
Citation: Taner, A.; Mengstu, M.T.;

Selvi, K.Ç.; Duran, H.; Gür, İ.;
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Abstract: Having the advantages of speed, suitability and high accuracy, computer vision has been
effectively utilized as a non-destructive approach to automatically recognize and classify fruits
and vegetables, to meet the increased demand for food quality-sensing devices. Primarily, this
study focused on classifying apple varieties using machine learning techniques. Firstly, to discern
how different convolutional neural network (CNN) architectures handle different apple varieties,
transfer learning approaches, using popular seven CNN architectures (VGG16, VGG19, InceptionV3,
MobileNet, Xception, ResNet150V2 and DenseNet201), were adopted, taking advantage of the pre-
trained models, and it was found that DenseNet201 had the highest (97.48%) classification accuracy.
Secondly, using the DenseNet201, deep features were extracted and traditional Machine Learning
(ML) models: support vector machine (SVM), multi-layer perceptron (MLP), random forest classifier
(RFC) and K-nearest neighbor (KNN) were trained. It was observed that the classification accuracies
were significantly improved and the best classification performance of 98.28% was obtained using
SVM algorithms. Finally, the effect of dimensionality reduction in classification performance, deep
features, principal component analysis (PCA) and ML models was investigated. MLP achieved an
accuracy of 99.77%, outperforming SVM (99.08%), RFC (99.54%) and KNN (91.63%). Based on the
performance measurement values obtained, our study achieved success in classifying apple varieties.
Further investigation is needed to broaden the scope and usability of this technique, for an increased
number of varieties, by increasing the size of the training data and the number of apple varieties.

Keywords: transfer learning; deep features; principal component analysis; machine learning; apple

1. Introduction

Apples are among the most consumed and produced temperate fruit crops in the
world; in 2022, over 95 million tons of apples were produced [1]. Due to their taste and
nutritional value, there is an ever-increasing demand for apples that requires continuous
production and supply. In this context, the implementation of innovative solutions in the
systems of agricultural production and marketing is much required [2].

Identifying and sorting apples has several limitations because of its subjective nature,
and it is a relatively complex problem due to the impressive number of apple varieties [3].
Human perception can be influenced when assessing the texture, color pattern, smell and
other characteristics of apples. Likewise, manual inspections are highly dependent on the
experience, training and duration of work of the personnel, as well as the environmental
and psychological conditions, which can cause inconsistencies and variations in the results
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or processing time [4,5]. However, automated recognition and classification systems can
play a vital role in reducing labor costs and enhancing the economic efficiency of fruit, right
from their harvest to the market [6]. Having the advantages of speed, suitability and high
accuracy, computer vision has been effectively utilized as a non-destructive approach to
automatically recognize and classify fruits and vegetables to meet the increased demand
for food quality-sensing devices.

In the field of computer vision, image classification is a widely studied topic. In
traditional machine learning, extracting features before training models on these features
is required. Thus, the quality of the extracted features has a significant impact on a
given classifier [7]. Deep learning has gained much popularity in image recognition and
classification tasks of fruits and vegetables, as computing power and algorithms to process
big data are emerging [8]. Because the convolutional neural network (CNN) model serves
to automatically extract and classify features [9], it has been effectively utilized as a non-
destructive approach to automatically classify fruits and vegetables to meet the increased
demand for food quality-sensing devices [10], avoiding the need to manually or separately
extract image features or representations [9].

In studies [11–15], convolutional neural networks (CNNs), which are deep learning-
based, have shown excellent outcomes in a wide range of food and agricultural tasks,
namely grading and sorting, varieties classification and disease detection. In grading
bio-colored apples, a study [16] employed CNN, using multispectral images, to ensure the
quality grading of apples. Likewise, CNN was also used to differentiate mature apples
from immature ones in apple trees [17]. In fruit sorting, CNN models were applied to detect
defective apples [18], while a similar work identified bruised apples in the investigation of
automated sorting, by fusing deep features [19]. A great performance of the suppression
mask R-CNN was reported in the classification of Gala and Blondee apple varieties [20].

Integrating CNNs and a convolution autoencoder, the authors of study [21] classified
26 different fruits, out of which nine classes were apples. In a similar classification problem,
a CNN model was trained utilizing 30 types of leaf images from various growth periods [22].
Recently, the successful application of transfer learning to identify and classify 13 apple
varieties using publicly available image datasets was reported [23].

The application of transfer learning, using models pre-trained on images from the
internet, in diverse tasks such as the classification of crops and fruits, has been increasingly
applicable and effective. As a result, applying a pre-trained network to learn new patterns
with new data is beneficial. Furthermore, it is helpful when there are relatively small data
to train a model. Thus, employing a pre-trained model is a typical solution [24]. This study
firstly aims to test the performance of transfer learning in apple varieties and to investigate
the impact of principal components (PC) of deep features coupled with traditional machine
learning models. To the best of our knowledge, the integration of PC, deep features and
machine learning has not been tested in apple varieties classification. Accordingly, this
study aims to assess how these diverse components can jointly interact to enhance the
accuracy and efficacy of apple variety classification.

The objectives of this study are: (I) to apply the transfer learning approach to develop
an apple varieties classifier using pre-trained popular CNN architectures; (ii) to train
and evaluate machine learning (ML) models using deep features obtained using best-
performing models from the transfer learning approach; and (iii) to assess the effect of
principal component analysis (PCA) on the performance of ML models trained using deep
features.

2. Materials and Methods
2.1. Image Data

Ten apple varieties obtained from the Ministry of Agriculture and Fruit Research
Institute of the Republic of Turkey were used in this study (Figure 1). The images were
captured with a 20-megapixel resolution camera from a uniform distance and light set-up.
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A total of 5808 images were captured from three views. Of these images, 70% were used in
training, 15% in testing and 15% in validation, respectively.
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Figure 1. Activations of the first layer of all models.

2.2. Transfer Learning

Generally, the training of CNNs is performed using large amount of data. Their
deeper and interconnected layers are the reason for their good performance. Nonetheless,
CNNs are often trained on a small dataset, which can simply result in the overfitting of
the networks, leading to poor and unconvincing performances [23]. Likewise, training
deep CNNs contributes to significant weaknesses, namely high processing costs and slow-
running processes [25]. Thus, to solve the aforementioned difficulties, transfer learning is
widely adopted. Transfer learning is a deep learning approach that utilizes the information
acquired from a well-established model to reinstate with a new problem [26]. Because it
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transfers the relevant knowledge from the learned model to the new task, transfer learning
reduces the training time [27].

Thus, in this study, a transfer learning approach was adopted; seven popular architec-
tures (VGG16, VGG19, InceptionV3, MobileNet, Xception, ResNet150V2 and DenseNet201)
were trained using the Keras library in Google Colab, keeping the weights of the convolu-
tional base and modifying only the final output layer, according to the number of classes in
our study. This method utilizes the knowledge gained by these architectures from previ-
ously learned tasks, enhancing the model’s performance on the target task. The description
of each CNN architecture is as follows: VGG16 comprises thirteen convolutional layers and
five Maxpooling layers; and VGG19 has sixteen convolutional layers and five Maxpooling
layers. The VGG networks are typically designed successively [28]. From the Inception
family, the InceptionV3 and Xception networks were adopted, which are characterized
by multiple parallel convolutional operations, known as inception modules [29], with
48 convolutional layers and 71 layers, respectively. MobileNet is known for its depthwise
separable convolution, having 53 layers [30]. From networks characterized by residual
connections, ResNet150V2, with 150 layers [31], and DenseNet201, with dense connectivity
between layers [32], with 201 layers, were used. In all the above models, the convolutional
base was adopted excluding the top layer. According to our task, one hidden layer of
256 neurons with ReLu activation and a final layer of 10 represents the number of the apple
classes or the final model prediction.

To discern how different architectures handle different apple varieties, the activations
of the first layer of each model used have been provided in Figure 1. The activations
represent the availability of specific features in the input data that serve as building blocks
for successive layers to detect more complex features. Every model was trained for the same
training, validation and test proportions. During the training, the hyperparameters were
fixed to 100 batch size, 100 patience and 200 epochs. Early stopping and model checkpoint
callbacks were also adopted to stop the training and save the weights of the best model,
while monitoring the validation loss for a given training argument. This strategy facilitates
the training, as it stops the training before all specified epochs are undertaken when the
validation loss stops to decrease for a considerable amount of time.

2.3. Deep Features

Deep features are a set of high-level representations of input data, such as images
or text, that are extracted from a deep neural network (DNN) such as MobileNet and
DenseNet that is pre-trained on a large dataset. DNN is typically a multi-layered neural
network that learns to identify patterns and features in the input data by successively
transforming it through multiple layers of non-linear functions. The final output of the
DNN, which is often a classification decision, is produced by a classifier that is trained
on the deep features extracted from the input data. Deep features are more robust and
informative than traditional hand-crafted features, as they capture more complex and
nuanced relationships between the input data and the output labels [33].

Deep features are useful in a variety of machine learning tasks, such as image classi-
fication, object detection and natural language processing. In this study, after the trans-
fer learning strategy was implemented, we took the best-performing model, which was
DenseNet201, extracted 1920 deep features and used them to train traditional machine
learning models (Figure 2).
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2.4. Machine Learning Models

To train ML models, the 1920 deep features extracted using the best-performing CNN
architecture, DenseNet201, were used. Four ML models, namely support vector machine
(SVM), random forest classifier (RFC), multi-layer perceptron (MLP) and K-nearest neighbor
(KNN) were trained with 10-fold stratified cross-validation (Skfold), as shown in Figure 3.
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As depicted in Figure 3, the utilization of Skfold becomes vital when dealing with
imbalanced data distributions among classes. In conditions where the frequency of different
classes varies significantly, only K-fold cross-validation may result in unequal representa-
tions of classes across folds. Skfold, however, addresses this case by ensuring that each fold
maintains a proportional representation of the various classes available in the dataset. This
approach is mainly helpful in machine learning task where maintaining the balance of class
distribution is decisive for model training. By stratifying the folds based on class labels,
Skfold improves the robustness of the model evaluation, avoiding biased performance
metrics that could appear from uneven class representation in traditional cross-validation.
This approach promotes a more reliable assessment of the model’s generalization capa-
bilities across diverse class distributions, ultimately contributing to a more accurate and
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unbiased evaluation of the model’s performance. To fine-tune the models, a grid search
was implemented and final models were trained using the best parameters.

2.5. Principal Component Analysis

To investigate the effect of dimensionality reduction in classification performance, all
ML models were also trained with deep features after implementing principal component
analysis (PCA). PCA is a method that takes multi-dimensional data and gives it components
by using the dependencies between the variables representing it in a more manageable and
lower-dimensional form, without losing too much information. The fundamental idea of
PCA is to minimize the dimensionality of a data set that is composed of a large number
of interrelated variables, while retaining the variation present in the data to a feasible
extent [34].

PCA is a linear transformation of data that minimizes the redundancy measured
through covariance and maximizes the information that is measured through variance.
PCA diminishes the number of given variables by reducing the last principal components
that do not significantly contribute to the observed variability [35].

In the analysis, new elements, known as principal components and ranked by their
Eigen values, are created. Principal components (PC) are new variables with two properties:
firstly, each PC is a linear combination of the original variables; and secondly, PCs are
uncorrelated to each other and the redundant information is removed [36].

As a multivariate unsupervised statistical procedure, PCA is widely used as a data
exploratory tool in conditions that require feature selection such as data compression,
image analysis, visualization, pattern recognition, regression and time series prediction. In
our case, using the Python PCA library, we performed a PCA for the 1920 deep features.
After examining the eigenvalues which told us the amount of variance explained by a
single component, 262 features with eigenvalues greater than one were selected to train
SVM, RFC, MLP and KNN models.

2.6. Performance Evaluation

To evaluate the performance of all models’ accuracy, precision, recall, specificity, F1-
score, Cohen’s kappa, Matthews correlation coefficient, area under the receiver operating
characteristic curve (AUC-ROC) the trade-off between true positive rate and false positive
rate, area under the precision–recall curve (AUC-PR) and the trade-off between precision
and recall for different classification thresholds, performance metrics were used in this
study. The equations of all metrics are provided below, where TP: true positive, TN: true
negative, FP: false positive, FN: false negative, Po: relative observed agreement among
raters and Pe: relative observed agreement among raters.

1. Accuracy (Acc) is the ratio of the number of correctly classified samples to the total
number of samples:

Acc =
TP + TN

TP + TN + FP + FN
(1)

2. Precision (Pre) is the proportion of true positives out of total predicted positives, also
known as positive predicted value:

Pre =
TP

TP + FP
(2)

3. Recall (Rec) is the proportion of positive samples classified as true. Recall is referred
to as a true positive rate:

Recall =
TP

TP + FN
(3)
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4. Specificity (Spec) is the proportion of negative samples classified as true. Known as a
true negative rate:

Spec =
TN

TN + FP
(4)

5. F1-Score (FS) is the harmonic mean of recall and precision:

FS = 2· Pre·Recall
Pre + Recall

(5)

6. Cohen’s kappa (K) is a measure of inter-rater agreement that considers the agreement
that would be expected by chance:

K =
Po− Pe
1− Pe

(6)

7. Matthews correlation coefficient (MCC) is the correlation between the predicted and
actual classifications:

MCC =
[(TP·TN)− (FP·FN)]

√
[(TP + FP)(TP + FN)(TN + FP)(TN + FN)]

(7)

3. Results

In this study, three methods were proposed: (i) the adoption of transfer learning using
the popular CNN model; (ii) extracting deep features and training traditional ML models
making use of the best performing CNN model, which was the DenseNet201; (iii) apply-
ing PCA to the deep features and training ML models using the PCs with eigenvalues
greater than one. The performance metrics of each proposed method are presented in
Tables 1–3, respectively.

Table 1. Performance of popular CNN models using Transfer Learning.

Performance Metrics

CNN
Model Acc Pre Rec Spec FS AUC

-ROC
AUC
-PR K MCC

VGG16 91.87 92.449 91.87 99.09 91.85 99.72 97.97 90.95 91.02

VGG19 94.16 94.55 94.16 99.35 94.18 99.76 98.38 93.49 93.54

InceptionV3 92.44 92.74 92.51 99.16 92.45 99.77 98.13 91.59 91.63

MobileNet 96.45 96.61 96.45 99.61 96.44 99.96 99.67 96.05 96.07

DenseNet201 97.48 97.54 97.48 99.72 97.48 99.98 99.86 97.19 97.20

Xception 93.47 93.97 93.47 99.27 93.39 99.79 98.69 92.73 92.80

ResNet152V2 94.84 95.26 94.84 99.42 94.76 99.89 99.17 94.26 94.32

As depicted in Table 1, in the results of performance metrics of the seven pre-trained
CNN models, DenseNet201 outperformed all other models with an accuracy of 97.48%
when classifying 10 apple varieties.

Similarly, the performance of the machine learning models, namely SVM, RFC, MLP
and KNN, which were trained and tested using 1920 features obtained from DenseNet201
CNN (presented in Table 2), showed that SVM obtained an accuracy of 98.28%, outperform-
ing all other models. However, as PCA was applied and features were reduced to 262, MLP
outperformed all models with a classification accuracy of 99.77% (presented in Table 3).
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Table 2. Performance metrics of ML models.

Model
Performance Metrics

Acc Pre Rec Spec FS AUC-ROC AUC-PR K MCC

SVM 98.28 98.32 98.10 97.67 98.18 99.88 98.71 98.08 98.09

RFC 91.86 91.65 91.69 90.14 91.62 99.56 96.60 90.94 90.95

MLP 98.05 97.99 97.95 96.47 97.96 99.96 99.70 97.83 97.83

KNN 89.33 91.59 88.93 98.46 89.04 98.59 95.04 88.13 88.17

Table 3. Performance metrics of ML models trained with PCA.

Model
Performance Metrics

Acc Pre Rec Spec FS AUC-ROC AUC-PR K MCC

SVM 99.08 99.06 99.05 97.70 99.05 99.93 99.43 98.97 98.98

RFC 99.54 99.57 99.55 100 99.99 99.99 99.94 99.49 99.49

MLP 99.77 99.78 99.75 100 99.99 99.99 99.99 99.74 99.75

KNN 91.63 92.35 91.26 98.70 99.70 99.70 97.09 90.68 90.73

The confusion matrices containing the classification results of the test data of each
model trained using 262 PCs are depicted in the figures below.

Applying the SVM model, a few misclassifications were observed in Fuji, Golden
Reinders, Kasel37 and Mondial Gala apple varieties, as shown in Figure 4. The model
scored an excellent classification performance of 99.08%.
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Figure 5 presents the confusion matrix according to the MLP model. Out of the four
ML models, MLP has the highest performance of 99.77%; out of 782 instances of given test
data, only four misclassifications were observed.
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With the highest confusion between Kasel37 and Red Braeburn, the RFC model
performed with an overall classification accuracy of 99.54%, where eight misclassifications
were observed (Figure 6).
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Among the four models, KNN appeared to have the lowest performance, with 90
misclassifications, which is very significant compared to the other three models. A total of
15 misclassifications were also observed between Fuji and Red Braeburn apple varieties,
followed by seven misclassifications between Red Braeburn and Kasel37 varieties; or, out
of the total misclassifications, 22 or 24% were wrongly classified as Red Braeburn, which
shows that a close observation in the features of Red Braeburn variety is needed (Figure 7).
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4. Discussion

A deep learning-based convolutional neural network for apple classification was
presented in a previous study [37]. The model used a network with four layers to classify
unforeseen apple images, and the CNN model was trained and tested using images of
13 apple varieties. At the test phase, the model achieved an accuracy of 90%. In another
study, by proposing an integrated CNN and certainty factor, a model with a dataset con-
taining images of six apple varieties was trained, and the image classification performance
scored an excellent result of 99.78% [38]. When classifying a group of 26 different fruits,
which included nine apple classes, the authors of study [21] also obtained an accuracy of
95.67%, employing CNN and the autoencoder. In study [39], a shallow CNN was employed
to classify six apple varieties; the authors collected and labeled apple images to train a
model along with data augmentation. As the training and model parameter optimization
were performed using the Caffee framework, at the test stage, the model accuracy per-
formance was 92%. A CNN-based deep learning model was developed in study [22] to
classify thirty apple varieties under complex natural environments, which contributed to
the currently available means of apple variety classification; the model’s accuracy was
93.14% using the test set.

Applying the ability of the CNN model to extract features, a method to identify
14 apple varieties was proposed by the authors of study [40]. Compared to transfer learning
techniques, such as ResNet50, VGG16, MobileNet and EfficientNetB0, their approach
attained an improved test accuracy of 99.59%.
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Recently, in the successful application of transfer learning to identifying and classifying
13 apple varieties using publicly available image datasets with accuracies of 96–100%, the
use of different models was reported [23]. The summary of recently related works, including
our proposed model, has been provided in Table 4.

Table 4. Performance comparison of the proposed methods with related works.

Task Model and Accuracy References

Classification of 13 apple varieties CNN, 90% [37]

Classification of 6 apple varieties CNN and certainty factor, 99.78% [38]

Classification of 26 fruits CNN and autoencoder, 95.67% [21]

Classification of 6 apple varieties Shallow CNN, 92% [39]

Classification of 30 apple varieties CNN, 93.14% [22]

Classification of 14 apple varieties Lightweight CNN, 99.59% [40]

Classification of 14 apple varieties CNN, 96.1–100% [23]

Classification of 10 apple varieties Transfer learning, 97.48% Proposed Method 1

Classification of 10 apple varieties Deep features and ML, 98.28% Proposed Method 2

Classification of 10 apple varieties Deep features, PCA and ML, 99.77% Proposed Method 3

In this study, compared to relevant and related works, it can be concluded that the
results of our proposed models are in agreement with the classification accuracy indicating
the relevance of all the techniques, and especially the third method, which is the integration
of deep features, PCA and ML, which performed as excellently as state-of-the-art models
and even outperformed some of them, likely because of the use of PCA.

Additionally, in the research of apple varieties’ classifications, to the best of our
knowledge, the integration of deep features and PCA has not yet been adopted; therefore,
the approach of coupling deep features, PCA and machine learning models in the area of
apple varieties classification is an innovative approach that this study has investigated and
demonstrated. Furthermore, the adoption of Skfold validation is a new addition to the
literature that this investigation has undertaken.

According to the performance metrics (Table 1), DenseNet201 has the highest classi-
fication accuracy (97.48%) among popular CNN models applied in the transfer learning
approach, indicating its potential to be applied in apple varieties classification. The investi-
gation into the integration of deep features and traditional ML models shows the benefits
and advantages of coupling deep features and ML features to have improved classification
accuracy; SVM scored 98.28%, but ultimately, the incorporation of PCA increased the
model’s performance up to 99.77%, as achieved by MLP model. Additionally, observing
other performance metrics, MLP has the highest values—a precision of 99.78%, a recall of
99.75% and an F1 score is 99.76%. Besides, its discrimination power was observed in the
results of AUC-ROC and AUC-PR, which were 99.99% and 99.99%, respectively. Moreover,
Cohen’s Kappa and MCC metrics, which examine the agreement between predicted and
actual classes, are 99.75% and 99.74%, outperforming all the ML models, as shown in
Table 3.

Thus, based on our proposed technique, integrating deep features, PCA and the ML
models MLP and SVM can classify ten apple varieties with excellent performance.

5. Conclusions

In solving agricultural problems such as fruit varieties’ classification and grading, the
application of machine learning has a significant role. As indicated in our work, and also in
other recent and related works, transfer learning is commonly used in classifying different
fruit types, and specifically apple varieties. Our work trained and tested seven popular
CNN architectures from different families, which all of them performed well, with above
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90% classification accuracy. To further and discover a new dimension in apple varieties’
classification, our investigation focused on the application of deep features coupled with
PCA and traditional ML algorithms, for which the Skfold stratified cross-validation was
adopted during the training.

All four models, namely SVM, RFC, MLP and KNN, were tested with separate test data
and achieved classification accuracies of 99.08%, 99.54%, 99.77% and 91.63%, respectively.
The study confirmed the increase in performance by coupling deep features and PCA for
the given image dataset. This study was undertaken on ten apple varieties; however, to
prove the efficiency of the proposed technique, increasing the size of the training data
and increasing the number of apple varieties should be further studied and examined.
Besides, to develop robust and versatile models, we suggest the use of random images,
containing scattered apple images taken in real-time, such as on conveyors and other
production environments. In future investigations, images captured in various acquisition
setups and light conditions that represent actual and complicated environments should be
considered. One of the challenges in apple varieties is the occurrence of variability within
classes, which contributes to confusion and misclassification. Although it is difficult to
provide conclusive reasons based on experiments, the misclassifications indicated in the
results might be due to variability within classes. Hence, future research endeavors should
explore and identify algorithms capable of handling such complexities. Prioritizing the
discovery and implementation of algorithms that are robust to variations within classes will
enhance the model’s ability to accurately discriminate between intricate and closely related
instances, contributing to an improved classification performance in challenging scenarios.
On top of the varieties, the difference or similarities of agricultural products such as fruits
is highly impacted by the stage of ripening. Two different varieties might be highly similar
and highly different at various stages of their ripening, which significantly contribute to
the challenges in the development of sorting, grading or classification models. Therefore,
during data collection, such things need to be addressed and considered. Moreover, apart
from classification models, the use of object detection algorithms, including prominent
ones like YOLO (You Only Look Once), needs to be researched, to further strengthen and
enhance the practical and real-time application of models. Object detection goes beyond
classifying entire images, allowing for the precise identification and localization of multiple
objects within an image.
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