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Abstract: The effect of phosphorus (P) deficiency on phosphatases activities in N2-fixing 

legumes has been widely studied in hydroponic culture. However, the response of acid 

phosphatase (APase) and phytase in rhizosphere, nodules and seeds of Phaseolus vulgaris 

to low soil’s P-availability is not yet fully understood. In this study, six genotypes of  

N2-fixing P. vulgaris were grown under contrasting soil P-availabilities; i.e., low  

(4.3 mg P kg−1) and sufficient (16.7 mg P kg−1) in the Haouz region of Morocco. At 

flowering and maturity stages, plants were harvested and analyzed for their phosphatases 

activities, growth and P content. Results show that, low P decreased nodulation, growth, P 

uptake and N accumulation in all the genotypes, but to a greater extent in the sensitive 

OPEN ACCESS



Agriculture 2012, 2 
 

140

recombinant inbreed line 147. In addition, while seed P content was slightly reduced under 

low P soil; a higher P was noticed in the Flamingo and Contender large seeded-beans (6.15 

to 7.11 mg g−1). In these latter genotypes, high APase and phytase activities in seeds and 

nodules were associated with a significant decline in rhizosphere’s available P. APase 

activity was mainly stimulated in nodules, whereas phytase activity was highly induced in 

seeds (77%). In conclusion, the variations of APase and phytase activities in nodules and 

seeds depend on genotype and can greatly influence the internal utilization of P, which 

might result in low P soil tolerance in N2-fixing legumes. 

Keywords: acid phosphatases; nodules; phytase; low P soil; Phaseolus vulgaris; seeds  

 

1. Introduction 

Legumes are the most important source of proteins for direct human consumption with common 

bean (Phaseolus vulgaris) comprising 50% of the grain legumes consumed worldwide [1,2]. These 

leguminous crops are commonly considered efficient restorative agents for soil fertility. However, 

several environmental factors, such as acid soil conditions, salinity, low soil nitrogen (N) or 

phosphorus (P) levels are important constraints worldwide for leguminous crops and particularly for 

common bean production in most farms where this crop is grown [2]. The soil P deficiency is one of 

the most significant abiotic factors, along with N, limiting crop productivity. Overall, it is reported that 

40% of crop production in the world’s arable land is limited by P availability [3], and sub-optimal 

levels of P can result in 5 to 15% yield losses [4].  

The symbiotic association between common bean roots and rhizobia bacteria leads to formation of 

root nodules, where symbiotic nitrogen fixation (SNF) takes place. Estimates for field grown legumes 

revealed that up to 80% of the plant nitrogen demand is met by N2 fixation in these species [5]. 

However, under limiting P conditions, legumes may lose the distinct advantage of an unlimited source 

of symbiotic N2, decreases in N2 fixation leading to decreases in plant growth and nodulation [6]. 

However, the mechanism of P limitation’s effect on the N2 fixation process is not fully  

understood [3,7]. Under limited conditions of P, the optimum symbiotic interaction between the host 

plant and rhizobia would depend on efficient allocation and use of available P [8]. Improving P 

nutrition to legumes under P-deficient conditions has generally involved two major mechanisms: (i) 

increasing P acquisition (root morphology, root exudation and P uptake mechanisms); and (ii) 

enhancing P utilization by internal mechanisms associated with conservable use of absorbed P at the 

cellular level [3,9].  

Some enzymes secreted by plant roots, such as phosphatases, are relatively non- specific enzymes 

that can hydrolyze soil P mono-esters releasing Pi and thus improving plant P acquisition [10]. Several 

types of phosphatases, including phytase are actually known and are normally present in soils where 

they originate from both micro-organisms and plant roots [11,12]. A strong relationship between 

phytase activity and depletion of soil organic P has been shown and a large variation was found in 

phytase activity of different plant rhizosphere [13], including common bean cultivars adapting their 

strongly impaired nodulation to P deficiency by increasing their nodule phosphatases activities to 
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maintain relatively high P concentrations within nodules [14]. The ability of acid phosphatases and 

phytase activities to hydrolyze a variety of organic P is an alternative way to improve P acquisition 

from the soil for its subsequent utilization in plant growth [10]. The aim of this study is to compare 

several common bean genotypes including two recombinant inbred lines (RIL) for some physiological 

responses, as well as plant P nutrition and acid phosphatases activities from two contrasting soils in the 

Moroccan Haouz semi arid region.  

2. Results 

2.1. Growth and Nodulation 

A significant decrease in growth was found for shoots, roots and nodules under low P soil as 

compared to sufficient P soil (Figure 1). Shoot growth decreased significantly (P < 0.001) under low P 

soil for all of the tested common bean genotypes, though, particularly for RIL 115, RIL 147 and Cs, 

strong decreases of 61, 70 and 58%, respectively, were recorded (Figure 1a). Moreover, under low P 

soil conditions, root biomass of the two last genotypes decreased significantly (P < 0.01) by 60 and 

65%, respectively (Figure 1b). In contrast, the genotypes Fl, Ct and Br did not show any significant 

reduction of root biomass regardless of the soil P level.  

Figure 1. Shoot (a); root (b) and nodule (c) biomass of six common bean genotypes grown 

under sufficient phosphorus (P) (empty bar) versus low P (filled bar) soil. Data are means 

± se of eighteen replicates harvested at flowering stage. 
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Nodulation was suppressed in the low P soil and varied widely among genotypes, with the nodule 

biomass of the RIL 115, RIL 147, Br and Ct exhibiting the greatest reduction (P < 0.01) of 65, 58, 53 

and 41%, respectively (Figure 1c). However, at both soil P levels, nodule biomass of the genotypes Fl 

and Cs did not show any significant difference.  

2.2. Soil Available P  

Overall, Olsen P in the rhizospheric soil of all the tested genotypes was significantly higher  

(P < 0.001) in sufficient P than in low P soils (Figure 2a). In the sufficient P soil, Fl, Ct and Br reached 

the highest P values ranging between 107 and 113 mg P kg−1 soil whereas the rhizospheric soil of 

Concesa exhibited the lowest value of Olsen P. At low P soil, Olsen P was decreased as much as 67% 

in the rhizospheric soil of Fl, RIL 147, Ct, Br and Cs, whereas it was only decreased by 5.6% in 

RIL 115. Moreover, results showed that Olsen P was almost two folds higher in the rhizospheric soil 

than in the bulk soil (Figure 2b). Considering both P levels of soil, Olsen P varied from 36 to  

89 mg P kg−1 soil in the rhizospheric soil and from 16 to 54 mg P kg−1 soil in the bulk soil. 

Figure 2. Olsen P in the rhizospheric (a) and bulk (b) soil of six common bean genotypes 

grown under sufficient P (empty bar) versus low P (filled bar) soil. Data are means ± se of 

six replicates harvested at flowering stage. 

 

2.3. Acid Phosphatase and Phytase Activities in Rhizospheric Soils 

The APase activity in the rhizospheric soil significantly (P < 0.01) increased for RIL 115 (43%) in 

the low P than in sufficient P soil (Figure 3a). However, Cs had the highest APase activity in all soils 

studied. The remaining genotypes did not show any significant variation of APase activity regardless 

of the soil conditions.  

In low P soil, although phytase activity decreased in the rhizospheric soil of Ct, Fl and Cs, 

differences were not significant (Figure 3b). However, the RIL 115 exhibited the highest rhizosphere 

phytase activity under both soil P levels.  
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Figure 3. Enzyme activities of APase (a) and phytase (b) in rhizospheric soil of six 

common bean genotypes grown under sufficient P (empty bar) versus low P (filled bar) 

soil. Data are means ± se of six replicates harvested at flowering stage. 

 

2.4. Acid Phosphatase and Phytase Activities in Nodules and Seeds  

Although nodule APase activity decreased in low P soil for RILs L115 and L147, differences were 

not significant (Figure 4a). By contrast, this parameter significantly increased (P < 0.01) for Ct, and 

particularly for Fl, APase activity was the highest at 240 mU mg−1 protein. In addition, while the 

cotyledon APase activity significantly increased (P < 0.01) by 44 and 70% for RIL 115 and Ct in low 

P soil respectively (Figure 4b), this enzyme activity did not show any significant difference in 

cotyledons of the remaining genotypes.  

Figure 4. APase and phytase activities in nodules (a and c) and cotyledons (b and d) of 

six common bean genotypes grown under sufficient P (empty bar) versus low P (filled bar) 

soil. Data are means ± se of six replicates harvested at flowering stage. 
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In low P soil, nodule phytase activity significantly increased (P < 0.001) by 38% only in RIL 115 

(Figure 4c). Meanwhile, phytase activity significantly increased (P < 0.001) in cotyledons of Fl  

(9.8 mU mg−1 protein), Ct (14.2 mU mg−1 protein) and Br (11.5 mU mg−1 protein). 

2.5. Phosphorus and Phytate Distribution in Nodules and Seeds  

Phosphorus and phytate contents in both nodules and seeds showed significant differences 

depending upon soil conditions, the genotypes and the P soil by genotype interaction effect (Table 1). 

The P content in nodules significantly increased in low P soil exclusively for RIL 115, whereas it 

declined for the remaining genotypes with a significant decrease (P < 0.001) for Fl only (33%). 

Similarly, the P content in seeds significantly decreased (P < 0.001) in low P soil for RIL 115 and  

Br only. 

Table 1. Phosphorus (P) and phytate (Phy) contents in nodules and seeds of six common 

bean genotypes grown under sufficient P (S1) versus low P (S2) soil. Data are means ± se of 

six replicates. 

Genotypes 
Nodule P (mg g−1) Seed P (mg g−1) Nodule Phy (mg g−1) Seed Phy (mg g−1) 

S1 S2 S1 S2 S1 S2 S1 S2

L115 4.95 ± 0.5e 7.8 ± 0.9a–d 9.5 ± 0.64a 5.9 ± 0.25ef 4.8 ± 0.1cd 5.9 ± 0.6bc 6.2 ± 0.2ab 4.9 ± 0.1c–f

Fl 9.3 ± 0.1a–c 5.96 ± 1.3de 6.2 ± 0.3d–f 6.3 ± 0.3d–f 6.3 ± 0.16b 4.42 ± 0.3d 5.7 ± 0.3a–d 4.7 ± 0.2ef

L147 9.6 ± 0.3ab 7.8 ± 0.2a–d 8.2 ± 0.6b 7.24 ± 0.3ab 6 ± 0.6bc 5.9 ± 0.3bc 5.8 ± 0.2a–c 4.9 ± 0.2c–f

Ct 10.45 ± 0.55a 9.2 ± 0.27a–c 7.1 ± 0.2cd 7.1 ± 0.3cd 9.3 ± 0.4a 6.4 ± 0.7b 6.2 ± 0.3ab 4.5 ± 0.3ef

Br 6.23 ± 1.4c–e 5.91 ± 0.53de 7.1 ± 0.2c–e 5.51 ± 0.4f 5.7 ± 0.2b–d 4.8 ± 0.3cd 6.6 ± 0.3a 5.4 ± 0.3b–e

Cs 6.4 ± 1.1b–e 5.96 ± 1.3de 5.96 ± 0.2ef 5.35 ± 0.3f 6 ± 0.3bc 5.4 ± 0.3b–d 4.2 ± 0.1f 4.9 ± 0.3d–f

Mean values followed by the same letter are not significantly different at P < 0.01. 

The nodule phytate content was significantly (P < 0.001) higher for Fl and Ct than for the 

remaining genotypes grown in the sufficient P soil. However, this parameter significantly decreased in 

low P soil. In addition, in low P soil, a large decrease was observed in seed phytate content for all 

genotypes except for RIL 147 and Cs.  

2.6. P Uptake, Use Efficiency and Absorption Efficiency by Root  

In sufficient P soil, the RIL 115 exhibited the highest shoot P content (136 mg P plant−1). However, 

in low P soil, a significant reduction (P < 0.01) of this parameter was observed for RIL 115 (75%), 

L147 (79%) and Ct (50%) (Figure 5a) with the lowest value (13 and 20.9 mg P plant−1) recorded for 

RIL 147 and Br. Overall, under sufficient P soil, P use efficiency (PUE) was almost twice as high as 

that under low P soil (Figure 5b). Although PUE declined for all the genotypes, decreases were 

significant (P < 0.01) only for RIL 147 and Cs.  
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Figure 5. Shoot P content (a); P use efficiency (PUE) (b) and P absorption efficiency by 

root (RPAE) (c) of six common bean genotypes grown under sufficient P (empty bar) 

versus low P (filled bar) soil. Data are means ± se of six replicates harvested at  

flowering stage. 

 

The P absorption efficiency by root (RPAE) was high for Ct (122 mg P g−1 root biomass), Fl  

(112 mg P g−1 root biomass) and RIL 115 (109 mg P g−1 root biomass) in high P soil (Figure 5c). 

However, this parameter significantly reduced (P < 0.001) in RIL 115 (55%) and Ct (45%) under low 

P soil conditions, whereas RPAE was not different for the remaining genotypes exhibiting a similar 

tendency as the soil P level. 

2.7. Relationship between Nodulation, Shoot Growth, P and N Contents  

Considering the two soil P levels, shoot biomass was positively correlated with both P and N 

contents of the shoot (Figure 6a,b). Likewise, a positive correlation was observed between P and N 

contents of shoot, though, to a more extent in high P soil (r2 = 0.75) as compared to low P soil  

(r2 = 0.36) (Figure 6c). Additionally, shoot biomass (Figure 6d) and shoot N content (Figure 6e) were 

positively correlated with nodule biomass particularly in high P soil (r2 = 0.77) for the former one and 
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in low P soil for the latest one (r2 = 0.65). Nevertheless, nodule biomass and plant P content were the 

less correlated regardless of the soil P level (Figure 6f).  

Figure 6. Interactive influence of P, N and nodulation on shoot growth of six common 

bean genotypes grown under sufficient P (empty square) versus low P (filled square) soil. 

Data are means ± se of six replicates harvested at flowering stage. 

 

3. Discussion 

The effect of low P conditions on N2-dependent growth, acid phosphatases and P partitioning of 

nodulated common bean have shown several genotypic variations among the tested common bean 

symbioses. The increases in low P soil of APase and phytase activities both in nodules and seeds 
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(Figure 4) were accompanied with an increase in their P content (Figure 5a). Moreover, preferential 

allocation of APase in nodules and phytase in seeds, most particularly, in the large seeded genotypes Fl 

and Ct (Figure 4 and Table 1) was accompanied with an increase in RPAE (Figure 5c). Such a 

relationship suggests that P translocation into seeds could be highly associated with both P absorption 

and utilization by common bean plants as attested by the positive correlation found between P uptake 

and plants growth (Figure 6b) but also to the variations of rhizospheric APase and phytase activities 

that were associated with significant decline of Olsen P in low P soil (Figure 2a). Accordingly, 

previous findings have described that efficiency in use of P may vary with the source of P, legume 

species and soil characteristics such as with rhizophere acidification and higher APases activities [15]. 

Furthermore, the high Olsen P in the rhizospheric than in the bulk soils of the tested bean genotypes 

may be attributed to composite (plant, nodule and rhizosphere microbe) phosphatases activities that 

should correspond with P stress. Several studies have suggested that high APases in the rhizosphere, 

compared to the bulk soil, can induce significant depletion of organic P forms in the rhizosphere [16]. 

Furthermore, increase of the APase, phytase and phosphoenol pyruvate phosphatase activities in 

nodules may constitute an adaptive mechanism for N2-fixing legumes to tolerate P deficiency [14,17,18].  

These variations in rhizospheric soil could be a sink of variation in APase and phytase activities of 

all plant parts such as nodules and particularly seeds in which phosphatases activities could contribute 

to influence the internal P mobilization in the whole plant. These genotypic variations of seed 

parameters could be due to the efficiency in acquisition of P from the rhizosphere, PUE (Figure 5b,c) 

as well as the internal mobilization of P in all parts of plant. Such variations could be explained mainly 

by the diversity of the common bean genotypes that is highly influenced by the environmental 

conditions as it is reported to be a major source of variation among feed stuff [19]. Also, organic 

compounds secreted by plant roots would stimulate microbial activity in the rhizosphere, which might 

also influence the P availability [20]. In addition, the high level of P in nodules and seeds may 

constitute an adaptive mechanism for P deficiency tolerance since high nodule P content induces an 

increase in nodule conductance to the O2 diffusion [18,21] which is described as the main regulator for 

N2 fixation [22]. Our findings agree with many studies reporting that a large amount of plant P  

was essentially used in seed development of common beans [23] and nodules are a strong P sink in  

N2-fixing legumes [22].  

Under low P soil conditions, the reduced growth and nodulation (Figure 1) emphasized with 

significant variations in N content, PUE and RPAE that had approximately the same trend of variation 

regardless of the genotypes and soils. As reported in hydroaeroponic culture under P deficiency [20], 

the positive correlation (r2 = 0.65) between nodule biomass and shoot N content (Figure 6e) denotes a 

synergetic effect between these parameters for N2 fixation in low P under field conditions. This result 

may reflect a tight regulation that keeps the growth of nodule mass compatible with growth in the plant 

shoot [24] and the relationship between P uptake (up to r2 = 0.78) and growth. These variations are 

tightly linked to higher P content and APase in seeds which can affect plant performance under low P 

soil as shown in large seeded-bean genotypes Fl and Ct. Seeds with large size and high P can 

contribute to a high P efficiency, and therefore, should be considered in evaluation of genotypes for P 

efficiency [23]. Also, Tong et al. [25] demonstrated that shoot P content correlated tightly with PUE 

and could be used as an important index for assessing P efficiency of soybean under low P red soil. 

Hence, this is in agreement with the positive correlations relating shoot biomass, N and P contents 
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(Figure 6a,b) which showed also a positive correlation between P and N contents of the shoot  

(r2 = 0.75) more particularly in sufficient P soil. According to these results, the genotypes Fl, RIL 115, 

and Ct may be classified as the most tolerant genotypes in comparison to RIL 147 being the most 

sensitive one due to its severe responses to low P soil conditions. Furthermore, these former genotypes 

had high APase and phytase activities, high P uptake, better RPAE and also high nodule and seed P 

contents. They may absorb P efficiently and produce more biomass under P-deficient conditions as 

previously described for wheat [26] and maize inbred lines [27].  

4. Experimental Section 

4.1. Plant Material and Field Conditions 

Six common bean (Phaseolus vulgaris L.) genotypes RIL115, RIL147, Flamingo (Fl), Bronco (Br), 

Contender (Ct) and Concesa (Cs) were used in the present study. The RILs 115 and 147 have been 

characterized, under glass house conditions, as P-efficient and P-inefficient genotypes, respectively [28]. 

Fl and Br were selected to their tolerance to salinity and high nodulation, respectively. Ct is an early 

common bean variety which tolerates cold, high temperatures and Bean Common Mosaic Virus. 

Whereas Cs variety is frequently cultivated in Morocco fields, known to be resistant to rust and 

providing green bean with high quality. Seeds were grown in two small farmer’s fields in a semi arid 

zone of Haouz area at the region of Marrakesh (sub-centre of Morocco). Field trials were conducted in 

late April and harvested in late June during two successive years (2009 and 2010). The Experiment 

sites are at an altitude of 466 m above mean sea level. Climate is semiarid with mean annual 

temperature across the sites ranged between 25 and 38 °C, and mean annual rainfall ranged between 

250 and 300 mm with maximum rainfall in the period between November and February. All genotypes 

were grown in adjacent subplots in the same field, and each genotype (subplot) was grown into 2 m 

long row with four replicates. Plants were 0.2 m spaced within the adjacent 0.5 m spaced rows. The 

experimental design was a split plot with three repetitions. The plants were irrigated once a week using 

a gravity irrigation system, the trial’s management was the same as applied locally and plants were 

grown under SNF without fertilizers application.  

4.2. Soils Analyses  

Physicochemical properties of the two soils were different (Table 2) and presented, among several 

variables, two available P levels; low (4.3 mg P kg−1) and sufficient (16.7 mg P kg−1). The dried soil 

samples were passed through a 2 mm sieve. Soil pH was measured after shaking a subsample of dry 

soil in distilled water for 4 h at a soil: water ratio of 1 versus 5. The soil available P (Olsen P) to plants 

was determined after extraction in 0.5 M NaHCO3 [29]. Total P was determined after igniting air  

dried soil samples at 550 °C for 4 h and dissolving the ashed samples in concentrated HCl. Available 

and total P were analyzed by the molybdate blue method by reading the absorbance at 820 nm after 

color development at 100 °C for 10 min [30]. Total organic C content was estimated by oxidation  

with potassium dichromate and sulfuric acid and total organic N content was estimated by the  

Kjeldahl method.  
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Table 2. Chemical and physical properties of the soils used in the study. 

Characteristics S1 S2

Clay (%) 18.93 17.32 
Sand (%) 49.86 66.22 
Silt (%) 33.75 15.75 
pH 8.2 8.09 
Organic matter (%) 1.61 1.39 
CaCO3 total (%) 15 16.3 
CaCO3 active (%) 21 33 
Ptotal (g Kg−1) 1.6 0.54 
Polsen (g Kg−1) 0.0167 0.0043 
Nitrogen (g Kg−1) 1.21 1.09 
K+ (g Kg−1) 0.29 0.149 

4.3. Harvest and Measurement of Plant, Nodule and Yield Components 

At late flowering (R7) stage, plants were sampled from the two inner rows of each subplot and 

separated to shoots and nodulated roots. Roots and nodules were carefully separated from rhizospheric 

soil, washed through a sieve and then the nodules were detached. This allows to retrieve as maximum 

as possible nodules and roots biomass from the detached rhizospheric soil. Shoots, roots and nodules 

were dried at 70 °C for 3 days to determine their dry weights and thereafter dry samples were ground 

to enable determination of P, N and Phytate contents.  

4.4. APase and Phytase Activities Assays in Rhizosphere Soils 

The nodulated roots were dug to 20 cm depth and the adhered soil layers (~2 mm) were collected 

and designated as rhizosphere soil. All the soil samples were first sieved (<2 mm) and immediately 

stored at 4 °C until further analyses for activities of APase and phytase and soil bicarbonate-extractable Pi. 

Soil APase activity was determined using pNPP as an orthophosphate monoester analogue  

substrate [31]. Briefly, 125 mg of each soil sample was placed in a 1.5 mL Eppendorf flask, 500 µL of 

0.2 M sodium acetate buffer pH 5.6 and 125 µL of 10 mM pNPP, were added and the flask was 

swirled for a few seconds. After 30 min of incubation at 30 °C, 125 µL of 0.5 M CaCl2 and 500 µL of 

1M NaOH were added, and swirled the flask to stop the reaction. The soil suspension was centrifuged 

for 10 min at 5000 g to avoid the interference of possible precipitates and absorbance was measured at 

405 nm against the reagent blank and p-nitrophenol content determined by reference to a standard curve.  

Phytase activity in the soil samples was assayed by measuring the Pi hydrolysed from sodium 

phytate in 0.2 M sodium acetate buffer (pH 5.6) incubated at 37 °C for 90 min. 125 mg of each soil 

sample were put in a 1.5 mL Eppendorf flask and added with 500 µL of 0.2 M sodium acetate buffer 

pH 5.6 and 125 µL of 10 mM sodium phytate prepared in the same buffer and swirled for a few 

seconds to mix the contents. After 90 min of incubation at 37 °C, the soil suspension was centrifuged 

for 15 min at 5000 g and the reaction was stopped by the addition of 500 µL 10% TCA and 125 µL  

0.5 mM CaCl2 to 650 µL of the supernatant. Soil APase and phytase activities were calculated as mU 

per mg protein, where 1 unit (U) is defined as the activity that hydrolyses 1 µmol of pNPP or releases 
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1 μmol Pi per min, respectively. The protein concentrations were determined by Bradford method 

using the bovine serum albumin as a standard. 

4.5. APase and Phytase Activities Assays in Nodules and Seeds 

100 mg fresh weight of nodules (3–5 mm diameter) of each plant was carefully detached at late 

flowering stage and immediately frozen at −20 °C whereas seed samples were 24 h waterlogged and 

separated to cotyledon and embryonic axis. Each sample of nodule and cotyledon was ground; APase 

and phytase were extracted and assayed accordingly to the method of [14]. Enzymes activities were 

expressed as indicated for the soil enzymes activities.  

4.6. Determination of P, N, Phytate and Statistical Analyses  

Shoots, nodules and seeds P contents were determined using the molybdate blue method [30]. The 

ashed dried subsamples at 550 °C were dissolved in 3 mL of concentrated HCl and absorbance was 

measured at 820 nm. For shoot N determination, 0.5 g of subsamples were used and analyzed by the 

Kjeldahl method. P use efficiency (PUE) defined as the ratio of plant biomass: plant P content was 

determined accordingly to Ozturk et al. [32]. The P absorption efficiency by root (RPAE), which 

reflects the capacity of roots to absorb P from soil, was calculated as the ratio of plant P content: root 

dry weight [33]. 

Phytate in seeds and nodules was extracted by 0.2 M HCl and measured accordingly to a 

colorimetric method in which the wade reagent (1 mL, 0.03% FeCl3, 6H2O and 0.3% sulfosalicylic 

acid in distilled water) was added into the extract [34]. After vortexing the mixture, absorbance of the 

supernatant was measured at 500 nm against a standard curve that was established with solutions of 

phytic acid dodecasodium salt from corn (P-8810, Sigma). 

Data were statistically analyzed by ANOVA (Statistica software) and subsequent comparison of 

means was performed using a post hoc LSD test. The growth values were means of eighteen replicates 

per soil per genotype. Values of shoot P and N contents; nodules and seeds parameters were means of 

six individual replicates per plant per genotype.  

5. Conclusions  

We conclude that Phaseolus vulgaris-rhizobia symbiosis exhibited different levels of adaptability 

under soil conditions of a semi arid region of Haouz, Morocco, which is mainly affected by low P 

availability. Improvement of nodulated legumes P nutrition is related to the influx of available P from 

rhizospheric soil to the roots and, therefore, its allocation into the nodules and seeds. Variation of 

nodules and seeds APase and phytase activities could highly affect the internal utilization of P. 

Interestingly; the increase of P in the large seeded genotypes may be due to a higher phytase activity in 

rhizospheric soil and seeds at least in high P soil. Furthermore, besides the role that acid phosphatases 

play within nodule for N2 fixation process, it is still not fully understood how these enzyme activities 

could affect the allocation of P into the shoot and seeds. 

 



Agriculture 2012, 2 
 

151

Acknowledgements 

This work was financially supported by a Moroccan ministerial fellowship (2009-2011) of CNRST 

and partly by the Moroccan-Tunisian bilateral cooperation (26/MT/08).  

References 

1. Broughton, W.J.; Hernander, G.; Blair, B.; Beebe, S.; Gepts, P.; Vanderleyden, J. Beans 

(Phaseolus spp.)–model food legumes. Plant Soil 2003, 252, 55–128. 

2. Graham, P.H.; Vance, C.P. Legumes: Importance and constraints to greater use. Plant Physiol. 

2003, 3, 872–877. 

3. Vance, C.P. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of 

declining renewable resources. Plant Physiol. 2001, 127, 390–397. 

4. Shenoy, V.V.; Kalagudi, G.M. Enhancing plant phosphorus use efficiency for sustainable 

cropping. Biotechnol. Adv. 2005, 23, 501–513. 

5. Larue, T.A.; Patterson, R. How much nitrogen do legumes fix? Adv. Agron. 1981, 34, 15–38. 

6. Hartwig, U.A.; Nosberger, J. What triggers the regulation of nitrogenase activity in forage legume 

nodules after defoliation? Plant Soil 1994, 161, 109–114. 

7. Hellsten, A.; Huss-Danell, K. Interaction effects on nitrogen and phosphorus on nodulation in red 

clover (Trifolium patens L.). Acta Agric. Scand. 2001, 50, 135–142. 

8. Al-Niemi, T.S.; Kahn, M.L.; Mc Dermott, T.R. P metabolism in the bean Rhizobium tropici 

symbiosis. Plant Physiol. 1997, 113, 1233–1242. 

9. Raghothama, K.G. Phosphate acquisition. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 

665–693. 

10. Duff, S.M.G.; Sarath, G.; Plaxton, W.C. The role of acid phosphatases in plant phosphorus 

metabolism. Physiol. Plant. 1994, 90, 791–800. 

11. Richardson, A.E.; Hadobas, P.A.; Hayes, J.E. Extracellular secretion of Aspergillus phytase from 

Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J. 2001, 25, 641–649. 

12. Tarafdar, J.C.; Yadav, R.S.; Niwas, R.J. Relative efficiency of fungal intra- and extracellular 

phosphatases and phytase. Plant Nutr. Soil Sci. 2002, 165, 17–19.  

13. Yadav, B.K.; Tarafdar, J.C. Phytase activity in the rhizosphere of crops, trees and grasses under 

arid environment. J. Arid Environ. 2004, 58, 285–293. 

14. Araújo, A.P.; Plassard, C.; Drevon, J.J. Phosphatase and phytase activities in nodules of common 

bean genotypes at different levels of phosphorus supply. Plant Soil 2008, 312, 129–138. 

15. Li, L.; Tang, C.; rengel, Z.; Zhang, F. Chickpea facilitates phosphorus uptake by intercropped 

wheat by an organic phosphorus source. Plant Soil 2003, 248, 297–303. 

16. Radersma, S.; Grierson, P.F. Phosphorus mobilization in agroforestry: Organic anions, 

phosphatase activity and phosphorus fractions in the rhizosphere. Plant Soil 2004, 259, 209–219. 



Agriculture 2012, 2 
 

152

17. Kouas, S.; Alkama, N.; Abdelly, C.; Drevon, J.J. Proton release by nodulated roots varies among 

common bean genotypes (Phaseolus vulgaris) under phosphorus deficiency. Plant Nutr. Soil Sci. 

2008, 171, 242–248. 

18. Bargaz, A.; Ghoulam, C.; Amenc, L.; Lazali, M.; Faghire, M.; Abadie, J.; Drevon, J.-J. A 

phosphoenol pyruvate phosphatase gene transcript is induced in the root nodule cortex of 

Phaseolus vulgaris under P deficiency. J. Exp. Bot. 2012, in press. 

19. Li, Y.-F.; Luo, A.-C.; Wei, X.-H.; Yao, X.-G. Changes in phosphorus fractions, pH and 

phosphatase activity in rhizosphere of two rice genotypes. Pedosphere 2008, 18, 785–794. 

20. Bowen, G.D.; Rovira, A.D. The rhizosphere and its management to improve plant growth.  

Adv. Agron. 1999, 66, 1–102. 

21. Bargaz, A.; Ghoulam, C.; Faghire, M.; Aslan Attar, H.; Drevon, J.J. The nodule conductance to 

the O2 diffusion increases with high phosphorus content in the Phaseolus vulgaris-rhizobia 

symbiosis. Symbiosis 2011, 53, 157–164. 

22. Schulze, J.; Drevon, J.J. P-deficiency increases the O2 uptake per N2 reduced in alfalfa. J. Exp. 

Bot. 2005, 56, 1779–1784. 

23. Yan, X.; Lynch, J.P.; Beebe, S.E. Genetic variation for phosphorus efficiency of common bean in 

contrasting soil types: II. Yield response. Crop Sci. 1995, 35, 1094–1099. 

24. Rotaru, V.; Sinclair, T.R. Interactive influence of phosphorus and iron on nitrogen fixation by 

soybean. Environ. Exp. Bot. 2009, 66, 94–99. 

25. Tong, X.J.; Lu, Y.G.; Yan, X. Studies on the characteristics of phosphorus efficiency of native 

soybean (Glycine Max L. Merr.) germplasm: Differences in characteristics of phosphorus 

efficiency of shoot and root among soybean genotypes and correlation analysis. Chin. J. Oil Crop 

Sci. 2000, 22, 48–53. 

26. Ortiz-Monasterio, R.J.I.; Sayre, K.D.; Rajaram, S.; Mc Mahon, M. Genetic progress in wheat 

yield and nitrogen use efficiency under four nitrogen rates. Crop Sci. 1997, 37, 898–904. 

27. Zhang, J.H.; Zhang, J.Y.; Yang, X.H.; Jin, H.A. Study on genetic relationship of main maize 

inbred lines in Yunnan by SSR markers. J. Maize Sci. 2007, 15, 30–35. 

28. Drevon, J.J.; Alkama, N.; Araujo, A.; Beebe, B.; Aslan Attar, H.; Benoit, J.; Lopez, A.;  

Martinez-Romero, E.; Rodino, P.; Tajini, F.; Zaman-Allah, M. Nodular diagnosis for ecological 

engineering of the symbiotic nitrogen fixation with legumes. Proc. Environ. Sci. 2010, 9, 40–46.  

29. Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soil 

by Extraction with Sodium Bicarbonate; Circular 939; USDA: Washington, DC, USA, 1954; p. 19. 

30. Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in 

natural waters. Acta Anal. Chim. 1962, 27, 31–36.  

31. Tabatabai, M.A. Soil enzymes. In Methods of Soil Analysis, Part 2, Microbiological and 

Biochemical Properties; Soil Science Society of America: Madison, WI, USA, 1994; pp. 775–833. 

32. Ozturk, L.; Eker, S.; Bulent, T.; Cakmak, I. Variation in P efficiency among 73 bread and durum 

wheat genotypes grown in a P-deficient calcareous soil. Plant Soil 2005, 269, 69–80. 

33. Pan, X.-W.; Li, W.-B.; Zhang, Q.-Y.; Li, Y.-H.; Liu, M.-S. Assessment on phosphorus efficiency 

characteristics of soybean genotypes in phosphorus-deficient Soils. Agric. Sci. 2008, 7, 958–969. 



Agriculture 2012, 2 
 

153

34. Vaintraub, I.A.; Lapteva, N.A. Colorimetric determination of phytate in unpurified extracts of 

seeds and the products of their processing. Ann. Biochem. 1988, 175, 227–230. 

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


