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Abstract: Serine is widely involved in antioxidant synthesis, immune response, and fat metabolism.
However, it remains unclear whether dietary serine supplementation affects fat deposition in the skele-
tal muscles of pigs. Thus, we explored the effects of dietary serine supplementation on growth per-
formance, meat quality, and composition of gut microbes and their metabolites in growing–finishing
pigs. Forty-eight boars weighing approximately 20 kg were fed either a basal diet or a basal diet
supplemented with 0.15% serine. The results showed that dietary serine increased the daily weight
gain of pigs and improved serum antioxidant capacity as indicated by the decreased malondialde-
hyde content and increased glutathione and superoxide dismutase content. Pigs supplemented with
serine had better meat quality, as shown by the lower drip loss and higher IMF content. Furthermore,
dietary serine increased the relative abundance of Streptococcus and Lactobacillus and decreased the
relative abundance of Clostridium_sensu_stricto_1 and Terrisporobacter. Differential microbial metabo-
lites were mostly enriched in metabolic pathways related to lipid synthesis, such as alpha-linolenic
acid metabolism and steroid hormone biosynthesis. Correlation analysis showed that the altered
metabolites were closely related to the intestinal microbiota. In conclusion, our results suggested that
serine serves as a potential additive for improving IMF content in growing–finishing pigs.

Keywords: finishing pig; gut microbe; meat quality; metabolite; serine

1. Introduction

Markets have preferred pig breeds with fast growth rates and have neglected the
importance of meat quality under intensive cultivation conditions for recent decades to
meet the needs of the masses [1–3]. However, with economic development and the increas-
ing focus on health, more attention has been paid to meat quality. Dietary nutrients can
improve meat quality in pigs. For example, adding β-glucan in finishing pigs can increase
intramuscular fat (IMF) content and adjust the ratio of saturated and unsaturated fatty
acids [4]; fermented okara can improve meat color and glutathione peroxidase (GSH-PX)
and total superoxide dismutase (T-SOD) activity, which are beneficial to meat quality [5].
Moreover, certain functional amino acids, including tryptophan, threonine, arginine, and
leucine, improve meat quality [6]. Additionally, meat color and fatty acid composition im-
proved and IMF content increased in growing–finishing pigs supplemented with arginine
and glutamic acid [7].

Serine, also known as β-hydroxyalanine, is a non-essential amino acid belonging
to the neutral aliphatic group containing hydroxyl amino acids. L-serine is mainly used
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as a basic amino acid to form proteins and exists in many feedstuffs. Thus, serine has
been commonly considered as nutritionally non-essential and it has not been applied in
pig production. But in fact, serine participates in various metabolic pathways, including
glutathione, purine, and pyrimidine synthesis [8]. It enhances the host antioxidant abilities
by promoting the synthesis of GSH and folate-dependent NADPH [9]. Notably, several
studies have investigated the application of serine as a feed additive in animal production.
It is suggested that serine has the same growth-promoting effects as those demonstrated
by glycine in broiler chickens [10]. Our previous study showed that the ratio of serine to
glycine affected the IMF content in growing–finishing pigs fed a low-protein diet [11]. It
has been demonstrated that both exogenous and endogenous serine residues inhibit lipid
deposition in the liver [12]. However, whether dietary supplementation with serine alone
affects fat deposition in the skeletal muscle of pigs remains unknown.

The gut microbiota ecosystem is critical for maintaining the proper nutritional, metabolic,
and physiological functions of the pig. Notably, the gut microbiota could affect host lipid
metabolism including lipid intake and deposition. The gut microbial profiles of obese
Shaziling pigs was different from lean Yorkshire pigs [13]. Obese Jinhua pigs had a higher
abundance of archaeal species in association with higher lipid accumulation [14]. Further-
more, transplantation of the microbiota derived from obese Ningxiang pigs could enhance
the accumulation of fat in the skeletal muscle of lean Duroc × Landrace × Yorkshire pigs
through regulating carnitine metabolism [15]. The intestinal microbiota composition has
been reported to mediate the beneficial effects of dietary functional nutrients on meat qual-
ity. For instance, the byproduct of rice distilling improved meat drip loss by influencing
the relative abundance of Erysipelotricchaceae and Porphyromonadaceae in growing–finishing
pigs [16]. We previously found that serine increased the relative abundance of Clostridia
and Firmicutes and the number of operational taxonomic units (OTUs) in mice [17], in-
dicating its effects on microbiota composition. However, whether serine affects meat
quality by modulating intestinal microbiota composition in growing–finishing pigs re-
mains unknown. In this study, we aimed to explore the effects of serine on the growth
performance, meat quality, and serum biochemical parameters of growing–finishing pigs.
Furthermore, we determined the composition of intestinal microbes and their metabolites
to investigate whether microbes were involved in the effects of serine supplementation on
growing–finishing pigs.

2. Materials and Methods
2.1. Experimental Design

In this study, 48 healthy crossbred (Duroc × Landrace × Yorkshire) male pigs with
an average initial body weight (BW) of approximately 20 kg were selected. Pigs were
randomly divided into two groups (six pens per treatment and four pigs per pen) and fed
either a basal diet (CONT) or a basal diet supplemented with 0.15% serine (SER). Serine
was purchased from Zhangjiagang SpecomBiochemical Co., LTD (Suzhou, China). Serine
was used as a feed additive and firstly mixed into the premix and then mixed with the
base diet and stirred well. The animals had ad libitum access to water and feed during
the 17-week experimental period. The initial and final BW and dietary consumption of
each pen were recorded during the experiment. The average daily feed intake (ADFI),
average daily gain (ADG), and feed-to-gain (F/G) ratio were calculated. All nutrients
conformed to the requirements of the National Research Council (NRC) (2012), and the
diet composition and nutrient level are shown in Table 1. Specifically, the control pigs
received diets with 17.51%, 15.57%, and 12.55% protein in the three growth stages, while
the pigs supplemented with serine received diets with 17.66%, 15.72%, and 12.7% protein,
respectively. All pigs in the two groups received diets with the same level of digestible
energy, minerals, and vitamins. The experimental protocol was approved by the Protocol
Management and Review Committee of the Institute of Subtropical Agriculture, Chinese
Academy of Sciences.
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Table 1. Basal diet composition and nutrient level.

Item 20~30 kg 30~60 kg 60~120 kg

Corn, % 65.00 72.30 59.00
Wheat bran, % 6.00 3.00 /

Rice, % / / 20.00
Soybean meal #, % 25.00 19.50 14.00

Soybean oil, % / 1.20 3.00
Limestone, % 1.00 0.80 0.80

calcium hydrogen
phosphate, % 0.80 0.70 0.50

NaCl, % 0.40 0.45 0.30
L-lysine hydrochloride, % 0.30 0.60 0.25

DL-methionine, % 0.10 0.10 /
L-threonine, % 0.20 0.20 /

L-tryptophan, % / 0.03 /
Zeolite powder 0.08 / 1.03

Premix *, % 1.12 1.12 1.12
Total, % 100 100 100

Calculated nutrient level
DE (MJ/kg) 13.86 14.28 14.03

CP, % 17.51 15.57 12.55
Ca, % 0.64 0.53 0.46

Total P, % 0.50 0.43 0.38
P, % 0.23 0.20 0.17

Lysine, % 1.03 1.12 0.71
Methionine, % 0.36 0.33 0.2
Threonine, % 0.73 0.65 0.37

Tryptophan, % 0.15 0.15 0.10

CP = crude protein; DE = digestible energy. # Soybean meal contains 43% protein. * Provided for per kilogram of
diet: vitamin A, 13,000 IU; vitamin D3, 4000 IU; vitamin E, 32 IU; vitamin K, 4 mg; vitamin B1, 4 mg; vitamin B2,
10 mg; vitamin B6, 6 mg; vitamin B12, 6 mg; vitamin B3, 48 mg; vitamin B5, 24 mg; folic acid, 2 mg; biotin, 0.2 mg;
FeSO4, 180 mg; CuSO4, 12 mg; ZnSO4, 140 mg; MnSO4, 8 mg; Ca(IO3)2, 0.4 mg; Na2SeO3, 0.2 mg.

2.2. Sample Collection

Fresh fecal samples were collected from all the pigs the day before slaughter. All fecal
samples were transferred into sterile microcentrifuge tubes immediately and placed in
liquid nitrogen, then stored at −80 ◦C for further microbial and metabolomic analysis [18].
Blood samples were collected through anterior vena cava puncture before slaughter and
centrifuged at 3000× g at 4 ◦C for 10 min to collect serum samples. All serum samples were
stored at −80 ◦C until analysis. Longissimus dorsi muscle samples between the 6th and 7th
rib were obtained and then stored at 4 ◦C for 24 h for meat quality analysis.

2.3. Biochemical Parameters

The serum samples were thawed from −80 ◦C, and centrifuged at 3000× g at 4 ◦C
for 10 min after thawing completely. The supernatant was taken to detect antioxidant
parameters. Commercially available kits (Jiancheng, Nanjing, China) were used to measure
malondialdehyde (MDA) content, and kits (BYabscience, Nanjing, China) were used to
detect glutathione (GSH) and superoxide dismutase (SOD) content.

2.4. Meat Quality

Initial and ultimate pH values (pH45 min and pH24 h) post mortem were measured and
meat color was evaluated on a freshly cut surface of longissimus dorsi using a colorimeter
with the parameters L* (brightness), a* (redness), and b* (yellowness) [19]. Longissimus dorsi
samples were weighed before and after 24 h storage at 4 ◦C (W1 and W2, respectively), and
drip loss was calculated as ((W1 − W2)/W1) [20]. Intramuscular fat was defined as the
ratio of crude fat weight to the longissimus dorsi muscle weight. Crude fat was extracted
using Soxhlet extraction.
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2.5. Fecal Microbiota Profiling

Fecal DNA was obtained using a Magnetic Soil and Stool DNA Kit (TianGen, Shanghai,
China; Catalog #: DP712). Specific primers were selected for the V3–V4 region of 16S rRNA.
Phusion High-Fidelity PCR Master Mix with GC Buffer was provided by New England
Biolabs Company (Ipswich, MA, USA) for PCR. Amplicons were purified using a Universal
DNA Purification Kit (TianGen, Shanghai, China, Catalog #: DP214) and sequenced on
Illumina Novaseq6000 platforms. Fastp (version 0.23.1) software was used for quality
filtering to acquire high-quality clean tags. Microbial sequences were categorized into
OTUs based on 97% identity. Species annotations for each representative sequence were
used to obtain species messages, including microbial relative abundance and distribution,
evenness messages, and mutual or specific OTUs. Intestinal microbial alpha and beta
diversity were analyzed using QIIME2 software (Version QIIME2-202006). Moreover,
microbial community differences were directly displayed in dimensionality reduction
maps, including principal coordinate analysis (PCoA) through multi-sequence comparison
of OTUs.

2.6. Determination of Fecal Metabolites

Mixtures of fecal samples and an 80% methanol solution were centrifuged to obtain the
supernatant, and metabolites were analyzed using liquid chromatography–mass spectrom-
etry (LC-MS). Metabolites were detected using a high-resolution series mass spectrometer
and annotated after matching the exact molecular mass data (m/z) based on the online
Human Metabolome Database (HMDB). Differential metabolites were detected using Stu-
dent’s t-test. Multiple tests were implemented using false discovery rate (FDR) to assess
significantly altered metabolites in accordance with the p-value. The acquired data were
imported for SIMCA Statistical Analysis and principal component analysis (PCA). We
performed a correlation analysis based on the Pearson correlation coefficient after obtaining
microbial and metabolomic data to explore the relative extent of metabolite and microbial
species diversity.

2.7. Statistical Analysis

All data were analyzed using one-way ANOVA followed by Duncan’s multiple
comparison test. Data statistics software (SPSS 25.0) was used, and a probability value
(p-value) < 0.05 was set as a statistically significant difference.

3. Results
3.1. Growth Performance and Serum Biochemical Parameters

The growth performance of the pigs is shown in Table 2. Compared to control pigs, pigs
in the SER group had higher final BW and ADFI and lower F/G; however, the differences
were not significant. ADG was significantly higher in pigs in the SER group than in those
in the CONT group. As shown in Table 3, serine significantly decreased the MDA content
and increased the GSH and SOD contents in the serum of growing–finishing pigs (p < 0.05).

Table 2. Growth performance of growing–finishing pigs.

CONT SER

Initial BW, kg 20.95 ± 0.76 20.35 ± 0.38
Final BW, kg 116.8 ± 7.1 125.2 ± 4.9

ADG, kg 0.806 ± 0.059 a 0.871 ± 0.026 b

ADFI, kg 2.25 ± 0.16 2.29 ± 0.04
F/G 2.80 ± 0.05 2.63 ± 0.10

a,b indicates a significant difference between the treatment groups (p < 0.05), n = 6. Data are shown as mean ± SD.
CONT, pigs fed a basal diet. SER, pigs fed a basal diet supplemented with 0.15% serine. Initial BW, initial body
weight; final BW, final body weight; ADG, average daily gain; ADFI, average daily feed intake; F/G, the ratio of
feed to gain.
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Table 3. Serum biochemical parameters of growing–finishing pigs.

CONT SER

GSH, ng/mL 129.4 ± 17.4 a 196.9 ± 19.1 b

SOD, ng/mL 197.6 ± 29.3 a 286.4 ± 17.2 b

MDA, nmol/mL 4.06 ± 0.40 a 1.91 ± 0.24 b

a,b indicates a significant difference between the treatment groups (p < 0.05), n = 6. Data are shown as mean ± SD.
CONT, pigs fed a basal diet. SER, pigs fed a basal diet supplemented with 0.15% serine. GSH, glutathione; SOD,
superoxide dismutase; MDA, malondialdehyde.

3.2. Meat Quality

As shown in Table 4, we did not observe significant differences in meat color (L, a,
and b), pH45 min, or pH24 h value (p > 0.05) between the treatment groups. However, drip
loss was significantly lower (p < 0.05) and IMF content was significantly higher (p < 0.05) in
pigs supplemented with 0.15% serine than in the control pigs.

Table 4. Meat quality traits of the growing–finishing pigs.

CONT SER

Color
L 45.23 ± 1.56 44.11 ± 1.28
a 13.86 ± 0.33 14.48 ± 0.48
b 5.40 ± 0.57 5.08 ± 0.46

pH45 min 6.60 ± 0.09 6.42 ± 0.11
pH24 h 5.60 ± 0.07 5.53 ± 0.07

Drip loss 3.58 ± 0.50 a 2.24 ± 0.33 b

Intramuscular fat 2.26 ± 0.18 a 2.94 ± 0.17 b

a,b indicates a significant difference between the treatment groups (p < 0.05), n = 6. Data are shown as mean ± SD.
CONT, pigs fed a basal diet. SER, pigs fed a basal diet supplemented with 0.15% serine.

3.3. Fecal Microbiota Composition

The fecal microbiota composition was compared using a 16S rDNA phylogenetic
approach. The Venn diagram indicated that pigs in the CONT group had 1827 unique
OTUs, whereas pigs in the SER group had 2062 unique OTUs and 1489 universal OTUs
(Figure 1A). Fecal microbial α-diversity had no significant difference between different
groups, as indicated using Chao1 index (Figure 1B). The major microbes at the class level
included Clostridia, Bacilli, Bacteroidia, Gammaproteobacteria, and Spirochaetia, and
serine increased the relative abundance of Bacilli and Bacteroidia and decreased the rela-
tive abundance of Clostridia (Figure 1C). The major microbes at the genus level included
Streptococcus, Clostridium_sensu_stricto_1, Lactobacillus, and Terrisporobacter. Serine supple-
mentation increased the relative abundance of Streptococcus and Lactobacillus, and decreased
the relative abundance of Clostridium_sensu_stricto_1 and Terrisporobacter (Figure 1D).

As indicated by the results of the weighted UniFrac t-test and PCoA (Figure 2A) based
on the Jaccard distance matrix (Figure 2B), the beta diversity was distinctively different
between pigs in the CONT and SER groups. We then filtered out the significantly different
microbes at the genus and species levels using a statistical t-test. The results showed
that at the genus level, the relative abundances of Lactobacillus, Prevotellaceae_UCG-001,
and Phascolarctobacterium were significantly increased, whereas the relative abundances
of Clostridium_sensu_stricto-1, Terrisporobacter, Eubacterium_coprostanollgenes group, Listeria,
Candidatus_Soleaferrea, and UCG-009 were significantly decreased by serine supplementa-
tion (Figure 2C). At the species level, the relative abundance of Clostridium butyricum was
significantly decreased, and that of Lactobacillus delbrueckii was significantly increased by
serine supplementation (Figure 2D).
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weighted Unifrac t-test (B). * p < 0.05. Different microbes between groups at genus (C) and species
(D) level, analyzed by t-test. CONT, pigs fed a basal diet. SER, pigs fed a basal diet supplemented
with 0.15% serine.
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3.4. Fecal Metabolites

Untargeted metabolomics was used to explore differences in fecal metabolite composi-
tion. The data were processed using partial least squares discriminant analysis (PLS-DA),
visually demonstrating an obvious discrepancy between pigs in the CONT and SER groups
(Figure 3A,B). The threshold was constructed as VIP > 1.0, fold change (FC) > 1.2, or
FC < 0.833 and p < 0.05 to obtain the differentially expressed metabolites (Figure 3C,D). For
the positive ion, significant differences were detected in 24 metabolites, with 20 metabolites
increased and 4 metabolites decreased. For the negative ion, remarkable differences were
observed in 13 metabolites, with 10 increased and 3 decreased.
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KEGG pathway annotation and enrichment analysis revealed the pathways affected
by serine supplementation. As shown in the KEGG enrichment map, apparent differ-
ences were observed between the CONT and SER groups (Figure 3E,F). In the positive
ion mode, differential metabolites were mainly enriched in riboflavin metabolism; lysine
degradation; oxidative phosphorylation; glycine, serine, and threonine metabolism; glu-
tathione metabolism; amino acid biosynthesis; arginine biosynthesis; and alpha-linolenic
acid metabolism. In the negative ion mode, differential metabolism was mainly enriched in
tryptophan metabolism; glycine, serine, and threonine metabolism; steroid hormone biosyn-
thesis; pantothenate and CoA biosynthesis; alanine, aspartate, and glutamate metabolism;
histidine metabolism; arginine biosynthesis; cysteine and methionine metabolism; and
aminoacyl-tRNA biosynthesis.

3.5. Correlation between Microbiota and Metabolites

Pearson’s correlation analysis was performed to explore the correlation between the
top five differentially expressed fecal microbes and the top ten differentially expressed
fecal metabolites between the CONT and SER groups. The correlation Sankey diagram
analysis clearly indicated a relationship between the intestinal microbiota and metabo-
lites (Figure 4A,B). As shown in Figure 4C, there was a significant positive correlation
between Clostridium_sensu_stricto_1 and its metabolites (in the positive ion mode) includ-
ing N8-Acetylspermidine, limonin, 6-phenyl-1,2,3,4-tetrahydro-2,5-benzodiazocin-1-one,
7-Methylxanthine, L-Ergothioneine, and spermidine (p < 0.05). As shown in Figure 4D,
there was a significant positive correlation between Anaerorhabdus_furcosa_group and
metabolites (in the negative ion mode) including16-Hydroxyestrone, 5-Methoxyindole-3-
Carbaldehyde, Ethylmalonic acid, and L-aspartic acid (p < 0.05). Clostridium_sensu_stricto_1
and UCG-009 were also positively correlated with certain differential metabolites, including
6-Hydroxyestrone and 3-Isopropylmalic acid, respectively (p < 0.05). Phascolarctobacterium
and Lactobacillus were negatively correlated with the differential metabolites, as shown in
Figure 4C,D (p < 0.05).
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4. Discussion

Serine is beneficial for anti-inflammatory action and antioxidation and can influence
the composition of intestinal microbes, lipid metabolism, and protection of the intestinal
mucosa. In this study, 0.15% serine was added to the diet of finishing pigs to explore its
beneficial effects. Serine increased growth performance; promoted meat quality, character-
ized by higher IMF content and less drip loss; enhanced serum antioxidant capability; and
altered the composition of intestinal microbes and metabolites in growing–finishing pigs.
Correlation analysis indicated a significant correlation between Clostridium_sensu_stricto_1
and Lactobacillus and certain lipid metabolites. These results indicated that serine might
increase growth performance and meat quality by influencing intestinal microbes and their
metabolism in growing–finishing pigs.

Recently, increasing attention has been paid to meat quality because of economic
development and the increasing focus on health. Meat quality is commonly determined by
marbling scores, IMF, pH values, color scores, moisture content, and drip loss. Among these
characteristics, IMF and drip loss are two critical indices for evaluating meat quality. We
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previously found that pigs had higher IMF content when a suitable ratio of serine to glycine
was maintained in their diet [11]. In this study, dietary supplementation with serine alone
increased IMF content, further suggesting that serine may positively affect IMF deposition.
Previous studies have demonstrated the role of serine in lipid metabolism [21], and serine
deficiency increases fat deposition in the liver [12]. Serine participates critically in one-
carbon metabolism and promotes NADPH synthesis, which is involved in the regulation of
lipid metabolism [22]. We previously found that serine activates mTOR signaling, which
promotes lipogenesis [23].

Increased antioxidant capability can improve the integrity of the cell membrane, which
helps cells hold water [24]. Serine can significantly enhance antioxidant capability by acting
as an indirect precursor of GSH to promote its synthesis [25]. In this study, we further
confirmed that serine supplementation increased serum GSH content in growing–finishing
pigs. Moreover, the content of other antioxidant enzymes, such as SOD, also increased, and
the content of MDA, a biomarker of oxidative stress [26], decreased, illustrating that pigs
supplemented with serine had better antioxidative capability. These pigs also exhibited
lower meat drip loss. Thus, serine may decrease drip loss via its strong ability to maintain
the oxidative balance.

Gut microbes harbored in the gastrointestinal tract have been demonstrated to regu-
late host lipid metabolism in the intestine and other organs. A previous study screened
the correlation between gut microbial profiles and carcass lean yield in a large number
of Duroc pigs and found that those pigs with higher abundance of Prevotella copri had
higher lipid percentages and more metabolic features prone to obesity [27]. Additionally,
another study isolated a strain of Lactobacillus reuteri from obese Ningxiang pigs and found
that this strain could promote the accumulation of fatty acid in the skeletal muscle of
pigs [15]. It is suggested that gut microbes affect lipid metabolism mainly through their
metabolites. The supernatant from a Desulfovibrio species culture medium was proved
to enhance fat intake and deposition in intestinal epithelia cells [28]. L-carnitine and its
derivatives, which could be affected by the Ningxiang pig-derived microbiota, was re-
ported to increase fatty acid content in the skeletal muscle of pigs [15]. Indeed, a variety of
dynamic microbiota exist in the enteric canal and are mainly associated with meat quality
by regulating lipid metabolism [15]. A previous study showed that serine alters the alpha
and beta diversity of gut microbes [17]. Similarly, in this study, serine supplementation
altered the beta diversity of the intestinal microbiota in growing–finishing pigs, which
indicated that serine could modulate the composition of gut microbes. Moreover, our re-
sults showed that Streptococcus was the predominant bacterial genus in growing–finishing
pigs. The relative abundances of Lactobacillus and Streptococcus increased, whereas the
relative abundances of Terrisporobacter and Clostridium_sensu_stricto_1 were decreased in
the intestines of growing–finishing pigs supplemented with serine. Notably, the relative
abundances of Lactobacillus and Prevotellaceae UCG-009, which are positively correlated
with IMF content [29], were increased by dietary supplementation with serine. Therefore,
the alteration of gut microbes caused by serine supplementation may also be one of the
reasons for the increased IMF content.

Significant differences were observed in the metabolites among pigs in different
groups according to the metabolomic results. The metabolites that differed between the two
groups were mainly lipids and lipid-like molecules, including acetyl-carnitine, ethylmalonic
acid, nonanoic acid, organic acids, and derivatives, including N8-acetylspermidine and
L-aspartic acid. Among these differential metabolites, acetylcarnitine can promote fat syn-
thesis by providing acetyl groups to several substances, including acetyl-CoA [15]. Ethyl-
malonic acid participates in fatty acid synthesis by acting as a cofactor for ethylmalonyl-CoA
decarboxylase [30]. The level of l-aspartic acid, which is increased by serine supplemen-
tation, positively correlates with the IMF content [31,32]. Moreover, the differentially
expressed metabolites were mostly enriched in metabolic pathways related to lipid biosyn-
thesis, including alpha-linolenic acid metabolism, tryptophan metabolism [33,34], and
steroid hormone biosynthesis. It is not only intestinal microbes that affect IMF content but
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also their metabolites [35]. Thus, enhanced metabolite content and metabolic pathways
associated with lipid metabolism may be other factors promoting IMF accumulation in
pigs supplemented with serine. Importantly, the correlation analysis between microbes
and metabolites indicated that the alteration of metabolites might be related to changes
in the intestinal microbiota, as microbes, including Anaerorhabdus_furcosa_group, Clostrid-
ium_sensu stricto_1, Lactobacillus, Phascolarctobacterium, and UCG-009, were significantly
altered, and most of them were strongly linked with metabolites associated with lipid
metabolism. Nevertheless, further studies are needed to explore whether serine directly or
indirectly influences meat quality by modulating the intestinal composition of microbes
and their metabolites.

Although we found that dietary serine increased IMF content in the longissimus dorsi
muscle and affected microbiota composition and its metabolites, we did not provide direct
evidence that these altered compositions of the microbiota and metabolites mainly con-
tributed to the higher IMF content in the growing–finishing pigs. This is the limitation of
this study. Many studies have reported the beneficial effects of gut microbes on meat quality
in pigs. For example, short-chain fatty acids produced by gut microbial fermentation can
directly affect the expression of genes related to lipid metabolism, and indirectly act as
signaling molecules to regulate the accumulation of IMF [36]. Intestinal microorganisms
could also regulate the expression of the gene encoding lipoprotein lipase by modulat-
ing the expression of angiopoietin-like 4, thus promoting the storage of triglycerides in
adipocytes, which contributes to the increase in IMF content [37,38]. Additionally, the gut
microbiota could inhibit the expression of adenosine monophosphate-activated protein
kinase and promote the expression of fatty acid synthase, thereby improving fat storage
in skeletal muscle. However, none of these studies explored the indispensable role of the
gut microbiota in the accumulation of IMF or elucidated the related mechanism. Therefore,
future studies should focus on whether dietary serine could still enhance IMF content
in the longissimus dorsi muscle of antibiotic-treated and germ-free pigs, to elucidate the
critical role of gut microbes that mediate the beneficial effects of serine on lipid deposition
in skeletal muscle. Moreover, since gut bacteria cannot penetrate the gut barrier and reach
skeletal muscle in healthy pigs, alterations in related metabolites in serum and skeletal
muscle need to be determined to explore whether certain metabolites are responsible for
the alteration of lipid metabolism in muscles. Additionally, a previous study showed that
gut microbes could alter the intestinal expression of miRNAs as well as bacteria-derived
microvesicles [39,40], which might reach the skeletal muscle via circulation and affect the
expression of their target genes related to lipid accumulation.

5. Conclusions

Our results suggested that a diet supplemented with serine significantly improved
growth performance and serum antioxidant ability of growing–finishing pigs. Importantly,
dietary serine could partly improve meat quality, characterized by higher IMF content and
lower drip loss. Furthermore, dietary serine improved the composition of microbiota and
metabolites in the growing–finishing pigs. All these results indicated that serine could be
used as an alternative promising additive for the feed of growing–finishing pigs.
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