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Abstract: In recent years, the use of remote sensing data obtained from satellite or unmanned aerial
vehicle (UAV) imagery has grown in popularity for crop classification tasks such as yield prediction,
soil classification or crop mapping. The ready availability of information, with improved temporal,
radiometric, and spatial resolution, has resulted in the accumulation of vast amounts of data. Meeting
the demands of analysing this data requires innovative solutions, and artificial intelligence techniques
offer the necessary support. This systematic review aims to evaluate the effectiveness of deep learning
techniques for crop classification using remote sensing data from aerial imagery. The reviewed papers
focus on a variety of deep learning architectures, including convolutional neural networks (CNNs),
long short-term memory networks, transformers, and hybrid CNN-recurrent neural network models,
and incorporate techniques such as data augmentation, transfer learning, and multimodal fusion
to improve model performance. The review analyses the use of these techniques to boost crop
classification accuracy by developing new deep learning architectures or by combining various
types of remote sensing data. Additionally, it assesses the impact of factors like spatial and spectral
resolution, image annotation, and sample quality on crop classification. Ensembling models or
integrating multiple data sources tends to enhance the classification accuracy of deep learning
models. Satellite imagery is the most commonly used data source due to its accessibility and typically
free availability. The study highlights the requirement for large amounts of training data and the
incorporation of non-crop classes to enhance accuracy and provide valuable insights into the current
state of deep learning models and datasets for crop classification tasks.
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1. Introduction

Aerial imagery refers to the process of obtaining visual data of Earth using various
systems, including manned aircraft, unmanned aerial vehicles (UAVs), and satellites [1], as
well as other vehicles such as helicopters, balloons, and rockets [2], that are mounted with
sensors for capturing images. Aerial imagery, also known as aerial photography [3], enables
the examination of a broad spectrum of land areas, from a small plot to entire countries.
It has been utilized for various purposes for many years, including generating precise
maps and 3D models for urban planning and land management, monitoring changes in
land use, and conducting environmental analysis. It is a valuable tool for assessing and
monitoring land cover, including forests and agricultural fields, and for understanding the
dynamics of different types of land use, including commercial, residential, transportation,
and cadastral (property) areas [3]. Moreover, it is also employed in surveillance and military
operations [4].
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In the agricultural context, aerial imagery offers numerous advantages, such as identi-
fying the sown area, predicting production and regulating produce distribution. Incorpo-
rating remote sensing technology to obtain data during key stages of a crop’s phenological
cycle and conducting multidate image analysis enables the measurement of specific agri-
cultural variables and provides valuable insights into the underlying processes that affect
crop development. It is especially useful for government agencies and organizations that
provide financial assistance to make informed decisions regarding crop management inter-
ventions [5,6]. Aerial acquisition systems can supply either multispectral and multitemporal
images and synthetic aperture radar (SAR) data.

The scientific community has leveraged artificial intelligence, particularly deep learn-
ing (DL) techniques, to automatically identify patterns in data [7,8], often achieving excel-
lent classification results. DL for classification works by using a neural network to learn a
mapping from inputs to outputs, in which the input is typically an image, text, or other
types of data, and the output is a label or category [9]. However, in image classification, low
resolution, subpar sample quality, and insufficient image annotation can impair accuracy.
Researchers have concentrated on investigating temporal, spatial, and spectral data. To en-
hance metric results, some have employed fusion techniques to combine different types of
images and applied them to diverse datasets. Many studies have utilized datasets contain-
ing images from satellites or UAVs since they are readily accessible. Overall, the datasets
employed vary in size and complexity, offering a wide range of data for constructing and
assessing crop classification models [10–12].

This study examines the utilization of DL models for crop classification via aerial
images. It scrutinizes the quantity and kind of classes employed, data sources, and model
architectures. The review is organized as follows: Section 2 outlines the contributions
of relevant review studies; Section 3 presents the review’s scope and potential; Section 4
describes the selection process of studies included in the review; Section 5 provides a
summary of the selected papers, grouped by source data, while Sections 6 and 7 analyse
and summarize the research’s findings.

2. Related Work

Numerous research studies have concentrated on DL classification models for aerial
crops since 2016, but only a small subset of them can be classified as review studies.

In the paper [13], a review was conducted on the use of DL techniques for crop classi-
fication in SAR images. The authors conducted a thorough search of relevant papers from
2016 to 2020 in publication databases to identify research gaps and challenges in previous
studies. The paper primarily focuses on two categories of classification techniques: conven-
tional machine learning (ML) techniques and DL techniques, with convolutional neural
networks (CNNs) being the most commonly used DL algorithm. The commonly used
evaluation parameters include user’s accuracy (UA), producer’s accuracy (PA), and overall
accuracy (OA). The authors observe that single-date imagery leads to inaccurate crop maps
and food estimates, and they suggest that multitemporal data should be used and spatial
autocorrelation should be considered to improve the classification performance of SAR
data. Despite these limitations, SAR has shown significant potential in crop classification
due to its ability to obtain structural information about ground targets and operate in all
weather and light conditions.

In the paper [14], a survey was conducted to examine research conducted between
2017 and 2019 using DL techniques to identify or categorize weeds in different crops,
including sunflower, carrot, soybean, sugar beet, and maize (i.e., corn), using CNN and
deep convolutional neural network (DCNN) models. The study identified a research
gap in autonomous weeding applications, in which DL has shown promising results
for achieving high accuracy in weed identification and autonomous spray application.
However, a scarcity of extensive datasets was revealed, highlighting the necessity for
additional investigation of DL methods. The highest reported accuracy achieved was
94.74% using a dataset of 10,000 images with sugar beet as the target crop, and other
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studies reported accuracies ranging from 90% to 93.64% using datasets of varying sizes to
classify different crops. Furthermore, there is a lack of research on the application of DL
for important crops such as sugarcane, rice, wheat, and cotton, as well as a gap in research
exploring various crop and weed combinations.

The review article [15] comprehensively surveyed the existing literature on the use of
DL methods for crop classification using UAV imagery. The authors discussed the impor-
tance of crop classification and the potential of UAVs and DL methods in this domain. They
reviewed a wide range of studies that used various DL models, such as CNNs, recurrent
neural networks (RNNs), and transfer learning, for crop classification from UAV imagery.
They discussed the advantages and limitations of these models and highlighted the impor-
tance of data augmentation, feature extraction, and interpretability in crop classification.
They also discussed the impact of the number and quality of the training datasets on
classification accuracy.

Although the studies have analysed the use of DL and found that CNNs and DCNNs
are widely used, they intend to study different aspects. The first focused only on identifying
weeds. It does not allow obtaining a global view of the studies published in the research
period because it excludes all publications with less than five pages and some that have
already been cited. The second reviewed papers that used only SAR data and DL techniques,
and the third focused only on CNN architectures applied to UAV imagery.

Thus, this work intends to answer the following research questions:

1. Which deep learning architectures are commonly employed for crop classification?

Motivation: Identify the models that can achieve higher performance.

2. How does the performance of deep learning models compare to that of machine
learning?

Motivation: Evaluate the ability of deep learning to recognize and categorize images
of crops.

3. What type of aerial imagery and data sources are used for training models?

Motivation: Assess the availability of the datasets and scrutinize the crops that are classified.

4. What is the number of classes employed in the classification process?

Motivation: Examine whether the number of categories utilized has an impact on the
model’s performance.

3. Materials and Methods

The objective of this study is to conduct a literature review on the application of DL
models for the identification and classification of various types of crops using aerial images.
As highlighted in Section 2, there is a paucity of research in this area. This review seeks to
bridge the gap by examining recent studies, encompassing all crop types, and emphasizing
the data sources, model architectures, and the number of classes involved.

The exploration of DL models and the kind of data utilized for crop classification was
carried out by utilizing the keywords “image”, “crop classification”, and “deep learning”.
In addition, some synonyms were defined to expand the scope of published articles in the
title. Studies published between 2020 and 2022, written in English and peer-reviewed, were
established as inclusion criteria. The search was limited to this time frame to obtain the
most recent and relevant studies and to fill the gap identified in the previous section. Only
peer-reviewed studies were included to ensure the reliability and quality of the information
gathered and to prevent the inclusion of publications from predatory journals. Studies
that featured the terms “leaves”, “trunks” or “disease” in the title were excluded, since
they generally employ images not acquired by aerial systems and are not relevant to crop
identification.

The search was conducted using Harzing’s Publish or Perish software to search for
papers from Google Scholar and Scopus databases, utilizing different combinations of the
keywords as search terms. The search outcomes were exported to CSV format and merged
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into a single Excel file to eliminate duplicates, which was done using both automated and
manual methods.

4. Results

Figure 1 displays the PRISMA flow diagram [16], which encompasses a search period
ranging from 29 November to 7 December 2022. Initially, 262 records were identified, and
after eliminating duplicates, 166 studies remained. After reviewing the titles and abstracts,
111 records were excluded because they were not relevant to crop classification using DL
models. One article was not accessible for free, despite efforts to request access from the
authors, and therefore was not included in the review. Additionally, four articles were
in the preprint stage, and four more had not undergone peer review, so they were also
excluded. Furthermore, two articles written in languages other than English were excluded.
After a comprehensive evaluation of the full text of 44 papers, 36 studies were included in
the systematic review, while the excluded studies were primarily focused on segmentation,
on nonaerial image classification, or on non-DL methods.
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Figure 1. Flowchart depicting the identification of studies in accordance with PRISMA guidelines.

The majority of the studies considered in this review utilized DL techniques for
crop classification employing remote sensing (RS) data, obtained from satellite or UAV
imagery. Two studies, namely [17,18], employed aerial orthoimages of extremely high
resolution obtained from aeroplanes, with the former utilizing Sentinel-2 and the latter
moderate resolution imaging spectroradiometer (MODIS) satellite imagery. Additionally,
reference [19,20] relied on spectral data derived from AVIRIS and ROSIS spectral sensors,
respectively. These were the only exceptions to the utilization of RS data from satellite
or UAV imagery across the studies included in this review. A substantial portion of the
reviewed papers employed CNNs as the primary method for crop classification, while
others incorporated different types of DL architectures, such as long short-term memory
networks (LSTMs), transformers, and hybrid CNN-RNN models. To improve their model’s
performance, some papers also integrated techniques such as data augmentation, transfer
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learning, and multimodal fusion. Furthermore, a significant number of papers aimed to
enhance crop classification accuracy by developing novel DL architectures or by combining
various RS data types, such as multispectral and multitemporal images or optical and SAR
data. In addition, other papers analysed the impact of various factors on crop classification
accuracy, such as spatial and spectral resolution, sample quality, and image annotation.

5. Crop Classification

The effectiveness of DL methods in crop classification is influenced by the quality
and quantity of available images. Figure 2 shows the analysis of papers included in this
review that utilized images and data acquired from three types of aerial systems for crop
classification.
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5.1. Crop Classification Using Satellite Data

Satellite aerial data are acquired by satellites orbiting the Earth and the acquisition
process involves the use of sensors that capture electromagnetic radiation reflected or
emitted by the Earth’s surface. The sensors used in satellites can vary in their specifications,
such as spatial resolution, spectral resolution, and temporal resolution, which affect the
quality and types of data that can be acquired. In addition, environmental factors such as
cloud cover, atmospheric conditions, and time of day can also impact the quality of the
acquired data [1]. The recent advancements in remote sensing technology have led to the
development of sensors that are capable of acquiring high-quality data with improved
spatial and spectral resolution. One such example is the Pleiades Neo sensor, which
provides a very high spatial resolution of 0.30 m for panchromatic data acquisition. In
contrast, the MODIS/Terra sensor enables access to multispectral data with resolutions
ranging from 250 m to 1 km and 36 bands, covering an imaging width of 2330 km [21].

Based on the findings presented in Table 1, it can be concluded that the Sentinel satel-
lites, belonging to the Copernicus Programme of the European Space Agency (ESA), are the
most frequently utilized data source, which is in line with the goals of the AgriSAR project
to evaluate the effects of the Sentinel sensor and mission characteristics on land applications,
to assess quantitative trade-offs, such as spatial and radiometric resolution, and to revisit
time [22]. Optical Sentinel-2 is often preferred due to its capability to provide access to
multispectral and multitemporal data. In some instances, Sentinel-2 data is combined with
SAR data [23–27] to address issues related to inadequate resolution, substandard image
quality, as well as limitations caused by cloud cover or the inability to collect data under
low-light conditions. Among the various DL models utilized in the reviewed studies, LSTM
networks and their variations, as well as CNNs, were the most commonly employed.

In order to improve crop classification, the authors of [28] utilized a hybrid CNN-
transformer approach to model subtle differences in crop phenology. The CNN-transformer
architecture takes normalized feature maps from various sensors as input for classification.
To compare performance with other classification models, the authors tested the proposed
hybrid approach against a CNN-LSTM, a CNN, a support vector machine (SVM), and a
random forest (RF) model. The experiment dataset contained 39,560 samples of ten different
crop types, with 1% used for training and 99% for verification. Results indicate that the
hybrid approach achieved an OA of 98.97%, an average accuracy (AA) of 98.92%, and a
kappa coefficient of 0.9884, outperforming the other classification models, with particular
success at classifying rice, corn, and grapes. However, the hybrid approach struggled with
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classifying tomatoes and almonds, leading the authors to suggest further research for these
specific crop types. The authors utilized a cropland data layer (CDL) from the United States
Department of Agriculture (USDA) as the ground truth for crop types and removed clouds
and cloud shadows from the dataset using an algorithm. In addition, the authors utilized
self-organizing Kohonen maps (SOMs) to reconstruct missing data due to cloudy holes.

Table 1. Model architectures for satellite data analysis.

Paper Year Models Data Source *

[28] 2020 CNN-Transformer, CNN; CNN-LSTM Sentinel-2 (3), Landsat-8 (9)
[29] 2020 2D-CNN, 3D-CNN, LSTM Sentinel-2, Landsat-8 (10)
[30] 2020 Conv1D-RF, VGG-RF, Conv1D, VGG Sentinel-2 (4)

[31] 2020 1D-CNN, 2D-CNN, RNN-LSTM,
RNN-GRU Sentinel-2 (10)

[25] 2020 LSTM, MLP, U-net Sentinel-1, Sentinel-2 (14)
[32] 2021 ANN Sentinel-2 (4)
[33] 2021 PSE + LTAE Sentinel-2 (20)
[34] 2021 Bi-LSTM, LSTM Sentinel-2 (16)
[35] 2021 CNN Sentinel-2 (11)
[36] 2021 CNN-CRF, CNN Sentinel-1 (9)
[37] 2021 MSFCN, CNN, Sentinel-1 (14)
[38] 2021 LSTM, CNN, GAN Landsat-8 (3)
[39] 2021 CNN AgriSAR (6)
[40] 2022 CNN Sentinel2-Agri (20)

[41] 2022 CNNDAM, R-CNN, 2D-CNN,
3D-CNN Sentinel-2 (10)

[24] 2022 2D-CNN, 3D-CNN, MLP Sentinel-1, Sentinel-2 (7)
[42] 2022 LSTM Sentinel-1, Sentinel-2 (6)
[43] 2022 LSTM Sentinel-1, Sentinel-2 (2)
[44] 2022 Conv1D, LSTM MODIS (5)
[45] 2022 ConvLSTM-RFC Sentinel-1 (2)

* The number of classes used by the authors for each data source is indicated in parentheses.

The work presented in [29] introduced CropNet, a method that utilizes time-series mul-
tispectral images to classify crops. It employs spatial, temporal, and spectral information to
improve the accuracy of classification. The method includes two primary components: 3D
CNNs for deep spatial-spectral feature learning and LSTM networks for deep temporal-
spectral feature learning. The outputs of these two components are merged and fed into
a softmax classifier for the final crop classification. The study presented results of the
method’s effectiveness on two different datasets. The first dataset achieved an OA of
83.57% and a kappa coefficient of 0.7920, while the second dataset obtained an OA of
85.19% and a kappa coefficient of 0.7778, demonstrating that it outperforms other DL and
ML methods.

In a particular research paper [30], a method is introduced that utilizes RS imagery
acquired at three different dates. The method involves the selection of features using an
optimal feature selection method (OFSM) and uses a hybrid classifier that combines a CNN
with random forest (CNN-RF). The authors propose two hybrid CNN-RF networks that
combine the advantages of Conv1D and Visual Geometry Group (VGG) with RF for crop
classification. The study evaluates the method on a dataset consisting of rice, corn, soybean
crops, and urban areas, using Sentinel-2 imagery. According to the results, the proposed
method performs well in terms of OA (94.97%) and kappa coefficient (0.917).

The focus of study [31] was to classify crops in India using various techniques such
as SVMs, RFs, CNNs, and RNNs, with the aid of temporal multispectral images from
Sentinel-2. The authors utilized the normalized difference vegetation index (NDVI) as a
feature and assessed the performance of the different models through stratified 10-fold
cross-validation. Results indicated that the SVM model showed the strongest correlation
with the crop areas surveyed on the ground, achieving an agreement rate of 95.9% and
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the highest classification accuracy with an F1 score of 0.994, followed by the RNN with
a single layer of LSTM, which yielded an F1 score of 0.783. The traditional ML models
outperformed the DL models in general, and the authors speculate that this could be
attributed to the limited size of the training dataset.

In order to overcome the limitations of Sentinel-2 data, the fusion of SAR and optical
data can be employed. A study presented in [25] proposes a method to combine data from
Sentinel-1 and Sentinel-2. The authors used three datasets from 2018, where one dataset
contained all the available optical data, another had less than 10% cloud coverage, and the
third contained radar images from Sentinel-1. They employed three different DL models,
namely, multilayer perceptron, U-net, and a deep recurrent neural network with LSTM cells,
to classify 14 types of crops in the Kyiv region of Ukraine. The LSTM network achieved the
best performance, with an OA of 93.7% when using all available Sentinel-2 data and 97.5%
when using the fused data. The authors concluded that their method outperforms other
ML techniques and is resilient to gaps and noise in the data.

In paper [32], a technique for crop identification using artificial neural networks
(ANNs) is presented. The method entails utilizing all satellite bands and information from
images captured throughout the year, treating each pixel as an independent element, and
striving to achieve patterns that are less reliant on specific meteorological conditions in
a given year. The method is composed of three main phases: downloading and clipping
Sentinel data for each polygon, preparing the input pixels for the ANN, and training the
ANN model. Figure 3 demonstrates an example of the clipping process. The research
centres on tobacco detection, with other crops having similar phenological patterns serving
as negative examples. The results reveal that utilizing data from multiple years in the
training phase enhances accuracy, with a precision of 0.9921 obtained when data from 2017,
2018, and 2019 are utilized. However, this method’s primary drawback is the need for
substantial storage capacity and processing time due to the usage of millions of training
pixels with year-round information and data from multiple years. The technique was put
into practice in a study region in Spain to manage subsidies under the European Union
(EU) Common Agricultural Policy (CAP).
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Figure 3. The process of image clipping using a GIS polygon. The polygon shape is created to
encompass the desired region of the image, and the software then clips the image to fit within the
boundary of the polygon.

In the study described in [33], a framework is presented that models crop rotation
explicitly, both at the intra-annual and inter-annual scales, using a combination of Pixel Set
Encoder (PSE) and Lightweight Temporal Attention Encoder (LTAE) to process Sentinel-2
satellite data. The PSE + LTAE network is also modified to model crop rotation. The authors
evaluate their method on a dataset consisting of 103,602 parcels with three image time
sequences and three crop annotations. In terms of crop rotation, the model achieved a mean
intersection over union (mIoU) of 97.3% for permanent cultures, 77.77% for structured
cultures, and 66.6% for other crops, demonstrating that their mixed-year model outperforms
single-year models and leads to better performance than models that only consider a single
year. However, they note that further evaluation will be possible as more Sentinel-2 data
becomes available.
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Satellite data has also been used in detecting crop abandonment [46–50]. For instance,
the authors of [34] sought to evaluate the capability of Sentinel-2 satellite data in detecting
land abandonment in the Valencia province of Spain. They utilized five spectral indices to
detect temporal differences between abandoned and active land parcels and trained two DL
models—an LSTM network and its bi-directional counterpart (Bi-LSTM)—on the spectral
index data. The results, illustrated in Figure 4, indicated that the Bi-LSTM model achieved
a maximum OA of 98.2% in identifying abandoned parcels, outperforming both LSTM
and other ML models. The study also revealed that the selection of dates for calculating
distances between active and abandoned parcels affected the distinguishability between
classes and that the Bi-LSTM model exhibited more resilience to changes in the selected
dates. Moreover, the authors demonstrated that incorporating additional metadata, such as
parcel area, can enhance the model’s performance.
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In Spain, a novel tool was developed to aid in the implementation of the EU’s CAP.
The method, as described in study [35], serves as a support tool for the Spanish government
and utilizes synthetic images. These images are generated by extracting information from
crop pixels and their changes over time, which are then used as input for a CNN. The
method employs 13 spectral bands from Sentinel-2 images and a cloud detection system to
generate the synthetic images. Data is organized in a matrix format, with one dimension
representing satellite bands and the other representing temporal variation. The CNN
utilized in the study employs techniques such as dropout and batch-normalization to
facilitate learning and prevent overtraining. The proposed method was tested on seven
crop groups in 2020 using models trained on data from 2017, 2018, and 2019. The results
demonstrate that the method achieved a high level of accuracy, with an average F-score of
96% and an average accuracy of 96.23%.

The approach presented in [36] involves utilizing multitemporal RS image sequences
from tropical regions for crop type classification. The method, known as CNN-CRF, com-
bines a CNN module with a conditional random field (CRF) module to leverage both spatial
and temporal context. The authors evaluated the method using a dataset of SAR Sentinel-1
images from the Campo Verde region in Brazil. The results indicate that the CNN-CRFA
variant of the CRF module consistently outperformed the CNN-CRFG variant in terms of
OA and average user’s accuracy (avgUA). Additionally, the CNN-CRFA variant exhibited
a higher F1 score in 5 out of 9 months and was more robust, achieving better results for 7
out of 9 classes when compared to the baseline method. Specifically, the baseline method
yielded an average F1-score of 69.6%, while the CNN-CRFG and CNN-CRFA models
obtained 67.3% and 72.9%, respectively.
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The paper [37] introduces a multiscale CNN model that utilizes time-series fully
polarized synthetic aperture radar (PolSAR) images. The authors employ a sparse auto-
encoder network with non-negativity constraint (NC-SAE) to reduce feature dimensions
and a classifier based on a multiscale feature classification network (MSFCN). The proposed
approach was tested on a site with 14 crop classes and a “non-crop” class, using simulated
Sentinel-1 data and an established ground truth map for evaluation. The dual attention
CNN, which is a new method, utilizes a two-stream CNN architecture with attention
blocks and multiscale residual blocks to extract deep spectral and spatial features for crop
mapping. The results indicate that the classification accuracy using NC-SAE compressed
features improved by over 6% compared to conventional methods and that the MSFCN
classifier outperformed other classifiers. The dual attention CNN model outperformed
other CNN frameworks and achieved the highest accuracy for crop type mapping, with an
OA of 99.33% and a kappa coefficient of 0.9919.

The authors of [38] proposed a novel approach that combines LSTM, CNN, and
generative adversarial network (GAN) for crop classification. The proposed method was
evaluated on three crop types (corn, soybeans, and other crops) using Landsat 8 satellite
images and compared against several other methods, including SVM, SegNet, CNN, LSTM,
and various combinations of these methods. The results show that the proposed model
achieved the highest OA (86%) and kappa coefficient (0.7933) compared to the other
methods. The authors found that the model performed best when using bands 5-6-4 of
Landsat 8 for classification. Moreover, the model was tested on new data from Fayette and
Pickaway County and demonstrated good generalization ability, achieving an OA of 81%.

In [39], the authors proposed a deep CNN approach that utilizes dual-polarization SAR
images and H/α decomposition for feature extraction to improve classification accuracy.
The study evaluated the performance of different feature combinations as input to the CNN
classifier using data from the AgriSAR project of the ESA. The best classification results for
the six major crops in the Indian Head dataset were achieved by using the combination of
H, α, θ, and intensity as input to the CNN, with an OA of 99.30% and a kappa coefficient
of 0.9903. The CNN method demonstrated significant improvement in the classification
accuracy of flax.

The authors of reference [40] introduced a technique for identifying different types of
crops using satellite images and a two-stream network with temporal self-attention. This
approach aims to track agricultural crops at the national and international levels on a con-
tinuous basis. To achieve this, the authors employed a temporal attention module (AM) that
utilizes a temporal convolutional network (TCN) to create a self-attention query. This query
summarizes the satellite image sequences over multiple time steps into a one-dimensional
output for the entire time series. They also generated a pseudo modality by computing the
temporal differences of the original time series and integrating it with the original input
data. The proposed method was tested on the publicly available Sentinel2-Agri dataset,
which covers an area of 12,100 km2 in southern France and consists of 13 spectral bands.
The authors discovered that the TCN was the most appropriate method for summarizing
the temporal information of the satellite images, and that the proposed use of the TCN
output was superior to the “query as parameter” approach. Additionally, the authors
conducted an ablation study to assess the significance of each stream in the crop classifi-
cation task and determined that both the original data stream and the pseudo-modality
stream played a critical role in improving the model’s performance. The study compared
the two-stream network approach with state-of-the-art architectures and demonstrated its
superiority, achieving an OA of 94.31% and an mIoU of 53.66%, outperforming the existing
techniques.

The limitations of previous methods used for crop mapping using spectral-temporal
information are addressed in [41] with the introduction of a new algorithm. The proposed
two-stream CNN with AMs aims to overcome the shortcomings of previous methods, such
as limited use of 2D/3D convolution blocks for feature extraction and a lack of spatial
information. The algorithm extracts deep features for crop mapping using multiscale and
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residual blocks. The first stream uses multiscale residual convolution blocks and spectral
attention blocks to explore deep features, while the second stream investigates deep spatial
features using spatial attention blocks. The dataset used in the study consisted of time-
series images and NDVI data from Sentinel-2 images. These images were taken from the
visible to shortwave infrared domains of the electromagnetic spectrum, with a total of
13 bands available in three different spatial resolutions. Thirteen images were used in the
study, with some weeks being excluded due to cloud cover. The reference samples were
divided using random sampling, with 3% for training, 0.1% for validation, and 96.9% for
testing. Preprocessing steps, including cloud masking and atmospheric correction, were
applied to the dataset. The proposed algorithm was evaluated and compared with other
commonly used ML and DL methods, and it achieved the highest OA (98.54%) and kappa
coefficient (0.981). The results demonstrate that the proposed algorithm is effective in
mapping crop types during the growing season.

In study [24], the authors devised a novel fusion technique to combine data sources
using a 3D-CNN, as depicted in Figure 5. They employed this approach to extract features
from both data sources and fuse them at the feature level. The performance of this method
was compared to that of other methods, such as a multilayer perceptron (MLP) and a
2D-CNN. The study used a dataset that included seven different crop types in a specific
study area. The findings indicated that the fusion approach outperformed other methods,
particularly when using time series data. The 3SI-3D-CNN model produced the highest
OA of 88.6% and achieved the highest kappa coefficient of 86.7%. Furthermore, the results
showed that the kernel depth in the 3D-convolution operator had a significant impact on
the performance of the 3D-CNN.
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LSTM models, Sentinel-1 and Sentinel-2 data were utilized in studies [42,43]. The first
study proposes an approach for improving classification accuracy in mountainous areas
with rain and clouds. An enhanced SAR-optical (ESO) network was developed by the
authors, which merges data to enhance classification performance. The network was tested
in a region of Taiwan, and the precision, recall, and overall accuracy metrics were used to
evaluate the results. The study found that the ESO network outperformed the use of optical
data alone, achieving an OA of 62.2%, and accurately classified various crops, such as rice,
corn, tea, and orchards. However, the model did not perform well for abandoned farmland
because of the lack of change in SAR data for this land cover type. Additionally, the model
performed better in plains than in mountainous areas. In the second study, the objective
was to classify sugarcane crops utilizing time series data from both optical (NDVI) and SAR
(VH) images. The authors found that using data together improved the model accuracy
compared to using either NDVI or VH data alone. The model achieved an accuracy of
98%. Furthermore, the study determined that the use of both NDVI and VH data helped
to prevent misidentification of algae-filled water bodies as sugarcane crops. Finally, the
authors acknowledge that although the results of the study are satisfactory, there is always
room for improvement, particularly since it only concentrated on a small region.
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The objective of the investigation described in reference [44] is to compare the efficacy
of ML and DL models for crop classification using time-series data across a large region in
China. The authors employ MODIS 16-day composite surface reflectance products as input
and utilize six algorithms (stacking, SVM, k-nearest neighbors, RF, Conv1D, and LSTM)
on the data. The performance of the models is assessed using metrics such as accuracy,
F1-score, and kappa coefficient. The findings indicate that the stacking model outperforms
the other models, followed by the SVM and k-nearest neighbors models, with accuracies
of 77.12%, 76.75%, and 76.19%, respectively. Additionally, the authors investigate three
different sets of input features and six training strategies. Based on the results, they suggest
that combining multiple classifiers and input features can lead to improved accuracy.

The study [45] evaluated various classification methods to distinguish rice fields in
China by utilizing a combination of remote sensing and ground-based data. The results
indicated that integrating data from different sources, such as satellite imagery, ground-
based data, and weather data, substantially enhanced the precision of rice field classification.
The ConvLSTM-RFC model was particularly successful, achieving an accuracy of 98.08%
and a false-positive rate of just 15.08%. Moreover, it obtained the highest area under the
curve (AUC) value of 88% among all the models tested. However, the study revealed that
ground-based data was crucial for achieving high accuracy. The findings underscore the
significance of utilizing multisource data for crop classification and the potential of these
methods to facilitate precision agriculture.

The success of crop area identification through the classification of satellite images
relies on the number of classes considered. Researchers have utilized various architectures
for this purpose, ranging from 2 to 20 classes. The performance of these models is dependent
on the data source, which determines the spatial resolution of the images. For instance,
very high-resolution satellite data, with a spatial resolution of 0.50 cm/px, is only accessible
through paid services. On the other hand, freely available data from Sentinel-2 has a
maximum spatial resolution of ten meters, which makes manual analysis challenging
and poses a difficulty for DL models to accurately classify small crops. To overcome this
obstacle, some authors have chosen to incorporate hyperspectral data with five meters
of spatial resolution obtained from the Sentinel-1 satellite in their research. For example,
the study [51] recently focused on crop type classification using data from the complete
growing season and analysed eight different crop types. Authors found that a DL approach
called pixel-set encoder–temporal-attention encoder (PSE-TAE) algorithm outperformed
classical approaches like RF. They also found that their method for data fusion enabled
the training of models that performed better than using only Sentinel-1 or Sentinel-2 data,
which is in line with previous studies using data fusion [23,24,43].

5.2. Crop Classification Using UAV Data

The choice of cameras to be mounted on UAVs plays a crucial role in the success of the
UAV system. Parameters such as focal point, resolution, and quality of CCD/CMOS chips
are common factors to be considered when selecting a camera. Multispectral cameras are
often used alongside RGB cameras in the UAV sensors family, and they can provide high-
resolution data that is not typically attainable with conventional multispectral cameras.
Hyperspectral sensors are highly useful for many applications, as they capture images
with hundreds of spectral bands, and their resolution can reach levels as low as 2–5 cm.
Thermal infrared sensors are capable of measuring temperature in real-time, and LIDAR
sensors, although being highly accurate in acquiring geometric data, the resolution of the
data obtained is generally low, even with well-calibrated lightweight sensors [52].

Approximately half of the articles that employ satellite images in their research use
images acquired from UAV systems, as revealed by the survey. As demonstrated in Table 2,
the majority of these studies use CNN and DCNN models. Researchers usually develop
their own systems to capture images and use the Wuhan University (WHU)-Hi dataset to
train and validate their models.
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Table 2. Model architectures for UAV data analysis.

Paper Year Models Data Source *

[53] 2020 Bi-LSTM, LSTM Custom (4)

[54] 2021 CNN, LSTM, Convolutional
LSTM Custom (4)

[55] 2021 DNN-CRF, DNN WHU-Hi-HongHu (18), Xiong’an (20)
[56] 2021 GoogLeNet; VGG-16 Custom (6); Custom (4)

[57] 2022 DCNN, AlexNet, VGG-16,
VGG-19, ResNet-50 Custom (5)

[58] 2022 ViT, EfficientNet, ResNet Custom (5)
[59] 2022 ResNet50, VGG16, VGG19 Custom (6)

[60] 2022
Inception V3 + MFMS-DCNN,
Inception V3, MFMS-DCNN,

MR and PR Ensemble
Plant Seedling (12), Custom (12)

[61] 2022 1D-CNN, 3D-CNN
WHU-Hi-HongHu (22),

WHU-Hi-HanChuan (16),
WHU-Hi-LongKou (9)

[62] 2022 CNNCRF, SSFCN-CRF
WHU-Hi-HongHu (22),

WHU-Hi-HanChuan (16),
WHU-Hi-JiaYu (12)

* The number of classes used by the authors for each data source is indicated in parentheses.

Reference [53] investigated the application of the Bi-LSTM network for crop classifica-
tion utilizing multitemporal data. The research was conducted in a small agricultural area
in Korea, where images with a spatial resolution of 50 cm were used as inputs. The overall
and class-wise accuracy of the Bi-LSTM network was compared to those of the forward
and backward unidirectional LSTM networks for various combinations of input images.
Three combination cases were tested, and the classification performance of the Bi-LSTM
with the first and second cases (C1 and C2) achieved overall accuracies of 96.8% and 97.6%,
respectively. In contrast, a significant decrease in overall accuracy was observed when
the third combination case (C3) was used for classification. The outcomes indicated that
the Bi-LSTM version performed well when certain images that did not provide adequate
visual discrimination between crops were incorporated. Furthermore, the performance
of the unidirectional LSTM was significantly impacted by the classification results of the
beginning date.

Paper [54] investigated the use of the convolutional variant of the LSTM network.
The study presents a two-stage DL model, which includes an LSTM-based autoencoder
(LAE) and a CNN. The LAE is utilized to extract latent features from the input images,
which are then fed into the CNN for classification. The effectiveness of the proposed
model is evaluated using images from Anbandegi, Korea, and compared with various
other DL models, such as CNN and LSTM. The findings reveal that the proposed model
surpasses the other models in terms of accuracy and noise reduction, achieving the highest
overall accuracy of 90.97%. Furthermore, the efficacy of the LAE in extracting informative
features for crop classification is demonstrated through quantitative evaluation using the
Mahalanobis distance and Jeffries–Matusita distance.

The method proposed in [55] aims to perform fine-grained crop classification using
DL and multifeature fusion. The authors extract three spatial features from the images,
namely morphological profile, GLCM texture, and endmember abundance features, which
are then combined with the original spectral information to create fused features. A deep
neural network (DNN) model is trained on these fused features using two datasets, WHU-
Hi-HongHu and Xiong’an, both having a spatial resolution of around 0.4–0.5 m. The
performance of the proposed method is evaluated using various metrics, including OA
and kappa coefficient, and is compared with single-feature classification and different
fusion strategies. The results indicate that the proposed method outperforms single-feature
classification and other fusion strategies, achieving overall accuracies of up to 98.71%
and 99.71%, and a kappa coefficient of 0.985 and 0.995 on the Honghu and Xiong’an
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datasets, respectively. The authors also find that the classification accuracy improves with
an increase in the number of training samples, and the choice of classifier significantly
affects the results.

The research [56] put forward a technique for crop classification using transfer learning
and ML. According to the authors, employing transfer learning can enhance the accuracy of
crop classification by initially training on a substantial dataset with similar characteristics.
They also found that utilizing diverse ML algorithms can further enhance classification ac-
curacy. However, the study has limitations due to the small dataset used for testing and the
need for more data to validate the proposed technique. Nevertheless, the research indicates
that the proposed approach can be a valuable tool for crop classification, particularly in
situations where there is a lack of training data, as it demonstrated a high level of accuracy
in two specific cases, reaching nearly 83% for the Malawi dataset and up to 90% for the
Mozambique dataset.

The system described in [57] utilizes a conjugated dense convolutional neural network
(CD-CNN) architecture and a novel activation function known as SL-ReLU. The study
was conducted on images of five distinct crops (rice, sugarcane, wheat, beans, and cumbu
napier grass) obtained from a Quadcopter UAV in India, with a spatial resolution of 2.73 cm.
The CD-CNN model achieved an accuracy of 96.2%, sensitivity of 96.2%, specificity of
99.05%, F1-score of 96.20%, and false positive rate of 0.95%. It was compared to other ML
algorithms and standard CNN architectures and was found to perform better in terms of
accuracy and other evaluation metrics.

The utilization of a transformer neural network for the classification of weeds and
crops is proposed in [58]. The study was carried out in the Centre-Val de Loire region of
France, where images of diverse crops, such as red-leaf beet, green-leaf beet, parsley, and
spinach, were captured using a high-resolution camera-equipped drone. The images were
annotated with bounding boxes and image patches of weeds and crops were extracted.
The off-type beet class was upsampled 4 times to 3265 samples using data augmentation
techniques to address the class imbalance. The authors employed various models, includ-
ing ViT-B32, ViT-B16, EfficientNet, and ResNet and found that the transformer models
outperformed the CNN models in terms of overall accuracy and precision. The best F1-
score achieved was 94.4%, and the minimum loss recorded was 0.656. They also found that
increasing the size of the training dataset enhanced the performance, as shown in Figure 6.
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In article [59], the authors explore the impact of sample quality on the accuracy of DL
classification models for identifying multiple crop types. Two aspects of sample quality
were investigated: the ratio of training and validation samples and the spatial resolution of
the images. The study was conducted in North China and used three DL models (VGG16,
VGG19, and ResNet50) to classify six types of crops. Different spatial resolutions and
training to validation sample ratios were tested. With accuracies of up to 97.04%, the results
indicate that the accuracy of classification models improves when the training samples have
an equal or higher ratio than the validation samples and when higher spatial resolution
images are used. The classification accuracy decreases significantly as the spatial resolution
decreases. Overall, the study suggests that a flight altitude of approximately 40 m, which
corresponds to a spatial resolution of around 0.28 cm, strikes a good balance between
recognition accuracy and operating cost.

The authors of [60] suggest a new approach that combines DCNNs with ensemble
learning to enhance classification performance. They also introduce a novel multifilter
multiscale DCNN (MFMS-DCNN) architecture and two fresh datasets comprising images
captured in the agricultural areas of Kolkata and Assam in India. The performance of
the proposed method is assessed on these datasets, as well as on a publicly available
plant seedling dataset, and it is shown to outperform current state-of-the-art techniques,
achieving average accuracy levels ranging from approximately 96% to 99%.

Studies [61,62] used the WHU-Hi dataset to evaluate their methods using high spectral
and very high spatial resolution imagery. In the first study, the authors examined the impact
of spatial and spectral resolution on classification precision. They observed that reducing
spatial resolution had a positive impact, especially when it was below 0.4 m. However,
reducing the number of spectral bands had a negative impact on accuracy, with the 1D-
CNN method being the most affected. The spectral-spatial residual network (SSRN) was
found to be less affected, as it could make use of the spatial information in the image.
Overall, SSRN was the most stable and achieved the highest accuracy under different
conditions. In the second study, the authors proposed a method called S3ANet, which
used a spectral-spatial-scale network with spectral, spatial, and scale attention modules
and an additive angular margin loss function in an end-to-end classification framework.
They also tested the method on a new dataset containing 12 rice varieties. The proposed
method outperformed seven other crop classification methods in terms of classification
accuracy, visualization performance, and achieved a kappa coefficient of 0.9823. The OA of
the proposed method exceeded 96% for all experiments.

In the study [63], a crop classification method using UAV imagery and DL with an
emphasis on explainability is proposed. The findings reveal that the method can attain
high accuracy in classification and provide transparent explanations for the results. The
significance of explainability in crop classification to establish trust and comprehension
among users is highlighted. Nevertheless, the study’s limitations include the small dataset
size used for testing and the need for additional validation with larger datasets. Conse-
quently, the research suggests that the proposed method can serve as a beneficial tool for
crop classification, particularly when interpretability and transparency are necessary.

Precision agriculture has seen promising research in crop classification using UAV
data, but it is essential to consider the spatial resolution of the data, as it provides detailed
crop information. However, higher resolution data requires more processing, which can
affect model performance. Although the use of drones for image acquisition limits the
analysis to smaller areas, the high resolution of the data obtained enables DL models to
classify crops with small distances between planted rows. The number of classes used in
crop classification also affects the model’s complexity and varies depending on the region
and crop being studied, with custom datasets typically using four to twelve classes and
publicly available datasets including twelve to twenty-two classes, such as corn, soybeans,
wheat, and cotton. The use of CNN models is prevalent in crop classification using UAV
systems due to the difficulty in capturing temporal images of the same cultivated area,
presenting a challenge for other models, caused by operational constraints and the data
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acquisition process associated with drones. Despite this, in the study [64], the CNN
model has been proven to be highly effective in weed detection amongst commercial crops,
such as Chinese cabbage. The CNN-based classifier was integrated with UAV imagery,
achieving an average sensitivity of 80.29%, average specificity of 93.88%, average precision
of 75.45%, and average accuracy of 92.41%, outperforming the RF-based classifier. The
CNN’s superiority over the RF model can be attributed to its use of convolution layers to
magnify and refine features, filter out irrelevant information, and learn diverse gradient
pathways with dropout, making it less likely to get trapped in a local optimum caused by
an imbalanced dataset.

5.3. Crop Classification Using Multisource Data

Table 3 presents a list of papers where researchers have employed models for crop
classification using data from two sources, as opposed to just one. The papers [17–20]
utilized data acquired from satellites and aircraft, while [65–68] utilized data from satellite
and UAV systems. Among the different network versions implemented, convolutional-
based models are the most common.

Table 3. Model architectures for Satellite and UAV/Aircraft data analysis.

Paper Year Models Data Source *

[17] 2020 VGG-19 Sentinel-2 (6), Single-date VHR
orthoimages (2)

[18] 2020 VGG16, ResNet50, DenseNet201,
LSTM, CNN, MLP VHR USDA NAIP, MODIS (6)

[19] 2022 2D-CNN, 3D-CNN, VGG16/19,
ResNet, DenseNet

Indian Pines (16), Pavia (9),
Salinas (16)

[20] 2022 CNN, Convolutional
Autoencoder, DNN

EO-1 Hyperion (16), Indian
Pines (4)

[65] 2021 SS-OCNN, PCNN, OBIA, OCNN,
MOCNN

Single-date UAVSAR (9),
RapidEye (10)

[66] 2022 TS-OCNN, OCNN, OBIA, PCNN UAVSAR (10), RapidEye (9)

[67] 2022 2D-CNN, CNN-MFL Indian Pines (16), Salinas (16),
UAV WHU-Hi-HongHu (22)

[68] 2022 DMLP, DMLPFFN, CNN,
ResNet, MLP

Salinas (16), KSC (13),
WHU-Hi-LongKou (9),

WHU-Hi-HanChuan (16)
* The number of classes used by the authors for each data source is indicated in parentheses.

The aim of the study described in paper [17] was to develop a CNN architecture that
could accurately classify various crop types in agricultural parcels using both very high
resolution (VHR) aerial imagery and Sentinel-2 time-series data. The CNN was trained
on a combination of VHR and multispectral images and achieved an overall classification
accuracy of over 93% for different crop types, such as cereals, fruit trees, olive trees,
vineyards, grasslands, and arable land. Furthermore, as shown in Figure 7, the study used
the trained CNN to automatically detect the condition of permanent crops (fruit trees,
olive trees, and vineyards) in the area and found that it could detect abandonment with an
overall accuracy of 99%.

In paper [18] the authors proposed a method for crop classification using a multimodal
DL approach that leverages both high spatial and high temporal resolution satellite imagery.
The authors used National Agricultural Imagery Program (NAIP) data, which has a resolu-
tion of 1 m but low temporal resolution, and MODIS data, which has a resolution of 250 m
but high temporal resolution. They extracted NDVI information from the MODIS data and
used a multimodal network with two streams: a spatial stream to extract relevant spatial
information from the VHR imagery and a temporal stream to extract phenological infor-
mation from the high temporal resolution imagery. The authors evaluated their approach
using data from various locations across the USA for six different crops: corn, cotton, soy,
spring wheat, winter wheat, and barley. They compared their approach’s performance with
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various single-modality approaches and found that their multimodal method outperforms
other methods in terms of classification accuracy (98.41%), kappa coefficient (98.08%) and
average F1-score (98.44%).
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Figure 7. CNN architecture for classification of abandoned and non-abandoned crop images. The
input image is analyzed and generates feature maps (green squares) that are connected to the next
layer (red circle). Before the classification decision, all input values (blue circles) from one layer are
connected to every next layer. (Adapted from edrawmax.com/templates/1021526 accessed on 9
January 2023).

The use of DL techniques with hyperspectral images is discussed in paper [19]. The
authors suggest utilizing transfer learning to address the issue of limited training samples.
They compared the performance of various DL models, including VGG16 and ResNet,
as well as two customized models (2D-CNN and 3D-CNN) on three image datasets. The
authors discovered that customized models outperformed other models when using ho-
mogeneous transfer learning, where the source and target datasets have similar features,
with the proposed method achieving accuracies of 99% for both the Indian Pines and
Pavia University datasets. To enhance efficiency and performance, the authors employed
dimensionality reduction and batch normalization techniques.

The objective of the research presented in [20] was to assess the effectiveness of a
CNN model using data from the Indian Pines standard dataset and the EO-1 spaceborne
Hyperion sensor. The researchers compared the CNN model’s performance to that of a
convolutional autoencoder and a DNN. The study results demonstrated that the CNN
model outperformed the other models, achieving an overall accuracy of 97% on the Indian
Pines dataset and 78% on the study area dataset. Moreover, the CNN model delivered
impressive performance even with a limited number of training samples. As per the
authors’ conclusion, the optimized model can be applied to other regions.

The reference [65] presents a novel approach, called scale sequence object-based
convolutional neural network (SS-OCNN), for land cover classification using fine spa-
tial resolution (FSR) imagery. The SS-OCNN model is an extension of the object-based
convolutional neural network (OCNN) model, and it aims to address the challenge of
determining the optimal input window size (scale) for the OCNN model. The performance
of the SS-OCNN was evaluated on two different agricultural fields using optical and radar
FSR remotely sensed imagery and compared against four other conventional methods,
including the standard pixel-wise convolutional neural network (PCNN), the OCNN, the
multiscale object-based convolutional neural network (MOCNN), and the object-based
image analysis (OBIA). The experimental results demonstrated that the SS-OCNN model
consistently outperformed the other methods in terms of OA and kappa coefficient for
both the first and second study areas, achieving an OA of 87.79% and 89.46%, and a kappa
coefficient of 0.86 and 0.87, respectively. The SS-OCNN model classifies the entire remotely
sensed image by predicting the label of each segmented object, which can significantly

edrawmax.com/templates/1021526
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enhance computational efficiency and accuracy. Furthermore, the SS-OCNN was found to
have the highest overall accuracy when tested on the SAR and optical imagery separately.

The reference [66] proposes the use of the “Temporal Sequence Object-based CNN (TS-
OCNN)” method to develop a crop classification model using fine-resolution RS time series
data. The method employs a CNN to process multitemporal imagery and feeds single-
date images into the model in a forward temporal sequence from early to late acquisition.
Additionally, an OCNN is utilized to classify crops at the object level to maintain accurate
crop parcel boundaries. The study evaluates the TS-OCNN approach in two agricultural
sites (S1 and S2) in California, USA using L-band radar and optical images, and compares
it to traditional object-based image analysis, standard pixel-wise CNN, and standard object-
based CNN methods. The findings demonstrate that the TS-OCNN approach outperforms
the other methods in terms of OA (82.68% for S1 and 87.40% for S2) and kappa coefficient
(0.80 for S1 and 0.85 for S2). The crop classification maps can be seen in Figure 8.
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The approach presented in [67] consists of two stages, namely band selection and
classification. During the band selection step, the original image is partitioned into three
regions based on the physical and biological characteristics of the plants, and bands are
chosen from each area using metrics like entropy, NDVI, and modified normalized differ-
ence water index (MNDWI). In the classification stage, the selected bands are fed into a
2D-CNN to obtain precise crop classification. The effectiveness of this method is evaluated
using two datasets comprising satellite images. The method achieved an AA of 95.84% and
an OA of 97.62% when classifying 16 classes in the Indian Pines dataset. Similarly, for the
Salinas dataset, the method obtained an AA of 97.24% and an OA of 96.08%. Furthermore,
the authors classify 15 crop categories from UAV data with an AA of 98.56%.

The use of two methods for fine crop classification, namely dilation-based multilayer
perceptrons (DMLP) and DMLP with a feature fusion network (DMLPFFN), is presented
in [68]. The DMLP method modifies the convolution operation with a dilated convolution
to capture contextual information without losing resolution. On the other hand, DMLPFFN
extracts multiscale features from the image using different branches at various stages
of the network and then fuses the features using element summation to create a feature
map with comprehensive information. These two methods are compared with other
methods like RBF-SVM, EMP-SVM, CNN, ResNet, MLP-Mixer, RepMLP, and DFFN using
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four datasets, showing their superior performance, outperforming CNN by 6.81%, 12.45%,
4.38%, and 8.84% and ResNet by 4.48%, 7.74%, 3.53%, and 6.39% on the Salinas, KSC,
WHU-Hi-LongKou, and WHU-Hi-HanChuan datasets, respectively.

Multisource data is used for crop classification, which involves using different data
sources such as satellite imagery, UAV data, and aircraft-captured images to identify and
classify crops. This approach has the potential to improve the accuracy of crop classification
compared to using single-source data. Its main objective is to combine data with high
spatial resolution but low temporal resolution with data of low spatial resolution but a
high temporal resolution to achieve a more accurate understanding of crops.

6. Discussion

Crop classification using DL models has become more and more popular with the
increasing availability of aerial imagery, satellite data, UAV data, and other multisource
data. In aerial imagery, DL models, particularly CNNs [35,37,39,41,54], have been widely
used for crop classification. These models automatically learn features from images and can
detect complex patterns and features that may not be visible to the naked eye. However, the
accuracy of the model depends on the quality of the images used, and obtaining labelled
data can be time-consuming and expensive [58].

Aerial images differ from maps in that they result from a perspective or central pro-
jection, whereas maps are created through an orthographic projection [4]. This distinction
is important to consider, as aerial images can experience distortion from motion or lens,
and displacement from curvature of the Earth, tilt, or topography. Because of these factors,
geometric and radiometric calibration of aerial images is essential for accurate and reliable
interpretation of remote sensing data [69], as it ensures alignment with their corresponding
geographic locations on the ground and consistent image intensities across the entire image,
accurately reflecting the true reflectance values of objects [1,3].

In satellite data, DL models can handle large datasets and can detect subtle changes
in crops that are not easily detectable by human eyes. Nevertheless, the accuracy of
the classification depends on the spectral resolution of the satellite data, and the cost of
obtaining high-resolution satellite data can be expensive. The use of DL models for crop
classification using UAV data has several advantages, including real-time information and
high-resolution images. However, the cost of acquiring UAVs and the necessary equipment
can be high, and the operation of UAVs is highly regulated.

Multisource data integration has become a trend in crop classification, with the com-
bination of data from different sources improving the accuracy of crop classification. The
fusion of data from different sources remains a subject of study in various fields. The recent
study [70] presents a new technique for crop classification using a combination of optical
and SAR image time series. The method is evaluated on a large and imbalanced dataset of
18 crop types, and the results show that it outperforms state-of-the-art methods with up to
0.42% better overall accuracy and 0.53% better mIoU. The fusion of different types of data
were also studied in [71]. The authors explored the potential of DL for fusing ground-based
terrestrial LiDAR point cloud and satellite (WorldView-III)-based multispectral imagery to
identify three horticulture crops at different nitrogen (N) levels. The study faces challenges
such as the relatively lower height and lack of sturdy geometric profiles of horticulture
crops, and the need for discernible self-derived features in the DL-based model. The results
show that the DCNN performs substantially better on the fused dataset when sensitivity to
N level is not considered. The study concludes that the inclusion of structural crop infor-
mation along with spatial data enhances performance in the fused dataset classification,
and LiDAR data exhibits better results in comparison to the WorldView-III classification.

The use of transfer learning has shown promising results in crop classification by
reducing the data requirements for training the DL model [19,58,72]. The newly released
literature [73] presents transfer learning based on hyperspectral images and CNNs, with
initial testing done on standard datasets such as Indian Pines and Salinas for validation.
Additionally, a novel dataset from crops in the Kota region of Rajasthan (India) is also



Agriculture 2023, 13, 965 19 of 24

experimented with. The results show that the transfer learning approach is effective with
limited training samples, and the proposed model is simple, fast, and promising, even with
minimal training samples.

In agricultural context, besides having been used for crop classification and identifica-
tion [74–76], DL techniques have played an important role in areas such as detecting dis-
eases [77–81], yield prediction [82–86] and weed detection [14,87–89] and have also shown
great potential in detecting agricultural abandonment using remote sensing data [17,34].

As presented in this study, several studies have been conducted on crop classification
using DL models. In [45], authors integrated satellite imagery, ground-based data, and
weather data to classify different crops in China, reporting a significant improvement in
accuracy compared to using single-source data. Authors of [56] used transfer learning with
pretrained CNN models to classify different crops in UAV imagery, achieving an accuracy
of over 90%. Paper [90] presents the development of an explainable DL model for crop
classification using UAV imagery, using the Grad-CAM method to provide insights into
how the model made decisions.

Given the swift and recent advancements in this area, it is anticipated that DL models
for crop classification could prove to be a useful instrument in assisting farmers with deci-
sionmaking. DL models can offer valuable insights into crop growth, health, potential yield,
and areas of suboptimal performance, enabling farmers to refine their crop management
practices and enhance their productivity and profitability. Nevertheless, it is crucial to
acknowledge the models’ limitations and provide farmers with adequate training and
assistance in utilizing the models’ findings effectively.

Thus, it was possible to answer the raised questions:

1. Which deep learning architectures are commonly employed for crop classification?

R: Researchers mostly used convolutional neural networks, long short-term memory
networks, transformers, and hybrid CNN-recurrent neural network models.

2. How does the performance of deep learning models compare to that of machine
learning?

R: Of the 36 articles analysed, the machine learning approach only outperformed the
deep learning methods in one study. The authors suggested that it was due to the small
size of the dataset.

3. What type of aerial imagery and data sources are used for training models?

R: The models were trained with data obtained from satellites, UAVs and aircraft. The
most commonly used datasets in the studies reviewed are based on multitemporal and
multispectral data, UAV images, and multiannual satellite imagery. Hyperspectral and
dual-polarization SAR imagery were also used in some studies. Aircraft VHR images are
less used due to not being freely available. The most commonly used crops include corn,
rice, grapes, almonds, and walnuts. Other crops that have been studied include grass,
cherries, safflower, wheat, barley, canola, and garden crops. Non-crop classes that have
been included in some studies include water, built-up areas, barren land, and areas of
natural vegetation. It is also worth noting that many studies have focused on classifying
specific crop groups or types, such as cereal crops, fruit trees, olive trees, grassland, and
arable land.

4. What is the number of classes employed in the classification process?

R: Researchers studied the classification of only two classes up to twenty-two. The
number of classes affects the model’s performance, mainly when the classes have similar
phenological characteristics. However, the use of non-crop classes improves the overall
accuracy.

7. Conclusions

After conducting a systematic review of thirty-six articles, this study aimed to answer
four research questions regarding deep learning models for crop classification using remote
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sensing data from aerial imagery. The reviewed papers highlighted that deep learning
techniques, particularly those based on CNNs and LSTM networks, are commonly used for
crop classification and tend to outperform machine learning models when sufficient data is
available. The appropriate selection of the model depends on various factors such as the
type of data and crop being analysed, as well as the available sample size.

Researchers analysed data from different capture systems, including satellite, UAV,
and aircraft and utilized techniques such as data augmentation, transfer learning, and
multimodal fusion to improve classification accuracy. Factors such as spatial and spectral
resolution, sample quality, and image annotation were found to have a significant impact
on the accuracy of crop classification.

In summary, this systematic review provides insights into the current state of deep
learning models for crop classification and highlights important factors that affect their
performance, including the requirement for large amounts of training data and the incorpo-
ration of non-crop classes to enhance accuracy. These findings can assist researchers and
practitioners in selecting appropriate models and datasets for crop classification tasks. In
the future, potential areas of exploration could involve integrating various data sources
and creating hybrid models that incorporate both deep learning methods and conventional
machine learning algorithms.
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