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Abstract: Gnomoniopsis smithogilvyi (Gs) is a relevant pathogen of chestnut since it provokes significant
losses worldwide. The aim of this study was to screen the effect of a new biocontrol agent (BCA)
against Gs isolated from chestnut (CIMO-BCA1) on the mould’s growth as well as on the production of
secondary metabolites. The chemical fungicide Horizon® (tebuconazole; HOR) and the commercial
biofungicide Serenade® ASO (Bacillus amyloliquefaciens QST 713; ASO) were also tested. Three
concentrations of each antifungal (HOR, ASO, and CIMO-BCA1) were faced with Gs in the growth
study in a chestnut-based medium. The intermediate concentrations were used for the analyses of
metabolites by LC-MS/MS. CIMO-BCA1 was also identified as B. amyloliquefaciens. All agents reduced
the mould’s growth, and the CIMO-BCA1 treatment with an intermediate concentration was the most
effective. The metabolite analysis revealed, for the first time, the production of two mycotoxins by
Gs, including 3-nitropropionic acid and diplodiatoxin. Additionally, HOR stimulated the production
of diplodiatoxin. In conclusion, Gs could present a health risk for consumers. B. amyloliquefaciens
strains effectively decreased the mould’s growth, but they must be applied at effective concentrations
or in combination with other strategies to completely reduce the hazard.

Keywords: fungicides; growth; metabolites; 3-nitropropionic acid; diplodiatoxin

1. Introduction

Portugal is the third largest producer of sweet chestnut in Europe, with an annual
production of around 37 thousand tons and an orchard area of 50 thousand hectares in
2021 [1]. Trás-os-Montes, in the northeast of the country, was the first Portuguese chestnut
producer region and produces more than 80% of the national production. The chestnuts
produced in this region are of high quality and have been recognized by the European
Union with the Protected Denomination of Origin “Castanha da Terra Fria” (Castanea

Agriculture 2023, 13, 1166. https://doi.org/10.3390/agriculture13061166 https://www.mdpi.com/journal/agriculture

https://doi.org/10.3390/agriculture13061166
https://doi.org/10.3390/agriculture13061166
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0002-3302-0732
https://orcid.org/0000-0001-7989-0779
https://doi.org/10.3390/agriculture13061166
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture13061166?type=check_update&version=2


Agriculture 2023, 13, 1166 2 of 13

sativa Mill.). Chestnut is a fruit with major significance in the Portuguese import/export
balance [2].

Chestnut fruit is a seasonal product, commercialised as fresh or processed ready-to-
use products. The storage of chestnuts is a challenge due to their nutritional richness and
high water content which create conditions that are conducive to fungal infections and
insect infestations [3,4] and result in major losses in fruit quality. These conditions make
it necessary for chestnuts to be controlled at both pre- and post-harvest stages. A major
post-harvest problem associated with these fruits is rot, which can be caused by several
different fungal agents. Gnomoniopsis spp. have been described as pathogens in chestnuts
worldwide. While Gnomonipsis daii and Gnomoniopsis chinensis were demonstrated to be
emerging pathogens of Castanea mollissima tissues and fruits in China [5,6], Gnomoniopsis
smithogilvyi (Gs; syn. Gnomoniopsis castaneae Tamietti) has led to significant losses in various
chestnut species—including C. sativa, C. mollissima, Castanea dentata, Castanea crenata, and
their hybrids—in Europe, Asia, North America, and Oceania [7]. Gs was first reported as a
chestnut fruit pathogen in 2005 in Oceania and Asia and is currently widespread in Europe
and North America [7]. Gs has been reported by Portuguese chestnut producers to cause
around 89% of nut rot in Portugal and is currently considered the main nut rot agent of
chestnut fruit across Europe.

Several isolates of Gs obtained from these chestnuts were confirmed as the causal
agent of chestnut brown rot and proved to be highly aggressive in chestnuts and well
adapted to a wide range of temperatures, potentially resulting in extreme losses in the
context of climatic changes [8].

Currently, there are no field treatments in Portugal being used to control fruit rots,
and chestnut orchards are generally conducted under biological production systems. In
contrast, several post-harvest methods are used for chestnut insect and fungal control,
such as sterilising hydrothermal baths (48–50 ◦C) for 45 min, followed by cooling and
drying [9], and water curing (‘curatura’) consisting of treatments in cold water (14–18 ◦C)
for 7–9 days with or without the addition of biocontrol agents or their metabolites [10].
Rodrigues et al. reported reduced contamination in chestnuts submitted to the traditional
industrial hydrothermal bath (48 ◦C, 45 min), but the process was still not fully efficient
against fungi [9]. For the storage of chestnuts, researchers tested the use of hot air assisted
radio frequencies [11], electron-beam radiation [12], and ozonation [13], among others, with
limited success regarding reducing contamination. Considering the enormous effect of Gs
in chestnut production and its fast and aggressive geographic dissemination throughout
European producing countries, there is a major demand to find mitigation strategies to
retain the spread of the disease and the intensification of its consequences to the chestnut
production chain.

Chemical control in chestnuts is not a current practice, and no fungicides are regulated
for Gs control, although some studies have suggested the potential use of pyraclostrobin,
difenoconazole, and phosphonate salts [14,15]. However, chemical fungicides generally
depend on very limited and directed modes of action and are associated with resistance
acquisition by pathogens. As such, biological control agents (BCAs) are currently consid-
ered effective and environmentally friendly alternatives to chemicals for the control of
several plant diseases [16]. Bacillus spp.—in particular, Bacillus amyloliquefaciens and the
closely related species Bacillus velezensis, Bacillus siamensis, and Bacillus methylotrophicus
(also called the “operational unit” B. amyloliquefaciens due to their close phylogenomic rela-
tionship) [17]—are examples of bacteria that have been successfully used as BCAs against
several plant diseases and have been useful not only in greenhouse and field conditions
(e.g., [18–20]) but also at the post-harvest stage for fruit diseases [21,22]. The commercial
product Serenade ASO® (Bayer, Leverkusen, Germany), derived from B. amyloliquefaciens
(formerly classified as B. subtilis) strain QST 713 [19,23], has been approved as a spraying
biofungicide in strawberries and grapes against Botrytis cinerea, although it has been widely
tested and used in many other crops to protect against plant pathogens [18–22].
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Additionally, although several studies have reported the morphological, physiological,
and molecular aspects of Gs isolates from different geographical origins and possible
strategies to eliminate it, there is still a lack of knowledge about the metabolic profile of the
fungus. Vinale et al. [24] reported two secondary metabolites—abscisic acid and 1′,4′-diol
of abscisic acid—produced by a G. castaneae strain isolated in the Campania region (Italy)
from chestnut galls infested with Dryocosmus kuriphilus and demonstrated the phytotoxic
activity of the isolated metabolites on chestnut leaves. To our best knowledge, no other
secondary metabolites have been reported from Gs or other related species associated with
the fruit. Similar to other filamentous fungi, this plant pathogen could produce different
secondary metabolites of interest for human health, mostly concerning the potential for the
production of toxic metabolites or mycotoxins.

Even though several bacteria (including B. amyloliquefaciens) and fungi (e.g., Tricho-
derma spp.) have been tested for the control of Gs [25,26], to our knowledge, there is still
no information about the effects of chemical or biological treatments on the production of
secondary metabolites by the pathogen. The aims of the current study were to: (i) screen the
antifungal activity of a BCA isolated from chestnuts compared to the effects of a commercial
chemical fungicide (Horizon®) and a commercial biological fungicide (Serenade ASO®)
and (ii) determine the effects of these different treatments on the metabolic profile of the
fungus, including mycotoxins. For this purpose, the fungal growth and the metabolites
produced by Gs in the presence of antifungal agents were evaluated.

2. Materials and Methods
2.1. Isolation and Identification of Gnomoniopsis smithogilvyi Isolates

Chestnuts (n = 120) were collected directly from chestnut (C. sativa) trees, variety
Côta, in Carrazedo de Montenegro, Portugal in September 2020. In the laboratory, the
chestnuts were washed with tap water, disinfected with bleach (5%), dried with sterile
paper towel, sprayed with 70% ethanol, and allowed to dry in a biosafety chamber. After
the incision, 4 chestnut squares (1 cm) were cut and inoculated on potato dextrose agar
(PDA, Liofilchem, Roseto degli Abruzzi, Italy) for 7 days at 25 ◦C. From this, 23 isolates of
Gs were obtained.

The genomic DNA of the isolates was extracted by the SDS protocol described by
Rodrigues et al. [27]. The internal transcribed spacer (ITS) region of the ribosomal RNA
and a portion of the translation elongation factor 1α (TEF1-α) gene were amplified by PCR
and processed, as described by Possamai et al. [8]. All isolates were deposited in the fungal
collection at the Micoteca da Universidade do Minho (MUM) in Braga, Portugal with
catalogue numbers MUM 21.76 to MUM 21.98. The sequences were deposited in the Gen-
Bank with accession numbers OK326904.1 to OK326925.1 (ITS) and OK323164 to OK323179
(TEF1-α gene). From these, the representative isolate MUM 21.93 [GenBank accessions
OK326920.1 (ITS) and OK323174 (TEF1-α gene)] was selected for the following assays.

2.2. Isolation and Genetic Characterisation of the BCA

The bacterial agent CIMO-BCA1 used in this study was isolated from a contaminated
culture of G. smithogilvyi growing on a Petri dish with a chestnut-based medium. The
bacterium was selected and isolated from this mixed culture due to its apparent strong
inhibiting effect over the fungus growth. The bacterium was isolated and established
as pure culture on plate count agar (PCA, HiMedia, Maharashtra, India). The isolate
was verified for morphology, Gram reaction, and spore production using conventional
staining techniques. The isolate was deposited in the microbial culture collection CIMOCC
(Centro de Investigação de Montanha Culture Collection, IPB, Portugal) under the accession
number CIMO 22PR001.

For comparison purposes only, the strain B. amyloliquefaciens QST 713, commercially
formulated to be used as a biocontrol agent for several crops, was isolated from the
commercial product Serenade ASO. For this, a loop of liquid product was spreadonto a
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Petri dish containing PCA. After incubation at 25 ◦C for 24 h, a well-isolated colony was
selected and verified under the same conditions described for CIMO-BCA1.

Both isolates were stored in 30% glycerol at −20 ◦C. Whenever necessary for analysis,
the isolates were grown on PCA for 24 h at 25 ◦C.

The molecular identification was carried out from the DNA extracted using the
SDS extraction protocol, as described by Rodrigues et al. [27]. The isolates were molec-
ularly identified by the 16S rRNA gene (727 bp fragment) using the primers V1F (5′

AGAGTTTGATCCTGGCTCAG 3′) and V4R (5′ TACNVGGGTATCTAATCC 3′), as de-
scribed by Cai et al. [28], and by the rpoB gene (549 bp fragment) using the primers rpoB-f (5′

AGGTCAACTAGTTCAGTATGGAC 3′) and rpoB-r (5′ AGAACCGTAACCGGCAACTT 3′),
as described by De Clerck and De Vos [29]. The PCR products were sequenced and analysed
as described for the Gs isolate. The sequences of the isolate CIMO-BCA1 were deposited in
the GenBank with accession numbers ON921091 (16S) and ON934319 (rpoB gene).

Given the high genetic similarity between CIMO-BCA1 and the strain B. amylolique-
faciens QST 713 observed for the genetic markers 16S and rpoB, the isolates were further
submitted to genomic fingerprinting by enterobacterial repetitive intergenic consensus PCR
(ERIC-PCR) using the primers ERIC1 and ERIC2 [30] for strain comparison.

2.3. Preparation of Gnomoniopsis smithogilvyi Inoculum and Control Agents

The fungus was inoculated in PDA and incubated for 7 days at 25 ◦C in dark conditions.
Mycelium agar plugs with a 6 cm diameter were cut with a cork borer and used as inoculum
for all treatments and assays.

Serenade®ASO (hereinafter designated as ASO), which included the biocontrol agent
B. amyloliquefaciens QST 713 at 1.34% (1 × 109 cfu/g), was tested at three different concen-
trations to evaluate the effect of the bacteria on the mould’s metabolism as well as BCA
(Table 1). Since this agent is not homologated for chestnut treatments, the concentrations
used in the study were adjusted based on the recommended concentrations used for other
fruit trees (in a recommended range between 550 and 1600 mL/hL), as set by the tech-
nical sheet of the product (https://cropscience.bayer.pt/temp/ficha_Serenade-ASO.pdf,
accessed on 14 October 2021).

Table 1. Concentrations of the antifungal agents employed in the study: commercial biological
fungicide (Serenade ASO), commercial chemical fungicide (Horizon), and BCA (CIMO-BCA1).

Antifungal Agent Batch Denomination
Concentration of
Antifungal Agent
(µL/mL or cfu/mL)

Concentration of
Active Substance

(g/L)

Serenade® ASO ASO1 5.5 0.074
ASO2 10.0 0.134
ASO3 16.0 0.214

Horizon® HOR1 0.2 0.050
HOR2 0.4 0.100
HOR3 0.6 0.150

CIMO-BCA1 BCA1 105 -
BCA2 107 -
BCA3 109 -

The chemical fungicide Horizon® (oil in water with 250 g/L of tebuconazole, here-
inafter designated as HOR) was used as a chemical control at three different concentrations
based on the same premiss as the ASO. The recommended concentration of 40 mL/hL
(as set by the technical sheet of the product for grape treatments; https://cropscience.
bayer.pt/temp/ficha_Horizon.pdf, accessed 14 October 2021) was used as an intermediate
concentration, and minimum and maximum concentrations were set at 0.5-fold and 1.5-fold
the middle concentration (Table 1).

https://cropscience.bayer.pt/temp/ficha_Serenade-ASO.pdf
https://cropscience.bayer.pt/temp/ficha_Horizon.pdf
https://cropscience.bayer.pt/temp/ficha_Horizon.pdf
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2.4. Evaluation of Biocontrol Agents on Fungal Growth

Experiments were performed in a chestnut-based medium (further designated as
CM) as a model to reflect the chemical and nutritional conditions of chestnuts. For the
preparation of CM, fresh and healthy chestnuts of the variety Longal were boiled in a
microwave for 15 min. Afterwards, the outer shell was removed, and the cooked endosperm
was blended in a proportion of 200 g per 1 L of distilled water using a domestic blender
(Moulinex, Paris, France) [8]. Agar was added at 2%, and the medium was autoclaved for
121 ◦C for 15 min. Twenty mL of CM were distributed in nine cm diameter Petri dishes.

Biocontrol agents and HOR were surface distributed on each Petri dish by spreading
100 µL of each suspension/solution (Table 1) on the top of the CM medium. Water was
used as a control batch. Gs was then inoculated in the centre of each Petri dish using a
mycelial agar plug (6 cm diameter) from a culture of Gs grown on PDA for 7 days at 25 ◦C.

Fungal growth was determined daily for an incubation period of 23 days by measure-
ments of the colonies’ diameter. All tests were run in triplicate.

2.5. Analysis of Secondary Metabolites by Multi-Analyte LC-MS/MS

Five batches were used for the analysis of the secondary metabolite profile of the
fungus using the confrontation method: one batch with only CM (CM) to discard the
metabolites originating from the chestnuts used for CM production; a negative control
with an agar plug inoculated in one point of CM medium (Gs) at a distance of 3 cm of a
10 µL of phosphate-buffered saline (PBS); and three different batches with Gs inoculated
at a distance of 3 cm of 10 µL of each control agent at the intermediate concentration
described in Table 1 (Gs + ASO2; Gs + HOR2; Gs + BCA2). For this assay, the intermediate
concentrations were used based on the results obtained in the fungal growth assay (cf.
Section 2.4). The plates were incubated for 8 days at 25 ◦C. The experiment was made in
triplicate. After incubation, blocks of agar and mycelium were collected from the edge of
the mycelium inhibition zone into 15 mL Falcon tubes. Similar agar areas were extracted
from the control CM and from the periphery of the fungal growth in the Gs control. The
material was weighted, lyophilised, and analysed.

Fungal secondary metabolites were detected and quantified by the multi-metabolite
method of liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS)
using a QTrap 5500 MS/MS system (Applied Biosystems, Foster City, CA, USA) attached
to a TurboIonSpray electrospray ionisation (ESI) source and a 1290 series UHPLC system
(Agilent Technologies, Waldbronn, Germany). The LC-MS/MS protocol was applied as
previously described [31], with extended coverage to a total of 710 metabolites. Positive
analyte identification was confirmed by the acquisition of two MS/MS transitions per
analyte (with the exception of 3-nitropropionic acid which only exhibits one fragment ion),
which yields 4.0 identification points, according to the Commission Decision 2002/657/EC.
In addition, the LC retention time and the ion ratio had to agree with an authentic standard
within 0.03 min and 30% related values, respectively. These in-house criteria are stricter
than those in the recent Commission Implementing Regulation (EU) 2021/808.

2.6. Statistical Analysis

The statistical analyses were carried out using SPSS IBM v.22 software (IBM, New
York, NY, USA). Non-parametric Kruskal–Wallis and Mann–Whitney tests were used since
the data did not follow a normal distribution. The correlation analyses were done using
the Spearman rho (ρ) test. Statistical significance was established at p ≤ 0.05.

3. Results and Discussion
3.1. Identification of Gnomoniopsis smithogilvyi Isolates

Gnomoniopsis smithogilvyi isolates were molecularly identified on the basis of the ITS
region and the TEF1-α gene. Sequences of G. smithogilvyi isolates with different geographical
origins, including previously identified isolates from Portugal retrieved from the GenBank,
were used for comparison. A phylogenetic tree of the TEF-α gene is shown in Figure S1
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(supplementary material). G. smithogilvyi isolates obtained in this study showed a very
close relation with the isolates retrieved from the GenBank, including the type strain, as
previously shown [8].

3.2. Isolation and Identification of CIMO-BCA1

The molecular analyses revealed that the bacterium CIMO-BCA1, which was isolated
due to its antifungal effect against Gs, was B. amyloliquefaciens, the same species found in the
commercial fungicide ASO. This species has also been isolated from other kinds of chestnuts
such as Chinese chestnuts (Castanea mollissima Blume) for biological control application [32].
Although similar to the commercial isolate, CIMO-BCA1 was genotypically different, as
revealed by the ERIC-PCR analysis.

It must be noted that the genus Bacillus sp. includes a group of industrially impor-
tant species, namely B. subtilis, B. amyloliquefaciens, and B. velezensis, which represent a
group of phylogenetically and phenetically homogeneous species that are quite hard to
distinguish [17]. In particular, the species B. amyloliquefaciens (type strain: DSM7), which
includes the ASO strain QST 713, was initially classified as B. subtilis, and this classifica-
tion is still used by some researchers [20,21]. A group of plant-associated strains of this
species, including those used as biocontrol agents, was reclassified in 2005 as B. velezensis
(type strain: FZB42) [33]. The close relatedness of representatives of B. amyloliquefaciens
and B. velezensis was validated by rpoB gene sequence homology and the analysis of core
genomes [17,34]. For that reason, Fan et al. [34] proposed to introduce the term “operational
group B. amyloliquefaciens” applied to all “plant-associated B. amyloliquefaciens” strains to
underline their close phylogenomic relationship and to reduce inconsistencies due to strain
misclassification. For the sake of clarity, the name B. amyloliquefaciens (as in “operational
unit B. amyloliquefaciens”) will be used throughout this work to name the isolated strain
CIMO-BCA1 as well as the ASO strain QST 713.

3.3. Radial Growth

After the incubation period, Gs was able to grow up to 4.5 cm in CM (Figure 1),
while the most effective antifungal agent concentration—CIMO-BCA1 at the intermediate
concentration (BCA2)—reduced the mould’s growth to as low as 0.86 cm, indicating a
reduction of 80.7% (p ≤ 0.05) when compared to the control (Figure S2, Supplementary
Material). It is also worth noting that there was no dose–response effect in the treatments
with B. amyloliquefaciens, both for the commercial ASO strain (between ASO1, ASO2,
and ASO3; ρ = 0.377, p = 0.317) and the CIMO-BCA1 strain (between BCA1, BCA2, and
BCA3; ρ = −0.427, p = 0.252). On the contrary, the chemical fungicide HOR showed a
strong and significant negative correlation between dose and fungal growth reduction
(ρ = −0.926; p = 0.000). Bacillus amyloliquefaciens previously showed its efficacy against this
fungal pathogen when used in grafted scions [26]. Another strain of B. amyloquefaciens also
inhibited the growth of pathogenic fungi as Alternaria panax, Botrytis cinerea, or Penicillium
digitatum on PDA [35]. Furthermore, the addition of another strain of B. amyloliquefaciens
on pepper plants was able to control the invasion of Alternaria sp. by improving the
growth of the infected plants [36]. Different biocontrol agents, such as Trichoderma spp.
or B. subtilis, have also demonstrated their ability to decrease the growth of other strains
of Gs. In contrast, and despite the fact that the commercial antifungal HOR1 limited the
radial growth to 2.4 cm (which is a percentage reduction up to 45.92%), this treatment was
the least effective. These results indicate that B. amyloliquefaciens is a powerful candidate
to be used as BCA against Gs and a good alternative to the chemical antifungal HOR,
which presents a long half-life, liver and reproductive toxicity, and endocrine disruption in
animals and humans [37].
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Figure 1. Radial growth after 23 days of incubation of Gnomoniopsis smithogilvyi in the presence of
the antifungal agents Horizon® (tebuconazole, HOR), Serenade® (Bacillus amyloliquefaciens QST 713,
ASO), and CIMO-BCA1 (Bacillus amyloliquefaciens, BCA) in a chestnut-based medium. C: Gnomoniopsis
smithogilvyi. An asterisk indicates statistical differences regarding the control (C) (p ≤ 0.05). The
vertical bar represents the standard deviation.

BCAs act against pathogens via a number of different mechanisms. In particular,
Bacillus spp. are known to act by three main mechanisms: colonisation of the host plant and
competition for ecological substrate, direct pathogen growth inhibition, and stimulating
the plant immune system [16]. These mechanisms mostly rely on the production of a wide
range of diverse molecules, such as enzymes, bacteriocins, lantibiotics, non-ribosomal
peptides, poliketides, and many others [16]. In our study, the direct effect of the bacterial
strains on fungal growth was evident, and this can be explored for post-harvest treatments.

3.4. Fungal Secondary Metabolites

Currently, there are no studies in the literature based on the production of compounds
of interest by Gs because the investigations are focused on eliminating this plant pathogen
and reducing chestnut losses. The analysis of secondary metabolites produced by the
fungus could help with understanding the effects of the different control agents on the
metabolism and response of Gs to these stressors. The results showed the detection of
nine compounds from the mycelium and culture medium adjacent to the inhibition zone:
brevianamide F, cyclo(L-Pro-L-Tyr), cyclo(L-Pro-L-Val), endocrocin, kojic acid, integracin A,
integracin B, 3-nitropropionic acid, and diplodiatoxin. Brevianamide F, also known as cyclo-
(L-Trp-L-Pro), as well as cyclo-(L-Pro-L-Tyr) and cyclo-(L-Pro-L-Val) are unspecific bioactive
cyclic dipeptides produced by some microorganisms, such as Bacillus spp., Streptomyces
spp., and Aspergillus fumigatus [38–40]. Their concentration (Figure 2A–C) was higher in
the CM batch without fungal growth, indicating a possible degradation of the compounds
already present in the medium by Gs. The absence of differences between batch C and
the other batches with Gs could be due to the effects of antifungal agents on the mould’s
metabolism that may be stimulating the degradation of these compounds under stressful
conditions. Other diketopiperazines, such as cyclo-(L-Pro-L-Leu), cyclo-(D-Pro-L-Leu),
and cyclo-(D-Pro-L-Tyr) showed antifungal effects against other plant pathogenic fungi,
including B. cinerea, Phytophthora spp., and Colletotrichum gloeosporioides [41].
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Additionally, kojic acid (Figure 2D) is a non-toxic compound commonly synthesised
by Aspergillus spp. [42] that showed antifungal activity against the mould Sclerotinia sclero-
tiorum, which is a common plant pathogen [43], and other fungi, such as Aspergillus niger
or Rhizopus oryzae [44]. Furthermore, this metabolite produced by Aspergillus parasiticus
can detoxify the mycotoxin citrinin in a glucose yeast agar medium [45]. The presence of
kojic acid in all the batches may be due to the contamination of the chestnuts by different
moulds before preparing the culture medium.

The integracins A and B (Figure 3A,B) were only detected in the samples with Gs. As
the figure shows, the use of HOR decreased their production. These secondary metabolites
have shown potential cytotoxicity against the tumour cell lines HepG2 and the repression
of human immunodeficiency virus Type 1 (HIV-1) [46], showing a possible industrial use
of the mould to produce these compounds.

Figure 3C shows 3-nitropropionic acid, which is a neurotoxic compound for animals
synthetised by fungi such as A. flavus and Arthrinium in plants [47,48]. This mycotoxin
produces motor disturbances, cognitive deficits, and aggressive behaviours in rats [48]. Hu-
man intoxications have also been reported following the ingestion of mouldy plant-derived
foods, such as sugarcane and coconut water, resulting in vomiting, nausea, exhaustion, diar-
rhoea, stomachache and headache, and, rarely, death [49]. The results of our study indicate,
for the first time, the ability of Gs to produce this toxin which entails the need to control
the presence of Gs, not only due to economic losses but also from the point of view of food
safety. The concentrations found in all batches in Figure 3C (around 20,000 to 40,000 ng/g)
pose a worrying scenario since 20,000 ng/g of 3-nitropropionic acid intraperitoneal injected
in rats for 4 days was able to impair motor coordination [50].
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The risk associated with Gs increased due to the detection of diplodiatoxin (Figure 3D),
which is a metabolite previously described to be produced by Stenocarpella maydis, which is
an ear rot pathogen of maize [51]. Despite few studies existing about this metabolite, it is
known that diplodiatoxin produces neurotoxicity, causing diplodiosis in cattle and sheep
by the ingestion of infected mouldy feed [52,53]. Moreover, this mycotoxin induces necrosis
and apoptosis in the cell lines of Chinese hamster ovary (CHP-K1) and Madin–Bardy bovine
kidney (MDBK), which shows a wide range of toxicity [53]. As shown in Figure 3D, the
commercial antifungal HOR highly stimulated the production of diplodiatoxin (p ≤ 0.05),
increasing the risk in treated chestnuts, while the bacterium CIMO-BCA1 showed a slightly
positive stimulation of the compound. The biocontrol agent ASO2 (B. amyloliquefaciens QST
713) exhibited an intermediate response between HOR and CIMO-BCA1 (p ≤ 0.05).

Endocrocin was detected exclusively in the samples of Gs confronted with HOR, even
in amounts below the limit of quantification (LOQ = 51 ng/g). Endocrocin is an unspecific
anthraquinone that has been isolated from various fungi, insects, and plants [54,55]. In
a study on the effects of endocrocin on the pathomechanism of Aspergillus fumigatus,
the metabolite was not found to be directly involved in cytotoxicity, but it displayed
significant leucocyte recruitment inhibitory properties, negatively interfering with the
immune response of the host towards the pathogen attack [55]. The same study also
showed that, at least in A. fumigatus, endocrocin is a spore-borne metabolite that is highly
dependent on the micro-environmental conditions in which the fungus is developing,
particularly the temperature. In our study, endocrocin was exclusively detected in the HOR
treatment, which probably reflects a response to stressful conditions that was not observed
for the biological treatments. In contrast, the low levels detected may result from the fact
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that mostly culture medium and mycelium, and not specifically conidia, were collected for
secondary metabolite analysis. The level of importance of this metabolite in Gs requires
further attention.

To summarise, although all the antifungal agents successfully decreased the growth of
Gs, this reduction is not enough to eliminate the presence of the mycotoxins 3-nitropropionic
acid and diplodiatoxin produced by Gs, which can even be stimulated in their presence.
This lack of relation between growth and mycotoxin production in different moulds has
been previously described by numerous researchers and is possibly associated with the
stress induced by the antifungal agents [56–58]. These results corroborate the importance
of using effective doses of antifungals to avoid the presence of unwanted compounds.
Additionally, the differences in 3-nitropropionic acid and diplodiatoxin production by
Gs facing stressful antifungals (HOR > Bacillus ASO > Bacillus CIMO-BCA1) highlight
the importance of using adequate antifungals against Gs. In addition, while both B.
amyloliquefaciens strains (ASO and CIMO-BCA1) have similar percentages of inhibition of
Gs, their impact on the production of secondary metabolites can be different.

4. Conclusions

We demonstrated, for the first time, the production of the toxins 3-nitropropionic acid
and diaplodiatoxin by G. smithogilvyi. Nothing is known yet regarding whether they would
be bioavailable via the oral route through the consumption of contaminated chestnuts, and
further studies are required. Nonetheless, in addition to the enormous economic losses
caused by Gs, this fungus must also be considered based on the public health point of
view. However, this mould may also be industrially used to produce integracins A and
B that could provide benefits for treatments against human diseases. Finally, the use of
biocontrol agents based on B. amyloliquefaciens isolates as alternatives to the toxic HOR are
effective strategies against G. smithogilvyi, although other concentrations or combinations
with other strategies should be applied to completely inhibit mould growth and mycotoxins
production.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agriculture13061166/s1, Figure S1: Phylogenetic tree of Gnomo-
niopsis smithogilvyi isolates for the TEF1-α partial gene; Figure S2: Morphological images after
23 days of incubation of Gnomoniopsis smithogilvyi in a chestnut-based medium in the presence of
antifungal agents at three different concentrations of CIMO-BCA1 (Bacillus amyloliquefaciens, BCA),
Serenade®(Bacillus amyloliquefaciens QST 713, ASO), and Horizon®(tebuconazole, HOR). Refer-
ences [59–61] are cited in the Supplementary Materials.
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