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Abstract: There has been an unprecedented demand for inexpensive plant-derived protein 

hydrolysates in recent years, owing to their potential nutritional applications. This review 

examines existing evidence regarding protein hydrolysates from agricultural crops such as 

wheat, soy, rapeseed, sunflower and barley. The bioactivity of these protein hydrolysates, 

including antioxidant and anti-inflammatory capabilities are discussed. In addition to 

evidence regarding their potential to enhance human nutrition, the effect of the 

hydrolysates on the techno-functional properties of foods will be reviewed.  
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1. Introduction 

Humans require a protein intake sufficient to maintain the body nitrogen balance and allow for 

desirable rates of deposition during growth and pregnancy. Ingestion of protein amounts greater than 

requirements results in the excess being metabolised and excreted. Conversely, in the case of 

inadequate dietary protein intake, the body utilizes its own proteins as a source of nitrogen; therefore a 

regular and sufficient intake is essential. Protein performs a number of key functions in the body 

including the building and repair of tissues, cell signalling and the provision of energy (4 kcal/g 

protein). Proteins also perform enzymatic and structural functions.  

Protein hydrolysates have been defined as “mixtures of polypeptides, oligopeptides and amino acids 

that are manufactured from protein sources using partial hydrolysis” [1]. There has been growing 
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interest in these preparations over the last two decades, with novel bioactive peptides continually being 

discovered, as it has been shown that short-chain peptides from hydrolyzed proteins have a higher 

nutritive value and may be utilized more efficiently than an equivalent mixture of free amino acids [2]. 

Milk-based products are the source of the greatest number of bioactive peptides isolated to date. Other 

sources include meat, eggs and fish, in addition to plant sources such as soy and wheat [3]. Figure 1 

illustrates the effect of bioactive peptides on major body systems. It has emerged that protein 

hydrolysates have many uses in human nutrition; ingredients in energy drinks, weight-control and 

sports nutrition products [4], sources of nutrition for elderly and immuno-compromised  

patients [5]. Clinical applications have also been suggested, including treatment of Phenylketonuria 

(PKU), liver disease, Crohn’s disease and ulcerative colitis [6]. Other functions of plant-derived 

protein hydrolysates have been discussed in detail elsewhere [7]. These include use as natural 

herbicides, particularly corn gluten meal and soy and wheat hydrolysates [8] and as replacements for 

materials of bovine origin in fermentation media, to reduce risk of Bovine Spongiform Encephalopathy 

(BSE) contamination [9].  

In recent years there has been an unprecedented demand by both consumers and industry, for 

inexpensive plant-derived proteins and bioactive peptides for human consumption. Additionally, 

alternative uses for co-products of the plant processing industry are highly sought. Such co-products 

include brewers’ spent grain (BSG), wheat bran and okara (a soybean by-product of tofu production), 

which are excellent sources of both protein and fibre [10,11].  

The present review focuses on the bioactivity of protein hydrolysates from a range of agricultural 

crops, and their potential for inclusion into functional foods.  

Figure 1. Physiological effects of food derived bioactive proteins on major body systems. 

 

Nervous system 
Opioid agonist 

Opioid antagonist 

Immune system 
Anti-microbial 

Immunomodulatory 
Cytomodulatory 

Cardiovascular system 
Anti-hypertensive 

Anti-oxidative 
Anti-thrombotic 

Anti-hyperlipidemic 

Gastrointestinal system 
Mineral binding 
Anti-appetizing 
Anti-microbial 

Health 
effects of 
bioactive 
peptides 



Agriculture 2013, 3 114 
 

2. Preparation of Protein Hydrolysates 

2.1. Protein Hydrolysis 

Hydrolysis of proteins involves the cleavage of peptide bonds to give peptides of varying sizes and 

amino acid composition. There are a number of types of hydrolysis; enzymatic, acid or alkali 

hydrolysis. Chemical hydrolysis is difficult to control and reduces the nutritional quality of  

products [12], destroying L-form amino acids and producing toxic substances such as  

lysino-alanine [13]. Enzymatic hydrolysis works without destructing amino acids and by avoiding the 

extreme temperatures and pH levels required for chemical hydrolysis, the nutritional properties of the 

protein hydrolysates remain largely unaffected [12]. Production of protein hydrolysates in the food 

industry involves the use of digestive proteolytic enzymes from animals including chymotrypsin, 

trypsin and pepsin, or food grade enzymes obtained from plants and microorganisms which are 

regarded safe for human nutrition. Following protein hydrolysis, fractions can be categorised 

according to two characteristics. The first category consists of fractions with a high amino acid 

content. The second category consists of bioactive peptides with an amino acid sequence which is 

inactive in the intact protein molecule but becomes active in the hydrolysate following exposure to 

digestive and/or proteolytic enzymes [1]. It is worthy to note that the process of manufacturing protein 

hydrolysates has essentially remained the same since its emergence several decades ago and is still in 

its infancy [14]. Co-operation between manufacturers and end-users is necessary to develop optimum 

hydrolysates for specific functions [14].  

2.2. Post-Hydrolysis Treatment 

Following hydrolysis, the “crude hydrolysates” may undergo further processing. Commonly used 

post-hydrolysis processes include heat inactivation, ultrafiltration, hydrolysis by exoproteases and 

treatment with specific enzymes. Table 1 details the main post-hydrolysis processes and the function 

of each of these processes. Control of the molecular size of protein hydrolysates is an essential step in 

the development of protein hydrolysates for dietary use. Removal of high molecular weight proteins 

and peptides is primarily carried out using ultrafiltration. Protein hydrolysates can have a bitter taste 

and the elimination or reduction of this bitterness is essential to make the hydrolysates acceptable to 

consumers. The bitterness of protein hydrolysates is attribuatable to their hydrophobic amino acid 

content [1] and the release of these amino acids by exoproteases can reduce bitterness [15].  

Post-hydrolysis processes can also be used to produce hydrolysates for the treatment of clinical 

conditions. For example, the use of phenylalanine ammonia lyase enzyme can reduce the 

phenylalanine content in protein hydrolysates, producing a hydrolysate suitable for patients with 

phenylketonuria, a disorder of phenylalanine metabolism [6].  
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Table 1. The main processes used following hydrolysis of protein (post-hydrolysis processes). 

Process Function 

Heat inactivation Inactivation of proteolytic enzymes 

Ultrafiltration 
Removal of high molecular weight proteins 

and peptides 
Use of specific enzymes Reduce content of specific amino acids 

Hydrolysis by exoproteases Hydrolysis, reduction of bitterness 
Activated carbon Reduction of bitterness 

Absorption chromatography Reduce content of aromatic amino acids 

3. Bioactivity of Protein Hydrolysates 

3.1. Antioxidant  

Protein hydrolysates from agricultural crops including soy, rapeseed, wheat, sunflower and barley 

have been investigated for their antioxidant potential. In 1980, it was reported that following 

proteolysis, soy protein hydrolysates showed antioxidant potential, as measured by the thiobarbituric 

(TBA) assay, which is a measure of lipid peroxidation. It was suggested that the release of bound 

antioxidant phenolics or copper chelating agents was responsible for the observed antioxidant  

activity [16]. Using similar methodology, Peña-Ramos and Xiong [17] provided comparable results. 

Soy protein hydrolysates prepared with Flavourzyme or chymotrypsin had antioxidant potential greater 

than unhydrolysed soy protein isolate. However, it was found that extensive degradation using 

enzymes such as papain unfavourably altered the antioxidant activity [17]. A further study  

measured the ability of these soy protein hydrolysates, prepared with Flavourzyme or chymotrypsin, to 

inhibit lipid oxidation in corked pork patties. However, in contrast to the initial study, the soy  

protein hydrolysates did not affect lipid oxidation by the TBA assay, but reduced conjugated  

diene (CD, a marker of free radicals) formation in stored pork patties [18]. CD is a secondary  

product of lipid oxidation. Later studies have also reported the antioxidant potential of soy protein 

hydrolysates [19–22]. Soy protein hydrolysates post-treated with ultrafiltration, resulting in low 

molecular weight fractions (<10 kDa) have shown greatest antioxidant potential [20].  

Protein hydrolysates from a range of other agricultural crops have been less extensively studied in 

comparison to soy hydrolysates. Rapeseed protein hydrolysates exhibited a dose-dependent inhibition 

of lipid peroxidation by a speculated proton donation mechanism [23]. Later studies supported these 

findings, with rapeseed hydrolysates showing the ability to act as reducing agents and scavenge 

hydroxyl radical and superoxide anion [24,25]. By employing the post-hydrolysis process of affinity 

chromatography, copper chelating peptides were isolated from sunflower protein hydrolysates. The 

ability to chelate copper increased mineral bioavailability and exerted antioxidant effects [26,27]. 

Protein hydrolysates isolated from wheat germ also possess radical scavenging abilities, with an 

antioxidant activity close to that of the well known, antioxidant α-tocopherol. Interestingly, these 

hydrolysates had low molecular weight <1500 Da [28]. Similarly, enzymatic hydrolysates of 

buckwheat showed excellent antioxidant potential, scavenging (DPPH) radical, inhibiting linoleic acid 

peroxidation and possessing reducing power [29].  
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Protein hydrolysates isolated from co-products of the plant processing industry have also been 

investigated for antioxidant activity. While BSG protein isolate and associated hydrolysates do not 

possess antioxidant potential [30], okara hydrolysates protect against oxidation of linoleic acid [31]. 

Furthermore, it has been shown that fermentation of okara using Bacillus subtilis B2 can greatly 

improve its antioxidant activity, thus adding value to this co-product [32].  

3.2. Anti-hypertensive 

Normal blood pressure is in the range of 100–140 mmHg (systolic) and 60–90 mmHg (diastolic). 

Values greater than 140 mmHg (systolic) and 90 mmHg (diastolic) are classified as hypertension or 

high blood pressure. In hypertension, the blood pressure in the arteries is elevated and the heart has to 

work hard to pump blood around the body. According to the World Health Organisation, high blood 

pressure is particularly relevant in middle income European countries and African countries. A high 

percentage of stroke (51%) and ischaemic heart disease (45%) deaths worldwide are attributable to 

high systolic blood pressure [33]. Dietary and lifestyle changes, including a reduction in salt intake and 

an increase in physical activity levels, can positively influence blood pressure. However, in cases 

where such changes are ineffective or insufficient, drug treatments may be prescribed.  

Angiotensin-converting enzyme (ACE) inhibitors are an example of a drug treatment to control blood 

pressure. ACE reduces the conversion of angiotensin-1 (vasodilatory) to angiotensin-2 

(vasoconstrictory) resulting in a reduced blood pressure. Hence, there is great interest in novel 

compounds that can inhibit ACE. In 2000, wheat germ hydrolysate and its dominant peptide 

significantly reduced mean arterial pressure (MAP) in spontaneously hypertensive rats. It was shown 

that the dominant bioactive peptide could be metabolised by an aminopeptidase to form an ACE 

inhibitory metabolite, indicating potential blood pressure lowering effects of the metabolite after 

absorption [34]. Similarly, a buckwheat protein hydrolysate was found to reduce systolic blood 

pressure in spontaneously hypertensive rats and also inhibit ACE, particularly when hydrolysis was 

carried out with pepsin followed by chymotrypsin and trypsin [35]. More recently, it was found that 

ultrasonic pre-treatment promotes the release of ACE inhibitory peptides during enzymatic proteolysis 

of wheat germ [36]. van der Ven et al. [37] described the processing conditions necessary to produce 

hydrolysates with maximal ACE inhibitory activity. It was suggested that the ACE inhibitory activity 

of protein hydrolysates is due to the synergistic action of the different peptides present, thus the 

isolation of peptides is not justified and optimising the entire peptide composition is essential. 

Response surface modelling (which comprises a body of methods to explore optimum operating 

conditions through experimental methods [38]) is effective in the optimisation of a number of 

parameters simultaneously to produce a hydrolysate with maximum ACE inhibitory activity. Similar to 

the results for antioxidant activity of protein hydrolysates, it was found that ACE inhibitory activity of 

soy protein hydrolysates increased with decreasing molecular weight of peptides; hence ACE 

inhibitory peptides have low molecular weight [39]. This study also focused on an important 

consideration for the formulation of anti-hypertensive functional foods, that is, the digestibility of the 

protein hydrolysates. Following in vitro gastric digestion, which simulates conditions in the human 

stomach, of the soy protein hydrolysates, the ACE inhibitory activity was retained. Stability during 

processing is another key factor and hydrolysates were shown to have sufficient stability to various 

heat (20–100 °C) and pH (pH 2–10) treatments. These findings were supported by a study published in 
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2006, where it was also reported that soy protein hydrolysates possessed ACE inhibitory activity that 

was unaffected by in vitro gastrointestinal proteases [40]. Protein hydrolysates from a range of other 

crops including potato [41], corn [42,43], spinach [44], sunflower [45,46], peanut [47] and  

rapeseed [48] have exhibited high ACE inhibitory activities. Rice-bran, an under-utilized co-product of 

rice milling also has the potential to inhibit ACE activity, high molecular weight hydrolysates (10–50 

and >50 kDa) resulting in at least 50% inhibition [49]. In addition to ACE inhibition, there are a 

number of other potential mechanisms of inhibiting hypertension. These include activation of 

endothelial nitric oxide synthase (NOS), reduction of Ca2+ in vascular smooth muscle cells (VSMC) 

and rennin inhibition [50]. The ability of a compound to induce nitric oxide (NO) production via NOS 

and increase endothelial cell Ca2+ concentration contributes to vasodilation and reduced blood  

pressure [50]. Studies utilizing these mechanisms have also been carried out; for example soy protein 

isolate and hydrolysates have been shown to increase NO release in human aortic endothelial cells 

(HaoEC) [51]. 

3.3. Cardiovascular Disease 

Cardiovascular diseases (CVD) are the primary cause of death globally, representing 30% of all 

global deaths in 2008 [52]. Cardiovascular diseases are diseases of the heart and blood vessels and 

include coronary heart disease, cerebrovascular disease and peripheral arterial disease [52]. An 

unhealthy diet and physical inactivity are among the two main risk factors for CVD, resulting in raised 

blood pressure, blood lipids and blood glucose, overweight and obesity, which are classed as 

intermediate risk factors for CVD. The consumption of vegetable protein has been associated with a 

lower risk of coronary heart disease, in comparison to consumption of animal protein [53–55]. This 

observed effect may be attributed to decreases in serum cholesterol levels [56]. For more than  

100 years, animal studies have shown the cholesterol lowering effect of soy protein compared with 

animal protein [57]. Reduced intestinal cholesterol absorption and increased faecal bile acid excretion, 

reduced levels of hepatic lipogenic enzymes such as glucose-6-phosphate dehydrogenase (G6PDH) 

and stimulation of adinopection, a cytokine involved in adipocyte differentiation and insulin sensitivity 

are all possible mechanisms for the lipid lowering effect of soy protein [58]. A meta-analysis of  

38 studies indicated that soy protein consumption significantly decreased serum cholesterol, low 

density lipoprotein (LDL) cholesterol and triglyceride concentrations; there was also an increasing 

trend in high density lipoprotein (HDL) cholesterol concentrations [59]. An animal study carried out 

on genetically obese mice and dietary obese rats measured the effect of soy protein isolate and 

hydrolysate and on the rate of body fat disappearance. Feeding with either soy isolate or hydrolysate 

resulted in a significantly reduced body-fat content and plasma glucose levels in comparison with 

control, casein fed rodents. A decrease in the plasma total cholesterol level was also observed [60]. 

Soy hydrolysates have also demonstrated effects such as decreased cholesterol absorption both in vitro 

and in rats [61], anti-adipogenic in vitro [62], reduced fat mass and serum lipid in rats [63]. Sunflower 

hydrolysates produced using alcalase or pepsin inhibited the incorporation of cholesterol into bile salts 

micellar suspensions [64]. As mentioned in section 3.2 in vitro digestion did not decrease ACE 

inhibitory bioactivity of soy protein hydrolysates. It has also been shown that digestion of sunflower 

protein hydrolysates with simulated intestinal fluids produces new peptides that inhibit cholesterol 

incorporation into micellar suspensions [64]. Protein hydrolysates from crop processing co-products 
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have been less extensively studied, but rice bran hydrolysates have demonstrated hypocholesterolemic 

activity, by reducing total cholesterol and increasing HDL cholesterol in male Wistar rats [65]. 

3.4. Exercise and Performance Enhancement  

Muscle glycogen is an important fuel during periods of prolonged exercise and a relationship 

between increasing exercise intensity and a reliance on muscle glycogen is evident. Fatigue has been 

directly related to depleting glycogen stores [66–68]. Hence, the post-exercise glycogen synthesis rate 

is essential in determining the time required for recovery. It has been shown that carbohydrate and 

wheat protein hydrolysate combined with an amino acid mixture (0.8 g/kg/hr and 0.4 g/kg/hr, 

respectively), administered to cyclists for a five hour period post-exercise, increases glycogen 

synthesis rates compared to administration of carbohydrate alone [69]. Similarly, peak creatine kinase 

(CK) levels, as a result of initial muscle injury, were suppressed by wheat gluten hydrolysate in a  

dose-dependent manner in vivo [70]. Soy protein isolate is beneficial in muscle protein synthesis 

(MPS) following exercise. Consumption of the soy protein isolate was more effective than casein 

isolate but less effective than whey hydrolysate at increasing MPS both at rest and following resistance 

exercise [71]. Calbet and MacLean [72] suggested that carbohydrate and protein hydrolysates 

stimulate a synergistic insulin response, regardless of protein source. It was also found that the 

glucagon response depends on the increase in plasma amino acid composition, following protein 

solution ingestions and that pea and whey protein hydrolysates increased insulin to a greater extent and 

increased plasma amino acids more rapidly than cow’s milk solution. It has been suggested that 

hydrolysates, particularly containing di- and tri-peptides, are absorbed more rapidly than either intact 

proteins or free form amino acids [73] which would support the use of protein hydrolysates for  

post-exercise recovery drinks as this would result in a greater increase in plasma amino acid 

concentration compared with the intact protein, over a two hour period [74]. The concentration of 

amino acids present in the blood regulates protein synthesis [75].  

3.5. Other Clinical Applications  

Protein hydrolysates represent an alternative to intact proteins and elemental (amino-acid based) 

formulas for the treatment of patients with various conditions. Phenylketonuria is a disorder of amino 

acid metabolism, specifically, absence or deficiency of phenylalanine hydroxylase for the conversion 

of phenylalanine to tyrosine. The lack of this enzyme results in phenylpyruvic acid accumulation in the 

blood which has intellectual and neurological implications if left untreated. Protein hydrolysates free 

of phenylalanine have been used for the treatment of phenylketonuric infants, with positive results on 

physical growth and mental development [76,77]. Hydrolysates suitable for the treatment of 

phenylketonuria have been prepared from animal proteins including casein [78] and whey [79]. Plant 

protein hydrolysates low in phenylalanine have been studied to a lesser extent;, however the potential 

of a low-phenylalanine soybean hydrolysate for dietetic purposes has been investigated [80]. In 

patients with chronic liver disease, complex alterations in the metabolism of proteins occurs and 

nutritional support is essential in the pathogenesis and treatment of this disease [6]. Patients with 

chronic liver failure have high plasma levels of aromatic amino acids (AAA) and methionine and low 

levels of branched-chain amino acids (BCAA) [81,82]. While casein hydrolysates are commonly used 
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for nutritional applications in patients with chronic liver disease, a protein source with a higher level of 

BCAA is more desirable. Sunflower globulins have been suggested as excellent protein sources for the 

development of protein hydrolysates with high levels of BCAA [83]. Sunflower protein hydrolysate is 

recommended for enteral, parenteral and oral nutrition of liver disease patients, being hypoallergenic, 

having low bitterness and providing a high Fischer ratio (BCAA:AAA) of approximately 75 [84].  

3.6. Further Uses  

Advances in the understanding of protein hydrolysates have resulted in their use in biotechnology 

and fermentation. Hydrolysates have the ability to increase both production of monoclonal antibodies 

and productivity of therapeutic drugs produced by microorganisms and animal cells [7]. However, the 

most basic function of protein hydrolysates in biotechnology is as a source of nitrogen in industrial 

fermentation, cell culture and microbiological media [14]. As a protective mechanism against the 

spread of BSE from bovine animals to humans, plant materials have been recommended as an 

alternative for inclusion into fermentation media. Tryptone (a digest of casein) in Luria-Bertani broth 

supplies essential growth factors for Escherichia coli (E. coli). It has been shown that non-bovine and 

plant hydrolysates are efficient replacements for tryptone, measured by growth rate and growth yield 

of E. coli [9]. Furthermore, an animal-free cell culture medium supplement has been developed that 

can improve the bio-performance of the culture medium by providing peptides, carbohydrates, lipids, 

vitamins and minerals. [85]. Plant protein hydrolysates have also proved useful in the area of weed 

control. Corn gluten meal is commercially available as a natural pesticide, with corn gluten 

hydrolysate being suggested for similar results with easier application as a spray [86]. Corn, soybean 

and wheat protein hydrolysates have also been developed as herbicides [8].  

4. Techno-Functional Properties of Protein Hydrolysates 

4.1. Solubility 

Solubility is the most important and generally the first techno-functional property examined during 

the development of new protein ingredients [87] due to its considerable effect on other  

techno-functional properties [88,89]. It has been proposed that reduction of the secondary structure of 

a protein and the enzymatic release of smaller polypeptide units are responsible for the increased 

solubility of hydrolysates compared to the original intact protein [90,91]. The solubility of a number of 

protein hydrolysates from agricultural crops has been studied. Barley protein hydrolysates showed 

highest solubility at strongly basic (pH 10–pH 12) conditions [92]. Similarly, Claver et al. [93] found 

that the solubility of wheat protein hydrolysates was strongly influenced by pH, with lowest and 

highest solubility at pH 4 and 6, respectively. The use of rapeseed and other oilseed protein isolates is 

restricted due to their low solubility, which is a result of protein denaturation during industrial oil 

extraction [94]. To improve solubility and functionality, protein isolates from oilseeds can be 

hydrolysed. It has been found that rapeseed hydrolysates exhibit >90% solubility at pH 5–9 [95]. Soy 

protein hydrolysates were found to be almost completely soluble (>99%) in the range of pH 2–9, 

whereas the intact protein had highest solubility at pH 9 [96]. Tsumara et al. [97] also demonstrated 

that the solubility of soy protein hydrolysates was pH-dependent. The production of hydrolysates that 
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are soluble at acidic pH is essential for the supplementation of fruit juices and acidic drinks [6,98]. In 

contrast to soy protein hydrolysates, okara protein isolates showed highest solubility at pH 12, with 

acid modified isolates enhancing solubility, thus increasing potential applications of okara protein as a 

food ingredient [99]. Chan and Ma [99] suggested that the low solubility of okara (a by-product of 

soymilk manufacture) hydrolysates compared to soy hydrolysates is due to protein denaturation caused 

by severe heat treatments during soymilk manufacture.  

4.2. Emulsifying Properties 

The ability of proteins to interact with lipids and form stable emulsions is essential to yield a stable 

food product. Rapeseed protein hydrolysates have higher emulsifying activity (at least 20% greater) 

and stability than rapeseed protein isolates [94]. Enzymatic hydrolysates of soy protein resulted in an 

increased emulsification activity [100]. Studies examining protein hydrolysates from different crop 

sources suggest that the emulsifying capacity of the hydrolysates is related to the degree of hydrolysis, 

with a low degree of hydrolysis (3%–5%) increasing and a high degree of hydrolysis (~8%) decreasing 

emulsifying capacity [94,101,102]. Ultrafiltered rapeseed protein hydrolysate was demonstrated to 

have greater emulsification stability compared to that of whole egg [95] and wheat germ protein 

hydrolysates had higher emulsification capacity, activity and stability than bovine casein [91]. It is 

generally accepted that limited hydrolysis improves the emulsification properties of proteins by 

exposing hydrophobic amino acid residues (which may interact with oil), while the hydrophilic 

residues interact with water [94]. Similarly, an increase in hydrophilicity as a result of acid 

modification has been shown to increase the emulsification activity index (EAI) of okara protein 

isolates [99]. 

4.3. Foaming 

Foaming is of special interest in the food industry as it provides a desirable and unique texture to a 

range of aerated foods and beverages including ice-cream, bread, cakes, meringues, champagne and 

beer. It is essential that food foams are stable for consumer acceptability, since consumer perception of 

quality is influenced by appearance. Wheat germ has been shown to have poor foaming  

properties [103]. However enzymatic treatment of wheat germ increases foam volume/height but 

decreases foam stability. The trend of increased foam volume being coupled with decreased foam 

stability has been reported in previous studies on rice bran protein hydrolysate and acid modification 

of okara protein hydrolysate [99,104]. The absence of large protein components, which function to 

stabilise the foam, may contribute to the observed lack of foam stability [93]. In a similar study of 

wheat germ hydrolysates it was found that foaming capacity was increased at a degree of hydrolysis 

(DH) of 5%, resulting in a 74% increase in foam volume compared to the control. The foam was also 

most stable at DH of 5%, with 40% of foam volume sustained after 60 minutes. There was an inverse 

relationship between DH and foam stability, with stability in the order of DH 5% >  

DH 10% > DH 15%. Similar to suggestions by Claver et al. [93], the stability of the foams was 

attributed to the presence of larger component proteins and a partial hydrolysis, whereas a higher DH 

increases the number of polypeptide chains which do not have the ability to stabilise foams [102]. The 

study of both soy [97] and rapeseed [94] protein hydrolysates produced comparable results. Regarding 
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the effect of pH on foaming, barley hydrolysates had greater foam stability at basic pH values and very 

low stability at acidic pH [105]. 

4.4. Gelation 

The ability to manipulate the gel formation properties of a substance is important since gelation is 

desirable for the bakery and meat industries, but not for foods such as beverages and frozen  

deserts [106]. As a food ingredient, gelation is one of the most important techno-functional properties 

of soy protein, however soy protein hydrolysates possess poor gel-forming ability [107]. 

Transglutaminase (TGase) is a polymeriser shown to be effective in improving gelling of  

proteins [108], which improved the gelling ability of soy protein hydrolysates [107,109] but the gels 

formed were inferior to the starting soy protein/isolate in terms of gel strength. It has been suggested 

that the reduced ability to form gels may be due to lower surface hydrophobicity and short peptide 

chain length of the hydrolysates [109]. Research has been carried out with a focus on manipulating 

conditions to give desired gelation properties. For example, it has been shown that sodium chloride 

(NaCl) concentrations greater than 0.2M can accelerate gelation by sunflower protein hydrolysates but 

result in a gel of lower strength [110]. Addition of a polysaccharide such as guar gum can enhance the 

gel strength of canola protein isolates [111] and protein concentration and pH have been identified as 

important factors influencing gel formation by canola protein isolate coupled with guar gum [112]. 

Hence, while the gel forming ability of protein hydrolysates from agricultural crops is not as strong as 

that from proteins, processes are available to improve gelation where necessary.  

5. Safety of Protein Hydrolysates 

The use of dietary proteins and protein hydrolysates in food products is generally allowed in 

European countries and has the status of “generally regarded as safe” (GRAS) in the United States of 

America [113]. In Europe, novel foods are defined as foods and food ingredients that have not been 

used for human consumption to a significant degree within the European Community before 15 May 

1997 [114]. Safety evaluation by external independent experts and approval by competent authorities 

is necessary before a novel product is allowed on the market. Schaafsma [1] proposed a decision tree 

that should be used for determining the proposed safety assessment of protein hydrolysates and 

fractions thereof. Factors for consideration in deciding if a protein hydrolysate should follow 

procedure for novel foods include documented history of safe use, acceptable food grade hydrolysis 

process and the effect of intake on amino acid levels [1]. Hydrolysed proteins have a long history of 

safe use, but it is important to note that the majority of studies in this area look at animal-derived 

protein hydrolysates in infant feeding practices [114–117]. Some evidence has been produced 

regarding the sub-chronic toxicity of plant protein hydrolysates. Consumption of potato protein 

isolates is “well tolerated and without adverse effect” in Wistar rats, with parameters including body 

weight, body weight gain, mortality and organ weight remaining unchanged [118]. Protein isolates 

from canola have also been reported to be safe, following a 13 week consumption trial in rats, being 

practically devoid of natural toxicants and environmental contaminants. The canola protein isolates 

had no effect on body weight, food consumption, clinical observations, motor activity or ophthalmic 

examinations [119]. One particular consideration for the safety of protein hydrolysates and bioactive 
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peptides is their allergenicity. Most allergenic substances are protein-based compounds [120] and 

peptides in the range of 800–1500 Da are considered non-allergenic [5]. While hydrolysis breaks down 

proteins into low molecular weight peptides thus lessening the allergenic properties [121], some 

hydrolysates may retain their parent protein allergenic effects [122]. Therefore, there is a need to 

further investigate the safety of plant-derived protein hydrolysates and bioactive peptides.  

6. Conclusions 

Protein hydrolysates derived from agricultural crops have exhibited antioxidant and ACE inhibitory 

potential, with low molecular weight fractions demonstrating greatest effects. There is substantial 

evidence which supports the ability of soy protein hydrolysates to reduce CVD risk however 

hydrolysates obtained from other plant sources require further investigation. Protein hydrolysates show 

greater potential than intact protein to increase muscle glycogen and muscle protein synthesis and have 

also demonstrated potential in the treatment of clinical conditions, particularly sunflower hydrolysates 

which may be used in cases of chronic liver disease. In terms of techno-functional properties, 

hydrolysates with a low DH have desirable effects on emulsification, foaming and solubility 

properties. To conclude, protein hydrolysates from agricultural crops have demonstrated favourable 

bioactive and techno-functional properties that could be exploited for the development of functional 

foods. For neutraceutical development, clinical trials are necessary to confirm biological activity and 

safety, in addition to addressing issues such as stability during food processing, organoleptic issues 

and identifying the fate of plant-derived hydrolysates during passage through the gastrointestinal tract. 

Furthermore, protein hydrolysates from co-products of the plant processing industry should be 

investigated for their potential bioactive and techno-functional properties. 
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