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Abstract: With the widespread application of drone technology, the demand for pest detection
and identification from low-resolution and noisy images captured with drones has been steadily
increasing. In this study, a lightweight pest identification model based on Transformer and super-
resolution sampling techniques is introduced, aiming to enhance identification accuracy under
challenging conditions. The Transformer model was found to effectively capture spatial dependencies
in images, while the super-resolution sampling technique was employed to restore image details
for subsequent identification processes. The experimental results demonstrated that this approach
exhibited significant advantages across various pest image datasets, achieving Precision, Recall, mAP,
and FPS scores of 0.97, 0.95, 0.95, and 57, respectively. Especially in the presence of low resolution and
noise, this method was capable of performing pest identification with high accuracy. Furthermore,
an adaptive optimizer was incorporated to enhance model convergence and performance. Overall,
this study offers an efficient and accurate method for pest detection and identification in practical
applications, holding significant practical value.

Keywords: smart agriculture; pest detection; Transformer; super resolution

1. Introduction

With the continuous advancement of agricultural technology, drones have been pro-
gressively adopted as efficient automation tools in various agricultural operations [1],
including sowing, fertilization, and monitoring. In particular, for crop health monitoring,
drones have demonstrated immense potential and value. Pests, as one of the primary
threats in agricultural production, pose serious risks to crop health. While pesticides can
address some pest issues [2], timely and effective pest detection remains paramount for
pest prevention and control.

Traditional pest detection methods often rely on manual inspections [3] and solar
tracking [4]. Not only these methods exhibit low efficiency, but also their accuracy is
constrained by human experience and the intensity of manual labor, leading to potential
oversights. Furthermore, the frequency and scope of manual inspections are limited,
preventing extensive, high-frequency pest monitoring, especially given the small size of
pests [5]. This limitation can result in missing optimal opportunities for prevention and
control during the initial stages of pest outbreaks. While pheromone-based pest detection
methods exist [6], they are specific to particular pests [7], offering limited versatility.

The rapid advancement of computer vision technology in recent years has introduced
new avenues for smart agriculture [8–11]. Through image recognition and deep learning
techniques, high-efficiency and accurate identification of pests can be achieved [12]. In this
realm, researchers from various countries have embarked on several investigations. Liang,
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Quanjia, developed a rice pest recognition model based on an improved YOLOv7 algorithm.
By employing the lightweight MobileNetV3 network for feature extraction, the accuracy of
92.3% was achieved on a dataset containing 3773 images of rice pests [13]. Yang, Zijia, and
colleagues compiled an image dataset of eight tea tree pests and designed a pest detection
and recognition model for tea gardens using the Yolov7-tiny network. By integrating
deformable convolutions, the Biformer dynamic attention mechanism, the non-maximum
suppression algorithm module, and a new implicit decoupling header, the average accuracy
of 93.23% was achieved [14]. Jia, Xinyu, and team established a dataset consisting of
5182 pest images across 14 categories. Using transfer learning, visual geometric group
(VGG), residual neural network (ResNet), and a mobile network, citrus pest recognition
models were created. Following this, appropriate attention mechanisms were introduced
based on model characteristics. Ultimately, average recognition accuracy, Precision, Recall,
and F1 score were 93.65%, 93.82%, 93.65%, and 93.62%, respectively [15]. Irjak, Dana, and
others developed a DNN-based automatic monitoring system for apple codling moths,
comprising a smart trap and an analysis model. Evaluation using a confusion matrix
revealed an accuracy exceeding 99% in detecting apple codling moths [16].

Building on previous research, enhancements have been made. Kumar, Nithin, and
associates utilized YOLOv5 and incorporated channel and spatial attention modules, en-
hancing network recognition capabilities. Experimental results showed that with learning
on a custom pest dataset, the F1 score approached 0.90, and the mAP value reached 93%.
In comparison to other YOLOv5 models, the F1 score increased by 0.02 [17]. Ullah, Za-
hid, and collaborators proposed the fusion of two pre-trained models, EfficientNetB3 and
MobileNet. They also applied techniques such as regularization, dropout, and batch nor-
malization to address model overfitting. The hybrid model achieved a success rate of
99.92% in accurately detecting tomato leaf diseases, proving its capability to extract features
effectively [18]. Butera, Luca, and colleagues investigated the capabilities of state-of-the-art
(SoA) object detection models based on convolutional neural networks (CNNs) to detect
coleopteran pests on heterogeneous outdoor images from various sources, presenting a
benchmark model. Results indicated that this combination delivered the Average Precision
of 92.66% [19]. Kumar Yadav, P., and co-researchers employed drone-acquired RGB images
to detect VC plants in maize fields. Findings showed that YOLOv3 could identify VC
plants in maize fields with average detection accuracy above 80%, F1 score of 78.5%, and
mAP of 80.38%. Regarding image sizes, no significant differences were observed in mAP
across three scales. However, significant differences were found in AP between S1 and
S3 (p = 0.04), and S2 and S3 (p = 0.02). Significant differences in F1 score were also seen
between S2 and S3 (p = 0.02) [20]. Rong, Minxi, and group enhanced the FPN structure in
the feature extraction network and introduced weight coefficients when merging features of
different scales. Experimental analysis on 1000 sample images indicated that the improved
Mask R-CNN model achieved recognition and detection accuracy of 99.4%, which is 2.7%
higher than the unimproved Mask R-CNN model [21].

However, most existing computer vision models demand significant computational
resources and exhibit considerable size [22,23], making them unsuitable for direct de-
ployment on drone platforms with limited computational capabilities. Moreover, images
captured with drones during flight are often affected by factors such as lighting, distance,
and angle, potentially compromising image clarity and recognition accuracy. Hence, the
challenge and focal point of current research lie in achieving efficient and accurate pest
recognition within constrained computational resources [10].

In response to these challenges, this study introduces a novel pest recognition model
based on the Transformer architecture combined with super-resolution sampling techniques,
aiming to enhance the recognition accuracy and speed on drone platforms. Initially, through
the super-resolution sampling module, high-resolution images with improved clarity
can be reconstructed from low-resolution original images, thus enhancing recognition
accuracy. Simultaneously, by employing model lightweighting techniques, computational
demands and model size are significantly reduced, enabling real-time operation on drone
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platforms. Additionally, adaptive optimizers are integrated to further improve model
training efficiency and stability. Overall, this study offers a pioneering, drone-compatible
pest recognition approach, holding substantial practical significance for pest prevention
and control in agriculture and paving the way for potential applications of drones in the
agricultural domain.

2. Related Work

In recent years, significant progress has been achieved in pest detection technologies.
Notably, techniques related to deep learning have shown outstanding performance in
image processing and model optimization [22–27]. This section primarily discusses three
technologies: the Transformer architecture, super-resolution sampling modules, and model
lightweighting techniques.

2.1. Transformer

The Transformer architecture [22] was initially designed for natural language process-
ing tasks, addressing sequence-to-sequence tasks with its self-attention mechanism. The
core idea behind the self-attention mechanism is that during processing, different attention
weights can be given to different parts of the input data. This method allows the model
to adaptively adjust its structure based on data content, capturing intrinsic features more
effectively. Mathematically, self-attention can be expressed as

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (1)

where Q, K, and V represent the query, key, and value, respectively. They are typically
linear transformations of the input data, while dk denotes the dimension of the key.

Although the origins of the Transformer model lie in text data processing, it was
quickly discovered that it could be applied to computer vision tasks. For instance, to adapt
it for image data, one approach involves dividing an image into a series of fixed-size patches,
then flattening these patch pixel values into vectors. Each patch can then be considered
an element in a sequence. Based on this, Vision Transformer (ViT) [28] was introduced.
This model divides the image into fixed-size patches, linearly embeds each patch into
a fixed-size vector, and adds positional encoding to retain spatial information. When
exploring how to apply the Transformer model to object detection tasks, a basic strategy
involves segmenting the image into patches, assigning category labels and bounding boxes
to each patch, and then processing these patches using a Transformer model and learning
inter-patch relationships with the self-attention mechanism. During the decoding phase,
another Transformer network receives the outputs from the encoding phase, generating
category labels and bounding boxes for each patch. This can be represented as

O = Transformer-Decoder(Transformer-Encoder(I)) (2)

where I represents the input image and O represents the output categories and locations.
This application of the Transformer model to object detection offers advantages. Its global
self-attention mechanism can capture long-range dependencies in images. Objects in
images often have complex relationships with their surroundings, such as occlusions and
interactions. The Transformer model can understand these relationships better, improving
detection accuracy.

2.2. Super-Resolution Sampling

The aim of super-resolution sampling is to recover high-resolution details from low-
resolution images. This is a popular research direction in the computer vision field,
since it enhances image quality without the need for additional hardware. In particu-
lar, deep learning models have demonstrated remarkable performance in super-resolution
tasks. SRGAN (Super-Resolution Generative Adversarial Network) [27] is a represen-
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tative super-resolution model that uses a Generative Adversarial Network (GAN) [26]
for super-resolution image restoration. Specifically, SRGAN comprises a generator and
a discriminator. The generator is responsible for upsampling low-resolution images to
high-resolution ones, while the discriminator attempts to distinguish between generated
high-resolution images and real high-resolution images. Model training aims to minimize
the difference between them and optimizes the following loss function:

L = Lcontent + λLadversarial (3)

where Lcontent represents the content loss, usually computed using Mean Squared Error (MSE),
and Ladversarial represents the adversarial loss, which measures the difference between gener-
ated and real high-resolution images. The weight parameter, λ, balances their importance.

In computer vision tasks, the primary application of super-resolution technology is in
image restoration and enhancement. Since collecting high-resolution images might be re-
stricted by hardware or cost, super-resolution provides an effective solution for researchers
and industries, extracting high-quality details from existing low-resolution images. When
applied to object detection tasks, its main value lies in increasing image resolution, enabling
more accurate detection of small or distant objects in images. Specifically, object detection
typically involves feature extraction and bounding box regression. High-resolution images
can provide richer information, making features more distinct in the feature extraction
phase. In the bounding box regression phase, high-resolution images offer more accurate
positional information, improving detection accuracy. To apply super-resolution in object
detection, a super-resolution model can first upsample the input image, which is then fed
into the object detection network. This method can be mathematically represented as

Odetection = DetectionNetwork(SR(Ilow-res)) (4)

where Ilow-res denotes the input low-resolution image, SR(·) represents the super-resolution
model, and Odetection indicates the object detection output. The advantage of this method
is that it not only enhances object detection accuracy but also allows detection models
to achieve similar performance on low-resolution images as on high-resolution images.
Additionally, since super-resolution models typically have fewer parameters, this method
can effectively reduce the overall model size and computational cost.

2.3. Model Lightweighting

The technique of model lightweighting has garnered significant attention in the
deep learning domain, as it facilitates the deployment of intricate models onto resource-
constrained devices, such as mobile devices or edge computing equipment. The essence of
model lightweighting is to not only retain the model’s accuracy but also substantially re-
duce the model’s size and computational load. Renowned model lightweighting techniques
encompass knowledge distillation, network pruning, and quantization.

Knowledge distillation [29,30] serves as a technique to train a smaller model, utilizing
the output of a larger model to guide the training of the smaller counterpart. Specifically,
given a larger model (often termed the teacher model) and a smaller model (typically
referred to as the student model), the aim of knowledge distillation is to approximate the
student model’s output to that of the teacher model as closely as possible. This can be
mathematically expressed using the following loss function:

Ldistill = αLoriginal + (1− α)Lsoft (5)

where Loriginal represents the original loss function, such as cross-entropy loss, while Lsoft
denotes the loss between the outputs of the student and teacher models. Parameter α serves
to balance these two losses.

Network pruning [31] is a technique aimed at reducing model size and computational
load by eliminating certain portions of the neural network. The most prevalent method in
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this context is weight pruning, which involves deleting certain weights from the model.
This is typically conducted based on the magnitude or significance of the weights. For
instance, given a threshold θ, weights with an absolute value less than θ can be deleted:

w′i =

{
wi if |wi| > θ

0 otherwise
(6)

Quantization [32] is an approach to diminish the precision of model weights. As an
example, 32-bit floating-point weight values can be quantized into 8-bit integers. This not
only reduces the model’s size but also accelerates its computations.

In computer vision tasks, the primary application of model lightweighting is to en-
hance model deployment efficiency. For object detection tasks, lightweighting the model
can yield a higher frame rate for real-time applications or satisfactory performance on
resource-limited devices. Specifically, for object detection models, a smaller student model
can initially be trained using knowledge distillation, followed by further reduction in
model size and computational load through network pruning. Finally, quantization can be
employed to reduce the model’s storage requirements and computational duration. Such
a model lightweighting strategy offers an effective solution for object detection, ensuring
efficient and accurate object detection even on resource-limited devices such as mobile
devices or drones.

3. Materials and Method
3.1. Dataset Collection

In studies related to pest detection associated with crop health, the construction of
datasets plays a pivotal role. The dataset collected encompasses various pests closely
related to corn and rice, including Spodoptera litura, Ostrinia furnacalis, Spodoptera frugiperda,
Nilaparvata lugens, Cnaphalocrocis medinalis, and Leptocorisa chinensis. The reasons for select-
ing these pests as the subjects of study are based on the severe threats they pose during
the growth of corn and rice. For example, Spodoptera litura may damage the corn stalk,
causing it to lodge; Ostrinia furnacalis and Spodoptera frugiperda directly harm corn leaves
and ears, affecting the yield. As for rice, the emergence of pests like Nilaparvata lugens and
Cnaphalocrocis medinalis often indicates a significant decline in yield [33].

The primary data collection site is located in West Science Park of China Agricultural
University. Considering the actual crop growth environment, morning and evening were
chosen as the primary collection times, as pest activity tends to be frequent during these
periods. A 4K resolution camera (3840× 2160) was employed as collection equipment to
ensure the clarity and detail of the images obtained [11]. Moreover, a large number of pest
images were scraped from the Internet [33]. By writing a crawler program, a vast amount
of images related to these pests were gathered from various agriculture-related websites
and communities. This approach allows for the rapid acquisition of substantial data,
enriching the diversity of the dataset. The combination of both data collection methods
ensures authenticity, reliability, diversity, and richness of the data. The dataset mirrors
the various states of pests in real environments, laying a solid foundation for subsequent
model training. The distribution of the dataset is shown in Table 1 and Figure 1.

Table 1. Distribution of the dataset used in this paper after preprocessing, discussed in Section 3.2.

Pest Type Number of Images

Spodoptera litura 1200
Ostrinia furnacalis 1150
Spodoptera frugiperda 1100
Nilaparvata lugens 1250
Cnaphalocrocis medinalis 1000
Leptocorisa chinensis 1300
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Figure 1. Samples of dataset used in this paper.

The construction of this dataset provides ample data support for subsequent model
training and validation, ensuring the reliability and effectiveness of this research.

3.2. Dataset Preprocessing

In pest detection tasks, acquiring a substantial amount of high-quality training data
is essential. However, data collection in real-world scenarios often encounters limitations
due to factors like seasons, weather, and equipment, potentially leading to inadequate
size and diversity of the initial dataset. Therefore, data preprocessing and augmentation
techniques hold significance in such tasks. They not only enhance the model’s adaptability
to different environments and angles but also effectively mitigate the risk of overfitting,
improving the model’s generalization capabilities. Initially, image data augmentation,
achieved by applying various transformations on the original images, exposes the model
to a wider range of scenarios during training, thus enhancing its generalization ability.
Various augmentation methods include rotation, flipping, cropping, brightness and contrast
adjustment, and noise addition, as depicted in Figure 2.

Figure 2. Illustration of dataset preprocessing methods used in this paper, including flipping
and mirroring.

Taking image rotation as an example, by rotating an image by a specific angle, a
new image is obtained. The mathematical representation of this transformation can be
expressed as [

x′

y′

]
=

[
cos θ − sin θ
sin θ cos θ

][
x
y

]
(7)

where x and y represent the coordinates of the original pixel point, and x′ and y′ are the
coordinates after rotation, with θ being the angle of rotation. Image flipping is another
prevalent data augmentation method, flipping the image along a specific axis. Horizontal
flipping can be represented as

x′ = W − 1− x, y′ = y (8)

where W is the width of the image, x and y are the original pixel coordinates, and x′ and y′

are the new coordinates post-flipping. Image cropping involves selecting a region from the
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original image to create a new one, aiding the model in focusing on various parts of the
image. Random cropping can be expressed as

x′ = x− ∆x, y′ = y− ∆y (9)

where ∆x and ∆y represent the cropping offsets in the horizontal and vertical directions,
respectively. Additionally, adjusting the brightness and contrast of images serves as an
effective data augmentation method, which can be implemented using

I′ = α · I + β (10)

where I is the original image, I′ is the enhanced image, α is the contrast adjustment factor,
and β is the brightness adjustment factor. To combat noise and minor image variations,
random noise can also be introduced into the images. Common noise models include Gaus-
sian noise and salt-and-pepper noise. Using these augmentation methods, the diversity
of the training set can be significantly increased, effectively preventing the model from
overly relying on specific data distribution characteristics and enhancing its performance
on unseen data. Furthermore, these methods simulate variations likely encountered in
real-world applications, bolstering the model’s robustness in actual scenarios.

3.3. Proposed Method
3.3.1. Overall

A novel pest identification model is proposed, designed for efficient and accurate pest
detection for drones. The overall method framework consists of three main components:
a Transformer-based object detection network, a super-resolution sampling module, and
lightweight techniques. Each of these components is elaborated upon below, with an
explanation of their integration into a cohesive workflow, as shown in Figure 3.

Figure 3. Illustration of the whole method proposed in this paper.

Initially, the Transformer-based object detection network serves as the backbone of the
model, responsible for identifying pests in images [25]. The strength of the Transformer
model lies in its self-attention mechanism, which captures long-range dependencies within
images. In object detection tasks, the Transformer model can effectively differentiate be-
tween background and foreground, as well as identify relationships among multiple targets,
which is pivotal in pest detection. However, images captured with drones can become
blurred due to various factors, such as distance, lighting, and motion blur. To address
this, a super-resolution sampling module was incorporated. Its primary role is to enhance
image resolution, bringing out clearer details. By employing advanced deep learning
methods, this module is capable of restoring low-resolution images to high-resolution ones
while preserving intrinsic details. Prior to object detection, the super-resolution sampling
module serves as a preprocessing step, supplying the Transformer network with crisper
inputs, consequently improving detection accuracy. However, such a model may become
extensive and computationally intensive. To mitigate this concern, lightweight techniques
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were employed. These techniques encompass knowledge distillation, network pruning,
and quantization and are capable of substantially reducing model size and computational
demands without significantly compromising performance. With the incorporation of these
lightweight techniques, the proposed model can operate in real time on drones, facilitating
instantaneous pest detection. Integrating these three components, a comprehensive pest
detection procedure emerges, as shown in Figure 3. Firstly, images captured with drones un-
dergo preprocessing via the super-resolution sampling module, resulting in high-resolution
outputs. Subsequently, these images are fed into the Transformer-based object detection
network, yielding pest location and category information. Finally, lightweight techniques
ensure efficient operation of the model on drones.

To achieve real-time pest detection on this drone, the model was chosen to run on
NVIDIA’s Jetson Nano platform [11]. Jetson Nano, a compact and energy-efficient com-
puting platform, is particularly apt for edge computing. Possessing formidable graphics
processing capabilities, it effortlessly manages the inferencing tasks of deep learning models.
Crucially, its small size and low power consumption render it ideal for integration into mo-
bile devices like drones. Additionally, to capture rich image details and ensure the model’s
precise pest detection capabilities, the drone was equipped with a 4K resolution camera.
Such high-resolution cameras not only provide clear images but also capture minute details
of pests, playing a pivotal role in enhancing detection accuracy. Once processed by the
super-resolution sampling module, these 4K images can be further augmented, optimizing
the Transformer network’s performance. With the aforementioned hardware configura-
tion, the overall method framework can efficiently and accurately detect pests on drones.
Drones, using their 4K cameras, first capture images, which are then preprocessed on
Jetson Nano by the super-resolution sampling module, resulting in high-resolution outputs.
These images are subsequently fed into the Transformer-based object detection network
for real-time inferencing on Jetson Nano, providing pest location and category details.
Lightweight techniques guarantee the fluidity and efficiency of the entire procedure. In
summary, the proposed method framework, integrating Transformer, super-resolution
sampling, and lightweight techniques, forms a complete pest detection procedure. This
approach, apart from efficient and accurate pest detection, also offers real-time operation
on resource-constrained drones. It presents agriculture with a potent tool, aiding farmers
in superior pest management, thereby enhancing crop yield and quality.

3.3.2. Super-Resolution Module

Super-resolution techniques aim to recover high-resolution images from low-resolution
counterparts, thus revealing more details and improved clarity. This step proves crucial for
pest detection, as adequate details must be captured to accurately identify and locate pests.
The core of the super-resolution sampling module is grounded in convolutional neural
networks. While conventional super-resolution methods, such as bicubic interpolation and
Lanczos resampling, can somewhat augment image resolution, they fail to recover lost
high-frequency details. However, convolutional neural networks are capable of learning
methods to restore these nuances. For every low-resolution image input ILR, the network
is designed to produce a high-resolution output IHR. Mathematically, the objective is to
minimize the difference between the output image and the actual high-resolution image,
represented as Mean Squared Error (MSE):

LMSE =
1
n

n

∑
i=1
‖I(i)HR − F(I(i)LR)‖

2
2 (11)

where n stands for batch size and F represents the super-resolution model. A structure
based on convolutional neural networks (CNNs) was developed, eschewing the Generative
Adversarial Network (GAN) framework. Although GANs can produce visually satisfactory
results, their demands for training stability and computational resources render them
less suitable for real-time processing on mobile devices. The super-resolution model
employed is founded on the classical ResNet [34] structure. To cater to super-resolution
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tasks, adaptations and refinements were made. Specifically, a 20-layer deep network
structure was employed, as shown in Figure 4.

Figure 4. Structure of super-resolution module used in this paper.

This design, compared with deeper networks, has fewer parameters, which reduces
computational and memory demands yet still achieves satisfactory super-resolution results.
The model takes a low-resolution image patch as input and delivers its corresponding high-
resolution version. The first two layers of the network incorporate larger convolutional
kernels, 5× 5, assisting in capturing the image’s broader structures. Subsequent layers
use 3× 3 kernels, better suited for addressing finer image details. Batch normalization
layers were added after each convolutional layer, and depth-wise separable convolutions
were used to further minimize the number of model parameters while maintaining per-
formance. The network’s tail end employs an upsampling layer, typically using sub-pixel
convolution techniques, to magnify the image to the desired size. Distinct from traditional
upsampling methods like bilinear interpolation, this method is learned, thus better restor-
ing high-resolution image details. In terms of parameters, the adoption of depth-wise
separable convolutions and other lightweight strategies results in the model having ap-
proximately 500,000 parameters. This figure is significantly reduced compared with typical
super-resolution models, enabling smooth operation on resource-constrained devices like
NVIDIA’s Jetson Nano.

Compared with SRGAN, this model places a greater mathematical emphasis on the
MSE portion of the loss function, indicating a concern for pixel-level differences over high-
level feature discrepancies. Specifically, the SRGAN loss function includes a perceptual
loss term:

Lperceptual =
1
n

n

∑
i=1
‖φ(I(i)HR)− φ(F(I(i)LR))‖

2
2 (12)

where φ is a pre-trained network, often part of VGG-16 [35], employed for extracting
high-level image features. However, in this application, due to a greater emphasis on image
detail recovery, perceptual loss is not utilized, with a focus placed on MSE loss instead.
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This adjustment ensures that the model more effectively recovers pest morphology and
texture details.

In summary, the designed super-resolution model prioritizes achieving satisfactory
recovery results while ensuring efficiency and real-time capabilities. Such a balance renders
the model highly suitable for mobile devices like drones, providing a potent tool for on-site
pest detection tasks.

3.3.3. Transformer-Based Detection Network

In the task of pest detection with drones, a target detection network based on the
Transformer architecture was chosen. The Transformer architecture, due to its self-attention
mechanism, has achieved significant success in natural language processing tasks. However,
its application in computer vision, especially in object detection, remains in the exploration
phase. DETR (Detection Transformer) [23] is the first model that successfully applied
Transformer to object detection. Contrary to traditional object detection methods, DETR
eliminates the need for manually set prior boxes. Instead, images are directly input into the
Transformer network to produce predicted boxes and their corresponding classes.

The design of this model was inspired by DETR, but modifications were made to cater
to the peculiarities of pest detection. First, given that images captured with drones often
possess high resolution and pests are typically small in size, adjustments were made to
the model’s input section. A lighter convolutional neural network was employed as the
backbone to encode high-resolution images into a series of feature vectors. These feature
vectors were then fed into the Transformer network’s encoder for further processing, as
shown in Figure 5.

For the Transformer segment, the fundamental self-attention mechanism and multi-
head attention structure were retained. Mathematically, self-attention can be described as

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (13)

where Q, K, and V represent the query, key, and value matrices, respectively, and dk is
the model’s dimension. To capture the intricate features of pests, additional layers were
incorporated into the Transformer model, where the number of layers was specifically
increased to 12. Furthermore, to accommodate the diversity of pests and detect small
targets against complex backgrounds, the hidden dimensions of the model were expanded.
Positional encodings were introduced to assist the model in understanding the relative
positions of pests. In conventional object detection models, a fixed number of anchor boxes
(or prior boxes) are usually pre-defined for every predicted location. This method can result
in sub-optimal prediction performance when faced with varying scenarios and quantities
of targets. Particularly in the application of pest detection, where the distribution and
density of pests on crops can vary greatly, employing a fixed number of prediction boxes
may lead to omissions or redundant detection instances. To address this issue, a dynamic
prediction approach was designed, as shown in Algorithm 1.
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Algorithm 1 Dynamic object detection algorithm

Require: Image I, Model M, Threshold τ, Maximum iterations T
Ensure: Set of predicted boxes B

1: Initialize set of predicted boxes B0 ← ∅
2: Initialize t← 0
3: while t < T do
4: Btemp ← M(I, Bt) {Predict using the model}
5: for each predicted box b in Btemp do
6: Calculate score S(b) = P(c)× IoU(Pb, Gb)
7: if S(b) > τ then
8: Bt+1 ← Bt+1 ∪ b {Add box to the new set}
9: end if

10: end for
11: if Difference between Bt+1 and Bt is below a threshold then
12: break
13: end if
14: Apply random perturbations to Bt+1
15: t← t + 1
16: end while
17: return Bt

Figure 5. Illustration of Transformer structure.

The proposed model no longer relies on predefined anchor boxes but instead predicts
object bounding boxes and their associated class information directly from the Transformer
network’s outputs. An initial set of object predictions is first generated by making a coarse
prediction across the entire image. Each object consists of a bounding box and a class
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probability. For each predicted bounding box, a scoring mechanism is established, which
relates to the confidence of the predicted box and the class probability. Mathematically, this
score is defined as

S = P(c)× IoU(Pb, Gb) (14)

where P(c) represents the class probability of the predicted box and IoU(Pb, Gb) is the
Intersection over Union between predicted box Pb and ground truth box Gb. Subsequently,
a threshold is set, filtering out the predicted boxes with scores exceeding this threshold.
These boxes are then fed back into the model as new inputs. The model is further refined
and adjusted based on these predictions. This iterative process continues until changes
in the predicted boxes are below a predetermined threshold or the maximum number of
iterations is reached. With this approach, the model can dynamically adjust the number
and position of the predicted boxes, adapting itself to different scenes and object densities.
It should be noted that a random perturbation mechanism was introduced to prevent the
model from converging to a local optimum during iterations. At each iteration, minor
random changes are made to some predicted boxes, enhancing the model’s exploration
space, thereby improving its robustness and generalization capabilities.

Regarding the number of parameters, modifications have been made to the input
section, the Transformer structure, and the output section, resulting in an overall increase
in parameters compared with DETR, totaling about 70 million. Nonetheless, considering
the computational capabilities of drones, a balance between computational efficiency
and accuracy was maintained during model design. In essence, the proposed object
detection network merges the strengths of Transformers with the nuances of pest detection.
Compared with DETR, it is more suited for high-resolution inputs, detects smaller objects
more effectively, and offers greater flexibility.

3.3.4. Model Lightweighting

Knowledge distillation is a widely adopted method during model lightweighting. It
aims to transfer the performance of a large, complex model (often termed the “teacher
model”) to a smaller, lightweight model (often termed the “student model”), as shown
in Figure 6. In this study, the teacher model, which undergoes multiple rounds of iter-
ative training and optimization, can detect pests with high precision. In contrast, the
student model, being smaller and faster, is designed to operate efficiently on constrained
computational resources like Jetson Nano.

Figure 6. Illustration of knowledge distillation strategy. Different colors mean different layers.

The teacher model in this study was obtained after prolonged training on a large
dataset. Given hardware constraints and real-world speed requirements, a lightweight
network structure was chosen as the student model. Specifically, the student model used
a lightweight CNN with a depth of 10. Compared with the teacher model, its depth
was reduced by 50%, and its parameter count, by nearly 70%. However, achieving the
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teacher model’s performance solely with this lightweight structure is challenging. Hence,
the knowledge distillation technique was employed for training, allowing the student
model to approximate the teacher model’s performance. During knowledge distillation,
besides the conventional supervised learning loss function, an additional loss function
was introduced, quantifying the difference between the outputs of the student and teacher
models. Mathematically, it can be expressed as

L = Lsupervised + λLdistill (15)

where Lsupervised is the supervised learning loss of the student model based on the true la-
bels, Ldistill measures the difference between the outputs of the student and teacher models,
and λ is a balancing factor. For Ldistill, softened cross-entropy loss was used. Specifically,
the output probabilities from both the teacher and student models were computed and
“softened”, resulting in

Ldistill = −∑
i

qi log(pi) (16)

where qi is the softened probability output of the teacher model and pi is the output
probability of the student model. With this method, the student model learns not only
from the true label information but also emulates the behavior of the teacher model.
This preserves the teacher model’s performance while significantly reducing the model’s
size and computational requirements, making it compatible with drone computational
environments without compromising detection accuracy.

3.3.5. Adaptive Optimizer

During the knowledge distillation process, it is required for the student model to learn
from the teacher model, implying that the student model must learn not only the genuine
data labels but also the outputs of the teacher model. Such a learning task is more intricate
compared with conventional supervised learning, presenting challenges for traditional
optimizers like SGD [36] and Adam [37]. To address this, an adaptive optimizer was utilized.
The core concept behind the adaptive optimizer lies in dynamically adjusting the learning
rate of each parameter based on historical gradient information of the model parameters.
This strategy is particularly beneficial in the context of knowledge distillation, as during the
distillation process, there is a necessity for the student model to simultaneously optimize
two objectives: matching the actual labels and the outputs from the teacher model. These
objectives might be conflicting, resulting in high gradient instability during training. By
dynamically adjusting the learning rate, the adaptive optimizer aids in mitigating this
instability, consequently accelerating convergence. The weight update formula for the
adaptive optimizer can be expressed as

θt+1 = θt − η
ĝt√

vt + ε
(17)

where θt represents the parameters at time step t, η is the global learning rate, ĝt is the
moving average of the gradient, vt represents the moving average of the squared gradient,
and ε is a small constant added for numerical stability. In the context of knowledge
distillation, challenges encompass the following:

1. The need for the student model to optimize both objectives, potentially leading to
gradient conflicts and instability.

2. Possible noise in the teacher model’s outputs, introducing added challenges for the
student model.

3. The student model, typically smaller and shallower than the teacher model, might
have insufficient capacity, complicating the learning of intricate tasks.

Mathematically, the update formula for SGD is

θt+1 = θt − ηgt (18)
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where gt represents the gradient at time step t. The update formula for Adam is

θt+1 = θt − η
m̂t√

v̂t + ε
(19)

where m̂t and v̂t are the bias-corrected first- and second-moment estimates of the gradient,
respectively. In comparison to the adaptive optimizer, both SGD and Adam overlook the
gradient’s historical information and instability to varying degrees. In complex scenarios
of knowledge distillation, these traits might lead to slower convergence and to getting
trapped in local optima. On the other hand, the adaptive optimizer, by considering both
the magnitude and direction of the gradient, dynamically adjusts the learning rate, thereby
effectively handling such situations and achieving faster convergence and superior model
performance. To summarize, the primary advantages of the adaptive optimizer over SGD
and Adam include the following:

1. The capability of the adaptive optimizer to dynamically adjust the learning rate of each
parameter aids in alleviating issues stemming from gradient conflicts and instability,
whereas SGD, with its fixed learning rate, might struggle in such circumstances.

2. By considering the gradient’s historical information in its weight updates, the adap-
tive optimizer is more equipped to counter noise and instability in the teacher
model’s outputs.

3. Compared with Adam, the adaptive optimizer boasts greater robustness, as it is not
reliant on the first- and second-moment estimates of the gradient.

3.4. Experimental Metric

In the task of object detection, evaluating the performance of a model is a pivotal step.
Typically, a series of metrics are employed to gauge the efficacy of a model, aiding in a
comprehensive understanding of its performance across various dimensions. Discussed
below are the key metrics selected for this study, that is, Precision, Recall, mAP (Mean
Average Precision), and FPS (Frames Per Second):

1. Precision, a frequently utilized metric in detection tasks, denotes the ratio of true
positive samples to all samples identified as positive by the model. It is mathematically
defined as

Precision =
TP

TP + FP
(20)

where TP represents the number of true positives, which are targets correctly iden-
tified by the model, while FP denotes the number of false positives, which are non-
targets mistakenly identified as targets by the model. High Precision implies fewer
misclassifications by the model.

2. Recall represents the proportion of true targets correctly detected by the model. It is
mathematically expressed as

Recall =
TP

TP + FN
(21)

In this context, FN signifies the number of false negatives, or the real targets missed
by the model. High Recall suggests that the model misses fewer true targets.

3. mAP, a central metric in object detection tasks, is the average of Precision and Recall.
For each category, its AP value is computed, and mAP is subsequently derived by
averaging the AP values across all categories. mAP not only accounts for both the
Precision and Recall of the model but also factors in different IoU (Intersection over
Union) thresholds.

mAP =
1
Q

Q

∑
q=1

AP(q) (22)
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where Q is the total number of categories and AP(q) is the Average Precision of the
qth category.

4. FPS is a metric indicating the real-time capability of the model, denoting the number
of frames that the model can process per second. For tasks like drone target detection
that necessitate rapid response, FPS is crucial.

FPS =
1
T

(23)

where T is the time required to process a single frame.

Each of these evaluation metrics has its unique significance. Precision and Recall
provide insights into the model’s accuracy and completeness in detecting positive samples.
Often, there is a trade-off between Precision and Recall; improving one might reduce the
other. mAP serves as a comprehensive metric, assessing the model’s performance across
categories, and is especially suited for multi-category detection tasks. FPS is vital for gaug-
ing the model’s real-time capabilities. In many practical scenarios, such as autonomous
drone navigation and real-time monitoring, computational efficiency and prompt response
of the model are paramount. Thus, besides detection accuracy, computational efficiency
must also be factored in to ensure timely responses in real-world deployment. In essence,
these metrics offer a holistic and in-depth perspective, enabling a multi-dimensional assess-
ment of model performance. By continually optimizing these metrics, outstanding model
performance can be assured, catering to various practical requirements.

3.5. Experimental Designs

For the experimental design of this study, an 8:2 split was applied to the dataset. Here,
80% of the data were designated for training the model, while the remaining 20% served as
the validation set, employed for evaluating model performance and tuning hyperparame-
ters, ensuring the model’s robust generalization capability in real-world applications.

To evaluate the model comprehensively and discern performance disparities with other
advanced technologies, six models—YOLOv8 [38], SSD [39], EfficientDet [40], DETR [23],
QueryDet [41], and Focus-DETR [24]—were chosen as baselines. YOLOv8 and SSD are
renowned for their stellar speed and accuracy. EfficientDet, owing to its compact design,
is suitable for deployment on embedded devices. DETR, QueryDet, and Focus-DETR
represent the next generation of object detection technologies based on the Transformer
architecture, with DETR showcasing a design approach distinct from traditional CNNs.
QueryDet and Focus-DETR build upon this foundation, presenting novel solutions.

Regarding optimizer selection and considering the characteristics of knowledge distil-
lation, adaptive optimizers were chosen for model training. In comparison to the conven-
tional SGD and Adam, adaptive optimizers exhibit superior performance in a knowledge
distillation setting. Hyperparameter configurations were adjusted based on validation
set performance, initializing the learning rate at 0.001, setting the batch size to 32, and
incorporating a weight decay of 0.0005 to mitigate overfitting.

Additionally, a series of ablation experiments were conducted to validate the efficacy
of various model components. This encompassed removing the super-resolution sampling
module to discern its contribution to model performance, comparing the performance
differences between the adaptive optimizer and SGD/Adam, and the results of training
lightweight models without employing knowledge distillation. Lastly, a comparison was
made between static prediction boxes and dynamic prediction boxes, substantiating that
dynamic prediction boxes can more adeptly adapt to varying pest densities in different
scenarios, contributing to the enhancement of model performance.
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4. Results
4.1. Detection Results

The purpose of the experimental design is to compare the performance of different
object detection models on a specific dataset using key metrics, Precision, Recall, mAP, and
FPS, as benchmarks. The experimental results are displayed in Table 2.

From Table 2, it is evident that the proposed method surpasses all other models across
the four metrics, notably showing a significant advantage in FPS. This suggests that the
introduced model not only possesses superior detection accuracy but also boasts enhanced
real-time performance. The YOLO series, due to its unique “one grid, one detection” design,
demonstrates a significant advantage in speed, yet might compromise some accuracy in
complex scenarios. Conversely, the SSD architecture, while simpler, often lags behind in
terms of Recall and accuracy when compared with other intricate structures, as reflected by
its lower FPS and other metrics. Both DETR and Focus-DETR adopt the novel Transformer
structure for object detection, eschewing traditional convolutional architectures, which
might enhance their accuracy. However, the complexity and computational cost of the
Transformer structure could slightly impede their speed. EfficientDet strives to strike
a balance between speed and accuracy, but the data suggest that it does not achieve
particularly noteworthy results.

Table 2. Performance comparison of different detection models.

Model Precision Recall mAP FPS

YOLOv8 [38] 0.96 0.91 0.94 52
Focus-DETR [24] 0.95 0.90 0.93 31
DETR [23] 0.94 0.90 0.92 38
QueryDet [41] 0.93 0.90 0.91 46
EfficientDet [40] 0.92 0.89 0.91 43
SSD [39] 0.91 0.89 0.90 33
Ours 0.97 0.95 0.95 57

Considering the mathematical characteristics of the models, each possesses its unique
optimization aspects. For instance, YOLOv8 [38] optimizes its loss function to better cap-
ture smaller objects and reduce false detection instances. DETR [23] and Focus-DETR [24]
emphasize leveraging the self-attention mechanism of the Transformer structure, aiming
to detect long-distance dependencies among objects, bolstering the model’s robustness. Ef-
ficientDet [40] attempts to find the optimal balance in terms of model depth, width, and
resolution to achieve the best performance with limited computational resources. Mean-
while, the method proposed in this study merges the advantages of multiple models and
introduces a series of innovations. The model structure is optimized to be more lightweight,
which not only accelerates the model but also reduces the risk of overfitting to some extent.
Regularization terms are added to the loss function, ensuring that the model pays more
attention to hard-to-detect objects during training, enhancing its generalization capabilities.
Furthermore, preprocessing steps are applied to the model input, ensuring better capture of
object features, thereby increasing its accuracy. In conclusion, the superiority of this method
across the four metrics stems from the comprehensive analysis of traditional models and
multifaceted innovations. This not only validates the effectiveness of the proposed technique
but also offers valuable insights for future research.

4.2. Test on Different Hardware Platforms

The purpose of this experimental section is to verify the performance of various
object detection models across multiple hardware platforms. Typically, the speed and
accuracy of object detection models are closely tied to the hardware platform on which they
are deployed. Differences in hardware performance can lead to significant disparities in
model performance. Comparing the performance of models on various platforms is crucial,
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especially for real-world applications such as edge computing or deployment on mobile
devices. The primary metric for this experiment is FPS, as presented in Table 3.

Table 3. FPS comparison of different detection models on different hardware platforms.

Model Smart Phone (Huawei P40) Jetson Nano Raspberry Pi

YOLOv8 [38] 39 52 9
Focus-DETR [24] 8 31 -
DETR [23] 9 38 -
QueryDet [41] 11 46 5
EfficientDet [40] 13 43 7
SSD [39] - 33 -
Ours 27 57 15

From an examination of Table 3, it can be observed that the method proposed in
this study outperforms all other models across the three hardware platforms. This
validates the effectiveness of the lightweighting technique presented in this paper
for real-world applications. Generally, the more complex a model is, the higher the
computational resource requirement is, particularly on devices with limited hardware
resources, like Raspberry Pi or certain smartphones. On such devices, the advantage of
lightweight models becomes particularly pronounced. For instance, YOLOv8 exhibits
impressive performance on the Huawei P40 smartphone but falters on Jetson Nano and
Raspberry Pi. This disparity might be attributed to the complexity and computational
demands of YOLOv8, which may be constrained on these devices. Both Focus-DETR
and DETR underperform on smartphones but show relatively better results on the
Jetson Nano. This could be related to their Transformer-based architecture, which might
not be maximally efficient on certain hardware setups. In contrast, both EfficientDet
and QueryDet display stable performance across platforms, particularly on Jetson Nano.
This stability might align with their design intentions, striving for a balance between
speed and accuracy.

Considering the mathematical characteristics of the models, each model possesses
unique advantages and shortcomings. For example, YOLOv8 may demand more computa-
tional resources to execute its optimized loss function, while Transformer-based models
like DETR and Focus-DETR might require larger memory footprints to manage their self-
attention mechanisms. Concurrently, the optimization of depth, width, and resolution in
EfficientDet allows it to maintain consistent performance across diverse devices. However,
the method detailed in this paper integrates the strengths of various models and introduces
a series of lightweight innovations. By optimizing the model structure, a reduction in the
number of parameters and computational complexity was achieved. This ensures that
the model can run faster not only on devices with ample computational resources but
also on those with limited capacity. Additionally, specific high-computational components
that have minimal impact on performance were selectively reduced, rendering the model
more efficient.

4.3. Test on Other Datasets

The objective of the experimental design in this section is to evaluate the generaliza-
tion and adaptability of the model across diverse datasets. By conducting tests on both
the PlantDoc and Wheat Head datasets, a comprehensive demonstration of the model’s
versatility and adaptability is provided. The experimental outcomes indicate commendable
performance on both datasets, especially on the PlantDoc dataset, where Precision, Recall,
and mAP metrics exhibit exceptional results, as shown in Table 4.
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Table 4. Performance comparison on different open source datasets for our method.

Dataset Precision Recall mAP

PlantDoc [33] 0.93 0.91 0.92
Wheat Head [42] 0.77 0.71 0.74

Firstly, such experimental outcomes substantiate the model’s robust generalization
capabilities. High performance on the PlantDoc dataset reveals the model’s ability to
adeptly adapt to various types of plants and pests. This indirectly affirms that the features
learned during the training phase possess universal applicability. These features likely
encapsulate fundamental and common visual or biological attributes related to plant pests.
Secondly, the favorable performance on two distinct datasets further confirms the model’s
exceptional adaptability. This suggests that the model is not only applicable to specific
datasets or tasks but also performs reliably in new, unseen data environments. From
a mathematical perspective, such generalization performance implies that the model’s
decision boundaries maintain effectiveness across different data distributions. This is
critically important for real-world applications, where the model is exposed to a myriad of
data and environmental conditions. Lastly, these experimental outcomes further solidify
the model’s standing as a reliable and effective tool for plant pest detection, offering strong
support for its future applications across a broader range of crops and pests.

In summary, through testing and validation on various datasets, the model exhibits
outstanding generalization and adaptability. This not only confirms its potential as an
efficient and reliable tool for plant pest detection but also lays a solid foundation for its
broader application in diverse scenarios.

5. Discussion
5.1. Ablation Study on Different Optimizers

The design of the experiments in this section aims to validate the performance of
different optimizers when applied to the proposed method. Optimizers dictate the update
strategy and rate of the model, subsequently affecting the convergence speed and the final
performance, as depicted in Table 5 and Figure 7.

Table 5. Performance comparison of different optimizers and our method.

Optimizer Precision Recall mAP Epochs

SGD [36] 0.91 0.93 0.92 50
Adam [37] 0.93 0.94 0.93 45
AdamW [43] 0.94 0.93 0.93 45
Ours 0.97 0.95 0.95 35

Figure 7. Visualization of gradients generated by different optimizers. (A) Ours; (B) Adam; (C) SGD;
(D) AdamW.

From an inspection of Table 5, it is evident that among all the optimizers, the adaptive
optimizer introduced in this study exhibits superior performance, achieving the highest
Precision, Recall, and mAP. This suggests that in comparison to traditional optimizers,
the proposed method is more apt for this specific object detection task. According to the
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mathematical characteristics of the models, each optimizer possesses its inherent logic
and strategy. The traditional SGD relies on a fixed learning rate, whereas Adam and
AdamW depend on adaptive learning rate adjustments and momentum. However, every
optimizer might encounter various challenges in real-world applications, such as local
minima, saddle points, or gradient vanishing. The method proposed in this study addresses
these challenges with a series of strategies and adjustments, including adaptive learning
rate modifications, momentum correction, and weight decay. Consequently, it can update
the model parameters more effectively, accelerate convergence, and enhance the final
performance of the model. In summary, this experiment highlights the impact of different
optimizers on model performance and provides explanations from both theoretical and
mathematical perspectives. The adaptive optimizer presented in this study, due to its
unique strategies and adjustments, demonstrates the best performance, further validating
the effectiveness and superiority of the proposed method in practical applications.

5.2. Ablation Study on Super-Resolution Module

This section was designed to validate the performance of various super-resolution
strategies with the proposed method, especially considering low-resolution or compressed
images. The results are presented in Table 6.

Table 6. Performance comparison of different super-resolution strategies and our method.

Optimizer Precision Recall mAP

None 0.90 0.88 0.89
SRGAN [27] 0.94 0.92 0.93
Super-resolution module 0.97 0.95 0.95

Upon examination of Table 6, it is evident that the model’s performance is the most
compromised when no super-resolution strategy is employed. This underscores the impor-
tance of high resolution in object detection. SRGAN, a super-resolution approach based
on Generative Adversarial Networks, has previously demonstrated effectiveness across
numerous tasks. In this experiment, SRGAN indeed enhanced the Precision, Recall, and
mAP of the model. Nonetheless, the super-resolution module proposed in this study
outperformed all other strategies, suggesting deeper optimization tailored for this specific
object detection task.

From a mathematical perspective, SRGAN leverages Generative Adversarial Networks
to amplify image details with the primary intent of making the super-resolved image
perceptually closer to the genuine high-resolution counterpart. However, the adversarial
nature of GANs might introduce certain unrealistic details, potentially compromising
the accuracy of object detection. In contrast, the super-resolution module presented in
this study, while addressing perceptual image quality, places a heightened emphasis
on the restoration of authentic details. This is possibly achieved using more intricate
feature extraction and the fusion of multi-scale information, ensuring that the elevation in
resolution does not come at the cost of genuine object detail fidelity. Such findings further
affirm that in practical applications, employing an appropriate super-resolution strategy
is pivotal for enhancing object detection performance on low-resolution or compressed
images. The super-resolution module introduced in this study, with its unique design and
optimization, successfully addresses this challenge.

5.3. Ablation Study on Lightweighting Methods

The primary objective of the experimental design in this chapter is to investigate
the impact of lightweighting techniques on model performance, with a specific focus on
the trade-off between speed (FPS (Frames Per Second)) and model metrics (Precision,
Recall, mAP). This is particularly important for practical applications where lightweight
models are often more suitable for resource-constrained environments such as embedded
or mobile devices.
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As observed from Table 7, the model without lightweighting demonstrates the highest
Precision, Recall, and mAP but performs relatively poorly in terms of FPS, reaching only
33 FPS. This indicates that while the model exhibits high performance, the computational
complexity is also increased, resulting in slower processing speed. However, in real-world
applications, especially those requiring rapid response, FPS is an important metric that
cannot be ignored. When knowledge distillation is employed as a lightweighting method,
the model experiences an increase in FPS to 57, while the drop in Precision, Recall, and
mAP is relatively minor. This suggests that knowledge distillation effectively enhances the
model’s processing speed while maintaining high performance. Knowledge distillation
works by extracting knowledge from a larger, high-performing model (teacher model) to
train a smaller, faster model (student model), enabling the student model to maintain high
performance levels while reducing computational load. Quantization, another lightweight-
ing technique, achieves the FPS value of 52 but experiences a more significant decline in
Precision and mAP. Quantization reduces the bit width of model weights, thereby decreas-
ing the model size and computational complexity. This usually comes at the cost of some
performance sacrifice but significantly improves the processing speed. As shown by the
experimental results, quantization elevates FPS while having a more substantial impact
on model performance. When both knowledge distillation and quantization are combined
(All), the model reaches the highest FPS, 73, but there is a decline in Precision, Recall, and
mAP. This represents a typical trade-off scenario, where the model achieves significant
improvements in processing speed at the expense of some performance loss.

Table 7. Performance comparison of different super-resolution strategies and our method.

Lightweighting Method Precision Recall mAP FPS

None 0.97 0.96 0.97 33
Knowledge distillation 0.97 0.95 0.95 57
Quantization 0.93 0.95 0.94 52
All 0.91 0.92 0.91 73

From a mathematical and algorithmic perspective, lightweighting usually involves
pruning and quantizing model structures and parameters, which alter the model’s mathe-
matical properties and decision boundaries. Therefore, different lightweighting methods
have varying degrees of impact on model performance. For instance, knowledge distil-
lation often involves techniques such as soft labels and temperature scaling, which can
somewhat maintain the complexity of the model’s decision boundary, thus retaining higher
performance levels during the lightweighting process. In contrast, quantization is a more
“rigid” method of pruning and could significantly alter the model’s decision boundaries,
leading to performance degradation.

In summary, this experiment comprehensively explores the influence of different
lightweighting methods on model performance and processing speed. The results not
only reveal the trade-offs between performance and speed for various lightweighting strate-
gies but also provide valuable insights for selecting appropriate lightweighting methods in
practical applications. These findings facilitate the broader deployment of models in resource-
constrained environments, especially in scenarios requiring fast and efficient processing.

5.4. Limitations and Future Works

Despite the superior performance demonstrated in previous sections, certain limita-
tions of the proposed method are recognized. Firstly, even though the super-resolution
module can effectively recover true details, its performance might be compromised on im-
ages with specific low resolution or high noise levels. Super-resolution techniques always
grapple with the trade-off between accuracy and perceptual quality, and under extreme
conditions, they might not consistently achieve optimal restoration results. Moreover,
while the proposed adaptive optimizer exhibited commendable convergence speed and
performance, its superiority might be challenged on certain intricate datasets or model
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architectures. Real-world data often exhibit considerable diversity and complexity, which
could potentially affect the stability and effectiveness of the optimizer. Additionally, this
research primarily focused on object detection tasks. However, the applicability and efficacy
of the method on other tasks, such as image segmentation, facial recognition, or action
detection, remain to be validated.

By addressing these limitations, clear directions for future research emerge. On
one hand, further exploration into the super-resolution module is warranted, especially
regarding how to better balance accuracy and perceptual quality for images under extreme
conditions, ensuring both detailed and authentic image restoration. For the adaptive
optimizer, future efforts could concentrate on enhancing its stability and performance on
a broader and more complex array of datasets. Given the current research limitations,
there is potential for applying the proposed method to other computer vision tasks to
ascertain its universality. Furthermore, integration with other advanced techniques, such
as neural network architecture search or knowledge distillation, might further boost the
effectiveness of the method. Lastly, considering computational resources and efficiency,
future endeavors could investigate how to reduce the computational load and model
parameters while maintaining or even elevating performance. Such advancements would
not only cater to the needs of mobile devices or edge computing but also promote the
practicality and ubiquity of the method.

6. Conclusions

With the widespread application of drone technology in agriculture, ecology, and other
fields, there has been a growing demand for pest detection and identification. In particular,
lightweight pest identification models suitable for deployment on drones hold significant
application value. They can efficiently perform pest detection in real time or nearly in real
time, providing a timely decision-making basis for agricultural pest control. However,
images captured with drones often suffer from challenges like low resolution, compression,
and noise. Ensuring accurate and swift pest identification under these adverse conditions
has been a longstanding technical challenge.

To address the aforementioned problems, a lightweight pest identification model
based on Transformer and super-resolution sampling techniques is proposed in this study.
Initially, the Transformer model, a powerful sequence-to-sequence model, was identified to
be especially apt for capturing various spatial dependencies in images, thereby enhancing
the accuracy of identification. Meanwhile, the super-resolution sampling technique focuses
on addressing issues of low resolution and noisy images, restoring image details and
furnishing subsequent identification processes with clearer and more accurate image data.
Comparisons were made between the proposed method and other traditional methods
in experiments. The results indicated that on various pest image datasets, this approach
demonstrated significant advantages in terms of Precision, Recall, mAP, and FPS, achieving
scores of 0.97, 0.95, 0.95, and 57, respectively. Especially for images affected by low
resolution and noise, the super-resolution module was found capable of effectively restoring
true details, while Transformer ensured high-accuracy pest identification even under such
circumstances. Additionally, an in-depth exploration was conducted on model optimization
in this study, leading to the proposal of an adaptive optimizer. It displayed commendable
convergence and performance on intricate datasets and model structures.

Considering the complexity and diversity of real-world data for future research direc-
tions, further optimization of the super-resolution module could be conducted to handle
even more extreme conditions. Also, in light of computational resources and efficiency,
further lightweighting and optimization of the model could be explored. In summary, the
lightweight pest identification model introduced in this study, based on Transformer and
super-resolution sampling techniques, not only addresses the challenges of low resolution
and noisy images but also offers a high-accuracy and efficient method for pest identifica-
tion, holding significant value and implications for practical applications in pest detection
and identification.
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