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Abstract: Gourmet mushrooms are foraged from the wild or grown indoors in controlled environ-
ments. Indoor mushroom farms with controlled growth environments allow for all-year-round
growing. However, it remains a labor-intensive process. We propose MushR as a modular and
scalable gourmet mushroom growing and harvesting system that goes beyond the state of the art,
which merely monitors and controls the growing environment, by introducing an image recognition
system that determines when and which mushrooms are ready to be harvested in conjunction with a
proof of concept of an automated mushroom harvesting mechanism for harvesting the mushrooms
without human interaction. The image recognition setup monitors the growing status of the mush-
rooms and guides the harvesting process. We present a Mask R-CNN model for the detection of
oyster mushroom maturity with a 91.7% training accuracy and a semiautomated harvesting system,
integrating a Raspberry Pi for control, an electrical switch, an air compressor, and a pneumatic
cylinder with a cutting knife to facilitate timely mushroom harvesting. The modularity and scal-
ability of the system allow for industry-level usage and can be scaled according to the required
mushroom-growing systems within the facility. The AI model, its underlying dataset, a digital twin
for mushroom production, the setup of our growth and control chambers, and additional information
are all made available under an open-source license.

Keywords: gourmet mushroom; digital twin; AI; Mask R-CNN; IoT; automation; sustainability

1. Introduction

Gourmet mushrooms such as shiitake, oyster, and enoki are harvested in the wild or
grown indoors in controlled environments. Harvesting mushrooms outside is a seasonal
activity and thus is limited to a few months per year. Moreover, it is a labor-intensive
process, and the changing outdoor conditions result in volatile harvests. Furthermore, cli-
mate change further limits outdoor mushroom growing and harvesting opportunities [1,2].
Indoor mushroom farms with controlled growth environments allow for an all-year-round
growing and harvesting of mushrooms in sensor-controlled grow rooms and grow tents.
Additionally, some approaches towards automated production of button mushrooms exist,
e.g., [3].

However, those do not apply to gourmet mushrooms, and thus, it remains a labor-
intensive process that requires skilled workers [4]. Moreover, gourmet mushroom produc-
tion often relies on one-time-use plastic bags to hold the substrate. The plastic bag is cut
open to start the mushroom fruiting process, which renders the plastic bag useless once the
mushrooms have been harvested, thereby creating large amounts of plastic waste. Some
production facilities have moved to reusable plastic containers or jars. Whether those are
more sustainable remains an open question [5,6].

MushR aims to fill this gap by introducing a modular and scalable gourmet mushroom
growing and harvesting system that extends the state of the art—which only monitors
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and controls the growing environment—by introducing an image recognition system
that detects when and which mushrooms are ready to be harvested in combination with
a proof of concept of an automated mushroom harvesting mechanism for harvesting
the mushrooms without human interaction. The image recognition setup monitors the
growing status of the mushrooms and guides the robot arm during the harvesting process.
The modularity and scalability of the system allow for industry-level usage and can be
scaled according to the required mushroom-growing systems within the facility. As a
result, MushR drastically reduces the necessity of manual labor for gourmet mushroom
growing/harvesting and allows for further industrial-scale automation and increased
yields and quality of mushrooms.

Specifically, this work addresses the following research questions:

RQ How to automate/digitize/enable sustainable indoor cultivation and harvesting of
gourmet mushrooms?

RQ1 How to create a digital twin for the gourmet mushroom production process?
RQ2 How to monitor gourmet mushroom growth and detect which mushrooms are

ready for harvest?
RQ3 How to automate harvesting of gourmet mushrooms?

Note that the production of oyster mushrooms (Pleurotus ostreatus) serves as a running
case of this research as oyster mushrooms are among the most common gourmet mush-
rooms. Results obtained from the running case can be abstracted to other types of gourmet
mushrooms due to their string similarities of the production processes and parameters.

The paper is structured as follows: Section 2 presents supplementary literature, related
works, and sustainability in mushroom production. In contrast, Section 3 describes an
approach towards a digital twin for (gourmet) mushroom production. Section 4 details an
AI model used to monitor the growth stages of gourmet mushrooms and the underlying
dataset used to train the model that we created as part of this research. Section 5 outlines
automated harvesting mechanisms for gourmet mushrooms. The results of our evaluation
are presented in Section 6. Finally, in Section 7, we give our conclusions and outline possible
directions for future research.

2. Supplementary Literature and Related Work

This section provides background information and supplementary literature and
introduces related works. Section 2.1 briefly outlines the general process of gourmet
mushroom production, while Section 2.2 focuses on related works. Finally, Section 2.3
details a more sustainable approach based on reusable mushroom pods.

2.1. Gourmet Mushroom Production

Indoor mushroom farms allow for an all-year-round growing and harvesting of mush-
rooms in sensor-controlled grow rooms and grow tents. The mushrooms are grown on
substrate blocks, e.g., straw or wood chips, in one-time-use plastic bags. After a prepared
substrate block is inoculated with a sample of mycelium (mycelium is a rootlike structure of
a fungus consisting of a mass of branching, threadlike hyphae), it is kept in a dark, sterile en-
vironment for an incubation period. During incubation, the mycelium completely colonizes
the substrate block, after which the plastic bags are cut open and placed in an environment
with high humidity to initiate the fruiting of the mushrooms. They are typically harvested
in cycles—so-called flushes—with idling periods in between flushes for the mushrooms (or,
more precisely, the mushroom mycelium) to recover before triggering the next flush and
starting the fruiting of mushrooms again. The substrate is depleted after about three flushes.
While fruiting, the mushroom body grows fast and needs to be constantly monitored to
be harvested at the right time. Additionally, the growing environment must be in perfect
conditions, e.g., humidity, temperature, and air quality.

Figure 1 depicts oyster mushrooms in four different growth stages that we considered
for the subsequent training of our AI model: First, in stage I, the fruiting process begins,
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and the mushrooms start pinning. Next, in stage II, the mushroom body grows. Third,
the mushroom matures and is ready to be harvested. In stage IV, the mushroom has passed
the optimal harvesting time window and is now considered overdue.

(a) (b)

(c) (d)

Figure 1. Progressing growth stages of Pleurotus ostreatus; (a) Stage I; (b) Stage II; (c) Stage III; (d)
Stage IV.

Learning when and how to harvest mushrooms properly requires training and practice.
Especially since harvesting is about more than just selecting the largest mushrooms. On the
one hand, they tend to grow in dense clusters, and if they are not adequately thinned out
(by hand), the mushrooms might damage each other. Moreover, it prevents the healthy,
sustainable growth of the mushroom block, resulting in a decreased yield. Damaged or
deformed mushrooms have to be sold at a discount. On the other hand, a particular cluster
density is required; otherwise, the yield drops as well. Therefore, even though indoor
mushroom growing facilities allow for an all-year-round harvest and optimized yield via
controlled growing environments, it remains a labor-intensive process that requires skilled
workers [4].

2.2. Related Work

Some level of automation can be achieved for button mushrooms (also known as
chestnut mushrooms). Button mushrooms are grown on large soil beds instead of sub-
strate blocks and are subsequently harvested by hand. Ref. [3] presented a robot arm-
controlled suction cup for harvesting button mushrooms with a maturity recognition
accuracy of 70.93 percent. Moreover, approaches towards sorting button mushrooms have
been explored [7]. In contrast to button mushrooms, most gourmet mushrooms, such as
the king oyster or the oyster mushroom, do not have a suction-cup-compatible surface.
Furthermore, they are more sensitive than button mushrooms and thus require special care
in their growing environment and during harvesting. Thus far, they are grown and har-
vested manually with little process automation; i.e., only the indoor growing environment
is controlled and managed using a sensor–actuator setup for variables, such as temperature,
humidity, and air quality [8,9]. Some rudimentary (semi-)automated harvesting mecha-
nisms for mushrooms exist, e.g., [10–12], but they do not recognize the mushroom growth
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status and optimal harvest time. They do not consider mushroom damage caused by the
harvesting process.

Other works focus solely on detecting the growth stage of oyster and button mush-
rooms using different versions of the YOLO (You Only Look Once) object detection algo-
rithm that have been proposed in the past, e.g., [13–15]. However, neither the model nor
the underlying datasets have been published. Moreover, the combination of growth stage
detection and automated harvesting was neglected.

Finally, some works consider reusable jars/bottles for mushroom production,
e.g., [5,6], and some industry entities started using reusable plastic buckets instead of
one-time-use-only mushroom bags [16,17]. However, an analysis of the environmental
benefit of using reusable mushroom pods is missing.

2.3. Reusable Mushroom Pods

Aiming to reduce, if not eliminate, the plastic waste created using one-time-use
plastic (polypropylene) bags as substrate containers, we experimented with an alternative
approach: reusable plastic buckets.

In our experimental setup, we use plastic (polypropylene) buckets, which, weighing
at 90 g, can contain up to 3 L of substrate. As shown in Figure 2, we drill 3.5 cm holes on
five sides of the bucket, which function as fruiting and ventilation holes. These holes are
sealed with a microporous tape during the incubation phase, which is removed for fruiting.
Unlike one-time-use plastic bags, the plastic buckets, which we call mushroom pods, are
never permanently damaged during the lifetime of the substrate contained therein.

We compute the environmental benefit of using reusable mushroom pods (in terms of
materials) over one-time-use plastic bags by running life-cycle impact assessment calcula-
tions using OpenLCA [18]. To this end, we define the reference flow and functional unit for
both container types in terms of “amount of polypropylene (g)” and “colonizable volume
of the container in litres (L)”. We further quantify the relationship between the defined
reference flow and the functional unit for both container types. Through experimentation,
we estimate the colonizable volume of a 5 L one-time-use plastic bag weighing 30 g to be 3
L (on average). This decrease is because the bags do not have a built-in method to seal the
contained substrate. A substantial amount of the bag is used for this purpose, accomplished
by folding the opening over itself several times. Unlike the bags, our mushroom pods are
equipped with a sealable lid. As a consequence, the estimated colonizable volume of our
3 L mushroom pods is still 3 L.

Using these calculations, we create a reference process for both these container types
in OpenLCA. We source the life-cycle inventory (LCI) data pertaining to the manufacturing
processes of polypropylene bags and buckets from the Agribalyse dataset [19]. The follow-
ing are the life-cycle impact assessment (LCIA) results computed using the BEES+ impact
assessment method:

22cm

12cm

11.5cm

3.5cm

Figure 2. Graphical representation of the MushR mushroom pods.
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From Table 1, we can infer the benefit of our reusable mushroom substrate pods
over the non-reusable substrate bags with respect to the impact categories. Using “global
warming” as an example, a 5 L (3 L usable) one-time-use bag has an impact of 102.46 g
CO2 eq, compared with a 3 L reusable pod with 217.20 g CO2 eq. From this, we can infer
that one reusable pod will have less impact in this category than three non-reusable bags.
This means that simply reusing our mushroom pods three times will result in them having
a lower impact in this category than the non-reusable counterparts. Similar comparisons
can be made with other impact categories. The complete LCIA calculations and results
are given in Appendix A. The above figures indicate that the reusable mushroom pods
will have a lower environmental impact over time. These figures, however, are highly
dependent on the specific materials used for producing the containers. These figures also
might not scale linearly with the container size for mass-producing mushrooms.

Table 1. LCIA results comparison of 3 L colonizable volume of one-time-use bags and reusable pods.

Impact Category Reference Unit One-Time-Use Bag MushR Reusable Pods

Acidification H+ mmole eq 11.21 40.15
Ecotoxicity g 2,4-D eq 2.07 0.72

Eutrophication g N eq 0.43 0.34
Global warming g CO2 eq 102.46 217.20

Habitat alteration T&E count 1.88 × 1016 −7.03 × 1017

HH cancer g C6H6 eq 0.15 0.48
HH criteria air pollutants microDALYs 0.004 0.015

HH noncancer g C7H7 eq 423.69 1124.07
Indoor air quality g TVOC eq 0 0

Natural resource depletion MJ surplus 0.26 0.92
Ozone depletion g CFC-11 eq 2.64 × 107 1.49 × 106

Smog g NOx eq 0.14 0.47
Water intake liters 0.95 2.3

3. Digital Twins for Gourmet Mushrooms

In the food industry, digital twins can provide better food quality, predictive mainte-
nance, energy-use minimization, and higher transparency of the production processes [20].

The digital twin implementation developed for this project models the state of the
key assets throughout various stages of the mushroom production process. Since the state
of these assets is tightly linked with the state(s) of other inter-related assets, we chose to
model this information using a graph database, Neo4j [21]. The various assets are modeled
as nodes, and their temporal and nontemporal relationships are modeled using relations.

Figure 3 shows a class diagram of the graph database schema created for the database.
Figure 3a shows a class hierarchy of the various node classes stored in the database. It
further shows the possibility of relations that can be created between two node classes,
including the directionality. These relations themselves have a class hierarchy, shown in
Figure 3b.

Neo4j is incapable of enforcing rigid class hierarchy or data types of their attributes
of nodes or relations. For this reason, we implement the class hierarchy using the Neo-
model Object Graph Mapper (OGM) for Neo4j, which is then exposed using a REST-API,
the MushR DigitalTwin API. All interactions with the data, including the creation of new
assets, are handled through this API. Since the API itself does not store any of the digital
twin data, the scalability of Neo4j’s various enterprise solutions can be leveraged to handle
increasing amounts of data without compromising the API’s performance.

The defined schema allows the retrieval of the state of the network at any previous
instance in time. For example, the graph stores the state of a substrate container and
contains information on where it is located, which can be either a storage location or a
grow chamber. The relation between an instance of a substrate with its substrate container
implicitly gives its location history. Substrates are inoculated using samples of an existing
mycelium spawn or newly procured mushroom strains.
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(a)

(b)
Figure 3. Digital twin database class diagram; (a) Node Classes; (b) Relation Classes.

The provenance of a specific mushroom harvest can be traced using the digital twin
by recursively traversing the relations. Figure 4 shows a graph visualization of provenance
based on data recorded over 8 months in 2022. The data are restricted to 300 nodes and
relations pertaining to inoculation, fruiting, and harvests. The digital twin database also
stores location-related information so that the location of any of the assets can be accessed
at any instance of time.

More information about the MushR digital twin implementation can be found in our
GitHub repository (Appendix A).
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Figure 4. Digital twin graph visualization showing provenance of mushrooms (brown) harvested
from flushes (green) fruiting from substrate (blue) inoculated from spawn (orange) or strain (red).

4. Detection and Monitoring of Gourmet Mushroom Growth Stages

Subsequent Section 4.1 provides details on our open-source dataset, followed by
Section 4.2, which focuses on training our AI model and its predictions for gourmet
mushroom growth stages.

4.1. Dataset

The dataset created for this project focuses on capturing images of the mushroom-
growing environment from three different perspectives within each of our two growth
tents for mushroom production. Instead of providing images of every individual bucket
and mushroom, we capture the overall scene and its variations. The images from each
perspective are captured simultaneously and automatically hourly. This approach allows
for monitoring the development and maturity of the oyster mushrooms over time. We
captured and accumulated 34,400 images using six Raspberry Pi HQ Cameras [22] equipped
with wide-angle lenses (120° vertical field of view) over a period of 10 months to create a
comprehensive dataset.

In the dataset preparation phase, we clean data to ensure that the focus of our project,
which is detecting the maturity of oyster mushrooms, is maintained. As part of this process,
we remove images that are foggy and have a significant amount of noisy areas or are
contaminated. The selected dataset only included images where the mushrooms were
clearly visible, allowing for training the model specifically for maturity detection. However,
it is important to note that we have preserved the original raw dataset, including the foggy
and black images on Kaggle (Appendix A). This is performed to provide a comprehensive
dataset for other developers working on related projects or requiring access to diverse
images. Researchers and enthusiasts in the field of agriculture automation can access
and utilize the dataset for further analysis and experimentation. Since the images are not
only from buckets and mushrooms, they enable the development of new algorithms and
approaches for mushroom maturity detection and other related works. In addition to the
raw images, we provide annotations for a subset of the dataset. Annotations were carefully
created to mark the regions of mushrooms within the images. The annotation approach
involves manual labeling of mushroom maturity regions based on visual cues, such as
the mushrooms’ color, shape, and size. The annotation provides a valuable resource for
training and validating the Mask R-CNN model.
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4.2. Training and Prediction

The machine learning model employed for the maturity detection of oyster mush-
rooms in this project is Mask R-CNN (region-based convolutional neural network) [23].
The model belongs to the family of instance segmentation models, which detect objects
within an image and delineate their precise boundaries through pixel-level segmenta-
tion. This model is well suited for our task as it enables the accurate identification and
localization of mature mushrooms within the captured images. The Mask R-CNN model
architecture combines two key components, a region proposal network (RPN) [24] and a
fully convolutional network (FCN) [25]. RPN generates a set of potential object proposals,
while FCN performs pixelwise segmentation and classification for each proposed region.
This two-stage approach allows the model to achieve robust performance by leveraging
local and global contextual information effectively. To train this model, we annotated a
subset of the custom dataset using CVAT [26]. We annotated individual mushroom fruit-
ing bodies into three classes (based on three of the four stages outlined in Section 2.1):
“not-ready”, “ready”, and “overdue”, indicating whether the mushroom can be harvested.
The annotated subset of images serves as the ground truth for training and evaluating
the model.

To train the model, we rely on the Detectron2 [27] library, a popular computer vision
framework, for instance, segmentation that provides a comprehensive set of tools and
predefined architectures for object detection and instance segmentation tasks. In our
research, the Detectron2 library is the foundation for training and fine-tuning the Mask
R-CNN model on our custom dataset. It optimizes the model’s performance specifically
for oyster mushroom maturity detection. The Mask R-CNN model, integrated with the
Detectron2 library, proves to be a robust and effective solution for the maturity detection of
oyster mushrooms. See Table 2.

Table 2. MushR dataset overview, number of annotated instances per class.

Dataset Not-Ready Ready Overdue Total

Train 723 1344 692 2759
Test 251 198 92 541

For the training of the model, we initialize the model with weights pretrained from the
COCO dataset [28]. We then train the model on our custom training dataset. We adopted the
default Detectron2 hyperparameters (https://github.com/facebookresearch/detectron2
/blob/main/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml (ac-
cessed on 30 June 2023)) and used a base learning rate (post-warm-up) of 0.00015, with a
batch size of 2 for 40,000 iterations. The model trained on an Nvidia GTX 4090 using 2.7
GB of memory at 10 iterations per second, and achieved a final training accuracy of 91.72%,
as shown in Figure 5.

0 20,000 40,000

1

2

3

4

5

Total Loss

0 20,000 40,000

0.4

0.6

0.8

0.92

1

Accuracy

Figure 5. Mask R-CNN training curve.

https://github.com/facebookresearch/detectron2/blob/main/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml
https://github.com/facebookresearch/detectron2/blob/main/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml
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Although the trained Mask R-CNN model segments and classifies individual mush-
rooms, in mushroom production, entire flushes are always harvested together rather than
individual mushrooms. Therefore, an additional step is required to cluster the predicted
masks and obtain a final prediction for the entire flush. This clustering process helps to
consolidate the individual mushroom predictions into a cohesive prediction for the entire
harvest, ensuring efficient and accurate harvesting in mushroom production.

We use the DBSCAN algorithm to cluster the predicted masks, computing the center
of the masks to be used as proxy. We use ε = 2.5 × 2 × r, where r is the average (approxi-
mate) radius of all the mask instance predictions in the input image. This value defines
the neighborhood of a mask center point, and any masks that do not center within this
neighborhood are not considered part of the same flush. Figure 6 shows example results
of our maturity prediction workflow performed on a single image. In addition to this
clustering, we compute each cluster’s total area of the instance classes, Not-Ready, Ready,
and Overdue. This computation improves the accuracy of the final maturity state prediction
for the cluster over using a simple instance count.

(a) Raw image
(b) Ground

truth annotations

(c) Mask-RCNN inference (d) Final clustering results

Figure 6. Example of oyster mushroom maturity prediction on a single image showing (a) raw image
used for training; (b) annotated ground truth instances; (c) Mask R-CNN inference results on trained
model, with each instance labeled with the predicted class; Not-Ready(1)/Ready(2)/Overdue(3)
and class probability (%); and (d) final harvesting decision by clustering predicted instance masks,
including class probability (%).



Agriculture 2023, 13, 1533 10 of 16

More information, such as the complete training configuration, train and test datasets
used, and code used for clustering and visualization can be found in our GitHub repository
(Appendix A).

5. Harvesting Gourmet Mushrooms

As outlined in Sections 2.1 and 2.2, it is infeasible to use suction cups to harvest
gourmet mushrooms. In pursuit of the goal of a prototype harvesting system for gourmet,
we followed two possible approaches: pneumatic and motorized harvesting, detailed in
Sections 5.1 and 5.2, respectively.

5.1. Pneumatic Harvesting

Figure 7 shows the components used to prototype the pneumatic harvesting system.
This system actuates a blade (B), which is mounted perpendicularly on a bidirectional pis-
ton rod cylinder (C). Figure 8 shows how the cylinder is set up to harvest oyster mushrooms
growing from our developed mushroom pods. The pneumatic tubes T1 and T2 control the
motion of the pneumatic cylinder. Depending on whether T1 or T2 is pressurized, the piston
rod moves outwards or inwards from the cylinder, respectively. When both T1 and T2
are pressurized or depressurized, the piston is immobilized or free to move, respectively.
For the purpose of harvesting, T1 and T2 must be pressurized and depressurized alterna-
tively. This is accomplished by the 5/3-way solenoid valve (SV). Internally, two solenoids
control the valves pressurizing T1 and T2. These solenoids are activated by 12-volt DC
magnetic coils, MG1 and MG2. These coils are digitally controlled by 5-volt relay switches
connected to a Raspberry Pi 4B [29], programmatically controlling the entire setup. More
information about our experimental setup can be found in Appendix A.

Figure 7. Pneumatic harvesting system components.
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Figure 8. Pneumatic harvesting system setup to harvest mushrooms from a MushR mushroom pod.

5.2. Motorized Harvesting

Figure 9 shows the major components of the developed motorized harvesting system,
which consists of a stainless steel cylinder (H) with fruiting holes suspended from the
ceiling of a stool constructed using item profiles. The cylinder contains a plastic bag filled
with a substrate for oyster mushroom growth. These holes on the cylinder align with the
perforation in the plastic bag, allowing the mushrooms to emerge and grow. A 3D-printed
lid (L), matching the diameter of the cylinder, seals the bottom to prevent substrate spillage
in case of damage to the bag. A stepper motor (S) is installed underneath the suspended
cylinder to drive a 3D-printed plate, which vertically holds the blade (B). The plate is
specifically designed to accommodate the motor, ensuring stability during rotation.

Figure 9. Motorized harvesting system.
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The stepper motor initiates rotation, causing the blade to cut the mushrooms protrud-
ing through the holes in the cylinder. We program the motor to rotate in either direction to
ensure successful harvesting. Adjustments, such as sharpening the knife and modifying
the motor’s speed, can be made to optimize the system’s performance.

6. Evaluation

The developed digital twin implementation models the state of the key assets through-
out various stages of the gourmet mushroom production process. While it does not provide
process optimization for the gourmet mushroom production process, it is modeled to be
capable of storing the temporal state of any of the essential assets, such as substrate, spawn
and harvests involved in the production process, as detailed in Section 3.

Tables 3 and 4 evaluate the Mask R-CNN model described in Section 4. We evaluated
the trained model in terms of average precision (AP) on our test set using the COCO
evaluation metric (https://cocodataset.org/#detection-eval (accessed on 30 June 2023)).
Table 5 provides a brief description of the evaluation metrics used.

Table 3. Mask R-CNN model evaluation using the COCO evaluation metric [30].

Criteria AP APIOU=0.50 APIOU=0.75 APsmall APmedium APlarge

Bounding Box 61.876 71.016 67.920 20.792 69.788 87.207
Segmentation 49.332 70.639 60.812 9.010 54.799 80.218

Table 4. Mask R-CNN model evaluation (per class).

Task Class AP

Not-Ready 34.386
Bounding Box Ready 74.683

Overdue 76.558

Not-Ready 26.502
Segmentation Ready 61.083

Overdue 60.410

As represented in Table 4, the AP of the bounding boxes predicted by the Mask R-CNN
model is generally larger than those of segmentation. The “Not-Ready” class of instances
also has lower AP than the other classes. A similar trend can be seen in Table 3 with AP
across scales: APsmall is significantly lower than APmedium and APlarge. Since mushroom
fruiting bodies that are “Not-Ready” are usually smaller in size, the resolution of the
training images seems to play a role in the decrease in AP. The model has its largest AP
under the evaluation criterion APlarge.

Table 5. Description of COCO metrics (adapted from [30]).

Metric Description

AP AP at IoU = 0.50:0.05:0.95
APIOU = 0.50 AP at IoU = 0.50 (PASCAL VOC metric)
APIOU = 0.75 AP at IoU = 0.75 (strict metric)

APsmall AP for small objects: pixel area < 322

APmedium AP for medium objects: 322 < pixel area < 962

APlarge AP for large objects: area > 962

Sections 5.1 and 5.2 describe our prototype pneumatic and motorized harvesting sys-
tems, respectively. While they are capable of harvesting full flushes of mushrooms, the time
required to harvest a single flush increases heavily on the water content and thickness
of the flushes at the base of the fruiting holes. From our limited testing, the pneumatic
harvesting mechanism setup, as shown in Figure 8, failed to produce any significant results

https://cocodataset.org/#detection-eval
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below 2.1 bar of pressure. At 7.5 bar, we could reliably harvest flushes, albeit requiring up
to 5 s of continuous application to successfully harvest the thickest fruiting flushes. On the
other hand, since the fruiting holes in the motorized harvesting system are significantly
smaller, fruiting flushes can be harvested nearly instantaneously, given that the blade used
is sufficiently sharp. The downside of using a smaller fruiting hole, however, is a decrease
in the fruiting speed and yield quantity of the flushes.

Unlike the motorized harvesting mechanism, which uses a dedicated harvesting
mechanism for each substrate container, the pneumatic harvesting system is an independent
modular component. In an industrial-grade setup, since our mushroom pods have flat
surfaces, they can be moved from their growth chambers when the mushrooms are ready
to harvest (as detected by our Mask R-CNN-based maturity detection method) to the
harvesting system via conveyor belts (or other industrial mobility solutions). The number
of mushroom pods being used in production can hence increase faster than the number of
harvesting systems, the rate of the increase being dependent on the desired throughput of
the production environment, thereby allowing the system to be very scalable.

Discussion and Limitations

Our three main contributions, the digital twin, the Mask R-CNN-based maturity
detection, and the automated harvesting mechanisms, are novel in their application towards
gourmet mushroom production. They do, however, have several limitations that require
further research to amend.

The digital twin implementation described in Section 3 did not use any process
modeling to monitor or simulate the various production processes involved in gourmet
mushroom production.

While our Mask R-CNN model’s performance is promising, there are certain lim-
itations to consider. Factors such as lighting conditions, oyster mushroom variations,
and occlusions may affect the model’s accuracy. As mentioned in Section 4, we accumu-
lated 34,400 images of oyster mushrooms. However, due to the immensely time-consuming
endeavor of annotating the mushrooms with masks, we could only annotate a small portion
of those images. This subsequently limits the potential of our Mask R-CNN model to learn
to segment these mushrooms.

Lastly, our developed methods have yet to be tested in an industrial gourmet mush-
room production environment, and the results presented in this paper have the possibility
of being only applicable to our experimental setup for oyster mushroom production.

7. Conclusions and Future Work

This work makes four contributions: First, we present a digital twin for gourmet
mushroom production, which is capable of storing the temporal state of any of the impor-
tant assets, such as substrate, spawn and harvests involved in the mushroom production
process. We also provide a visual user interface to interact with the graph-based structure
of the digital twin representation. Second, we introduce an image recognition system that
determines when and which mushrooms are ready to be harvested in conjunction with
a proof-of-concept of an automated mushroom harvesting mechanism for harvesting the
mushrooms without human interaction. The image recognition setup monitors the growing
status of the mushrooms and guides the harvesting process. Third, we present a Mask
R-CNN model for the detection of oyster mushroom maturity, which has an evaluated
average precision of up to 80.2 (APlarge), as well as a semiautomated harvesting system that
can be scaled, integrating a Raspberry Pi for control, an electrical switch, an air compressor,
and a pneumatic cylinder with a cutting knife to facilitate timely mushroom harvesting
as a third contribution. Fourth, we perform an analysis of the environmental benefit of
using reusable mushroom pods in favor of one-time-use-only plastic bags. In our use case,
reusing the mushroom pods three times yields a more eco-friendly output than previous
approaches relying on plastic bags.
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Finally, the AI model, its underlying dataset, a digital twin for mushroom production,
the setup of our growth and control chambers, and additional information are all made
available under an open-source license.

Future improvements could involve collecting a more extensive and more diverse
dataset to enhance the model’s robustness further, e.g., different types of gourmet mush-
rooms but also different settings. Additionally, fine-tuning the model with additional
training iterations or exploring alternative architectures may yield even better results. Be-
sides the automated harvesting mechanism, subsequent research, i.e., future work, may
optimize the growth environment parameters to maximize mushroom growth and harvest
based on collected sensor data and the digital twin/shadow data of previously harvested
mushroom pods.

While this work focused on monitoring and detecting gourmet mushroom growth
stages and subsequent harvesting activities, future work may also focus on other issues of
the mushroom production process. Recognizing contaminated substrate or mushrooms
further reduces human intervention. Our open-source dataset includes images exhibiting
contamination, where mushrooms, buckets, tents, or even the camera may be contami-
nated. By keeping the complete dataset, we aim to support future research and enable the
development of new projects beyond the scope of this specific maturity detection project.

Moreover, the monitoring system could also be coupled with the control unit of the
growth environment to manipulate growth-related parameters (e.g., temperature) so that
mushrooms are ready to be harvested on predetermined days.

Beyond the production of gourmet mushrooms, the solutions, e.g., growth/harvest
monitoring and detection and the robot-based harvesting developed in MushR, may be gen-
eralized to other indoor farming activities in controlled environments beyond mushrooms
and, in special cases, even for outdoor farming activities.
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Appendix A

1. MushR GitHub Repository: https://github.com/ETCE-LAB/MushR (accessed on 30
June 2023)

2. AI model and dataset to detect the growth stages of gourmet mushrooms (specifically
oyster mushrooms): https://github.com/ETCE-LAB/mushr-mask-r-cnn/ (accessed
on 30 June 2023)

3. Raw underlying dataset for the AI model: https://www.kaggle.com/datasets/etcelab/
mushr-project-raw-image-dataset-oyster-mushrooms (accessed on 30 June 2023)

https://github.com/ETCE-LAB/MushR
https://github.com/ETCE-LAB/mushr-mask-r-cnn/
https://www.kaggle.com/datasets/etcelab/mushr-project-raw-image-dataset-oyster-mushrooms
https://www.kaggle.com/datasets/etcelab/mushr-project-raw-image-dataset-oyster-mushrooms
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4. Github repository of the digital twin for gourmet mushroom production: https:
//github.com/ETCE-LAB/mushr-digitaltwin-api (accessed on 30 June 2023)

5. Github repository for the growth chamber setup and control environment: https:
//github.com/ETCE-LAB/MushR/blob/main/growchamber-setup (accessed on 30
June 2023)

6. LCA results (one-time-use plastic bags & MushR reusable mushroom pods): https:
//github.com/ETCE-LAB/MushR/blob/main/lca-calculations (accessed on 30 June
2023)
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