Al, ETA, and CEC (Table 7). The degree of soil acidification had a
significant effect on all indicators of the soil exchange properties and the pHBC. However,
the interaction of the N application rate and acidification degree of the soil had no effect on
the E-Na but had significant effects on all other indicators.

Table 7. F values of inter-subject effect test of N application rate (N) and acidification degree of soil
(A) on soil acidification characteristics.

Source pH pHBC ETA TEB CEC BSP E-H E-Al E-Ca E-Mg E-K E-Na

N 14.17 ** 7.84 ** 1.11 4.72 ** 2.03 5.37 ** 0.49 1.10 4.08 * 4.70 ** 3.93 * 4.60 **
A 197.45 ** 39.86 ** 484.87 ** 19.49 ** 283.59 ** 51.17 ** 4.40 ** 480.42 ** 17.01 ** 20.73 ** 12.85 ** 7.52 **

N × A 10.00 ** 6.80 ** 7.26 ** 3.72 ** 2.63 ** 5.52 ** 3.92 ** 6.68 ** 3.36 ** 4.45 ** 2.40 ** 1.57 **

Note: * represents significance at 0.05 probability level. ** represents significance at 0.01 probability level.

3.4. Relationship between Soil Exchangeable Function and N Application Rate, pH, and pHBC

A correlation analysis was performed, including all three soils, and the results showed
that the N application rate was significantly or highly significantly negatively correlated
with the pH, E-Ca, E-Mg, E-K, E-Na, TEB, and BSP (Figure 3). The pH was negatively
correlated with the E-Al, ETA, CEC, and pHBC, whereas it was positively correlated with
the E-Ca, E-Mg, E-K, E-Na, TEB, and BSP. In addition, the pHBC was positively correlated
with the E-Al, ETA, and CEC but negatively correlated with the BSP.
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We performed a stepwise regression analysis of the pH and pHBC with the soil ex-
change properties and N application rate and obtained the following regression equations:

pH = 3.238 + 0.048BSP − 1.977E-Mg + 0.212TEB (R = 0.977**) (1)

pHBC = −0.194 + 0.108CEC − 0.001N (R = 0.851**) (2)

In Equation (1), the direct path coefficients of the BSP, E-Mg, and TEB were 1.161,
0.683, and −0.906, respectively, and their partial regression coefficients reached extremely
significant levels (p < 0.01). In Equation (2), the direct path coefficients of the CEC and
N were 0.770 and −0.263, respectively, and their partial regression coefficients reached a
significant level (p < 0.05). This indicated that the BSP, E-Mg, and TEB had significant direct
effects on the pH, with the BSP having the greatest effect. The CEC and N had significant
direct effects on the pHBC, with the CEC having the greatest effect.
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4. Discussion
4.1. Characteristics of Soil pHBC at Tea Plantations

The soil pH buffer capacity (pHBC) is an indicator of soil resistance to acidification
or alkalization. A higher pHBC value indicates a smaller change in soil pH for the same
acid–base input [28]. In this study, the soil acid–base buffer curve in the pH range of
4–6 rose sharply, indicating that the soil had poor buffering performance against acid–
base addition in this pH range [29]. Meanwhile, the results of this study showed that the
pHBC of the HA tea plantation was significantly higher than those of the NA and MA tea
plantations, which may have been due to the fact that the soil buffering substances at the
HA tea plantation were mainly an iron–aluminum buffering system (pH < 4) that had a
strong soil acid–base buffering capacity [30]. However, the CEC is an important factor
that affects the soil acid–base buffering capacity. Many studies have shown that the soil
pHBC has a significant positive correlation with the CEC [31–33]. In this study, a stepwise
regression analysis showed that the CEC had a significant direct effect on the pHBC, which
was consistent with the above results. In addition, the results of this study also showed that
the pHBC was significantly positively correlated with the E-Al, whereas it was significantly
negatively correlated with both the TEB and BSP, suggesting that soil acidification makes
Al3+ play a greater role than EBCs in the acid–base buffering performances of tea plantation
soils [9]. It is noteworthy that the stepwise regression analysis showed a significant direct
negative effect of the N application rate on the pHBC, which indicates that the exces-
sive application of N fertilizer is an important factor in the decrease in the soil pHBC at
tea plantations.

4.2. Relationship between Soil pH and Exchangeable Base Cations

In this study, the pH was significantly negatively correlated with the E-Al, and the
E-Al accounted for more than 90% of the ETA, whereas there was no significant correlation
with the E-H, which suggests that E-Al plays a determinant role in driving the acidification
at tea plantations [22]. Generally, a tea tree is an aluminum-loving crop, and Al can
be returned to the soil by fallen leaves and trimmings to improve the E-Al content [34].
The leaching of exchangeable base cations (EBCs) is another important reason for soil
acidification [35]. In this study, EBCs showed E-Ca > E-Mg > E-K > E-Na, whereas the pH
was highly significantly and positively correlated with the E-Ca, E-Mg, E-K, and E-Na,
and the correlation coefficients with the E-Ca and E-Mg were higher, which indicated that
the E-Ca and E-Mg had a greater effect on the soil pH. In addition, the proportion of E-Al
in the CEC gradually increased, whereas the proportion of EBCs in the CEC gradually
decreased (Figure 4), suggesting that replacing EBCs with E-Al as the major cation is the
main mechanism of soil acidification at tea plantations [13]. However, the correlation
between the pH and E-Al and EBCs was not linear but was a highly significant power
function correlation (Figure 4). The results showed that as E-Al increased, the pH decreased
to approximately 4.0 and then did not continue to decrease, whereas as the EBCs increased,
the pH increased to approximately 6.0 and then did not continue to increase. This may
have been because when the pH was <4 or >6, the acid–base buffering capacity of the soil
increased sharply and the pH hardly changed. This was more consistent with the non-linear
relationship between the pH and BSP that was considered in earlier studies [36,37] but was
inconsistent with the linear relationship between the pH and BSP suggested in the study
by Hao et al. [38].
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4.3. Effect of N Application on Soil Acidification at Tea Plantations

Excessive application of N fertilizer was found to be the main anthropogenic factor
exacerbating soil acidification at tea plantations [39]. In this study, the effect of the N
application rate on the pH decreased with an increase in the degree of acidification. This
may have been because the pHBC increased with an increasing acidification degree at the
tea plantation, and the pH change was small. When the soil pH was >4, the E-Al content
increased with an increasing N application rate, whereas the opposite was true for the TEB
and BSP, which led to a constant decrease in the soil pH. At the same time, the higher the
soil pH before the experiment, the more obvious the decrease in pH due to N application.
At tea plantations with pH < 4, N application reduced the contents of E-H and E-Al, which
did not lead to a further decrease in pH and even led to a small increase. This may have
been due to the fact that the soil nitrogen nitrification was affected by the soil pH, and the
soil nitrification was inhibited, thereby reducing the production of ETA in the HA soils.
However, enhanced soil nitrification increased the contents of ETA and NO3

− in the NA
and MA soils, which were eventually lost with salt-based cations [40]. Meanwhile, the
correlation analysis showed that N application was significantly negatively correlated with
the pH and EBCs but was not significantly correlated with the ETA, which indicated that
the loss of soil EBCs due to N application was the main cause of soil acidification at tea
plantations. It is worth noting that the excessive application of N fertilizer also reduced the
pHBC, which may be one of the reasons for exacerbated soil acidification at tea plantations.

In practical agricultural production, reasonable N fertilizer management measures
to increase EBCs (especially E-Ca and E-Mg) and reduce E-Al contents can prevent and
improve soil acidification at tea plantations. For heavily acidified tea plantations with
pH < 4, N fertilizer application is no longer the main factor causing soil acidification. It is
recommended to reduce the E-Al content and increase the EBC content to improve the soil
pH by increasing limestone, organic fertilizer, biochar, and fertilizer, which are rich in base
ions [41–44]. For tea plantations with pH > 4, the unreasonable application of N fertilizer is
an important factor that exacerbates soil acidification. Therefore, strictly controlling the N
fertilizer rate, reducing nitrification by adding nitrification inhibitors, and increasing the
CEC content by using organic fertilizers instead of chemical fertilizers are recommended as
important measures to prevent the further acidification of tea plantation soils [45–47].
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5. Conclusions

N fertilizer is an important factor affecting soil acidification at tea plantations. When
the tea plantations had pH values > 4.0, the E-Al contents increased with increasing N
application rates, whereas the EBC contents decreased, which in turn led to decreases in soil
pH. When the tea plantations had pH values < 4.0, the application of N fertilizer reduced
the ETA content, which in turn prevented the soil pH from continuing to decrease with
the increase in the N application rates. The acid–base buffering capacity of the soils at tea
plantations was weak at pH values of 4.0–6.0, while the excessive application of N fertilizer
reduced the soil pHBC. The loss of EBCs owing to N application is the main mechanism
of soil acidification at tea plantations. In agricultural production, the amount of nitrogen
fertilizer should be strictly controlled for tea plantations that are not seriously acidified,
and measures such as applying nitrogen fertilizer synergists and organic fertilizers should
be taken to prevent further acidification of the soil. For severely acidified tea plantations,
alkaline biomass materials should be appropriately applied to improve the soil acidification.
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