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Abstract: Breeding for Cercospora resistant sugar beet cultivars requires field experiments 

for testing resistance levels of candidate genotypes in conditions that are close to agricultural 

cultivation. Non-invasive spectral phenotyping methods can support and accelerate resistance 

rating and thereby speed up breeding process. In a case study, experimental field plots with 

strongly infected beet genotypes of different resistance levels were measured with two 

different spectrometers. Vegetation indices were calculated from measured wavelength 

signature to determine leaf physiological status, e.g., greenness with the Normalized 

Differenced Vegetation Index (NDVI), leaf water content with the Leaf Water Index (LWI) 

and Cercospora disease severity with the Cercospora Leaf Spot Index (CLSI). Indices 

values correlated significantly with visually scored disease severity, thus connecting the 

classical breeders’ scoring approach with advanced non-invasive technology. 
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1. Introduction 

Sugar beets (Beta vulgaris spp. vulgaris) are frequently infested by the fungal pathogen Cercospora 

beticola that occurs in moderate climatic areas and causes yield loss between 40% and 100% [1,2]. 

Plant protection against Cercospora leaf spot (CLS) usually includes crop rotation, fungicide application, 

and the use of resistant cultivars [1]. Resistant cultivars frequently are low yielding when infection is 

absent [3] and breeding efforts aim at novel genotypes with stable yield at infected as well as infection-free 

sites. Breeding for CLS resistant cultivars requires field experiments for testing resistance levels of 

candidate genotypes in conditions that are close to agricultural cultivation. In such experiments, 

disease progression generally is monitored via scoring by experienced breeding personnel. 

Non-invasive spectral phenotyping methods [4,5] can support disease scoring by providing 

information on the plant status [6]. This in turn has the potential to accelerate resistance rating and 

speed up the breeding process. Optical measurements possess the advantage of objective and precise 

scoring [7]. Remote sensing signals can be collected by ground level and airborne measurements [8] 

based on the detection of reflected light or chlorophyll fluorescence of the vegetation canopy. The reflected 

light from the leaf surface is influenced by surface properties and physiological features, for example: 

trichomes, epicuticular waxes and leaf pigment composition [9,10]. Pigments such as chlorophyll, 

anthocyanins and carotenoids absorb the incoming light in the visible region (400–700 nm), whereas 

light of the near-infrared region (700–1200 nm) is absorbed by water, proteins and other carbohydrate 

molecules (e.g., lignin). Differences in the reflectance signature can be referred to changes in the 

pigment composition, surface morphology and plant density on the field [7]. Hyperspectral sensors 

give insight into the quality of the reflected or transmitted light. On the one hand, measuring devices 

can integrate the spectral signature of an area of interest (point spectrometers), on the other hand they 

can image the spectral signature of each image pixel leading to a three dimensional cube with 

wavelength as Z-component (hyperspectral imaging) [11]. Multispectral sensors detect specific parts 

of electromagnetic radiation, so called wideband channels, instead of the whole spectrum. Specific 

wavelength of the signature can be taken into account to calculate vegetation indices giving information 

about plant properties [10,12], e.g., the Normalized Differenced Vegetation Index (NDVI), the Leaf 

Water Index (LWI) and the Cercospora Leaf Spot Index (CLSI) [13]. Multiple indices are in use 

(Table 1) giving information about e.g., water content (Water Index–WI; Normalized Difference Water 

Index–NDWI1240/1640) photosynthetic activity (Photochemical Reflectance Index–PRI), chlorophyll 

content (Pigment Specific Simple ratio–PSSRa/b; Pigment Specific Normalized Difference–PSNDa), 

carotenoids (Structure Insensitive Pigment Index–SIPI; Carotenoids Reflectance Index–CRI1) or 

anthocyanins (Anthocyanin Reflectance Index–ARI1). Each vegetation index is calculated out of two 

or three spectral bands. 
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Table 1. Vegetation indices calculated out of two or three wavelengths indicating traits related to physiological status of leaves. 

Index Formula Indicator Reference 

NDVI, normalized difference vegetation index                                 Biomass, leaf area [14] 

PRI, photochemical reflectance index                              
  

 
Estimates xanthophyll epoxidation as  

a measure of photosynthetic activity 
[15] 

SIPI, structure insensitive pigment index                              
  

 Carotenoid/Chlorophyll a ratio [16] 

PSSRa, pigment specific simple ratio               Chlorophyll a [17] 

PSSRb               Chlorophyll b [17] 

WI, water index               Water content [18] 

CRI1, carotenoids reflectance index                Carotenoid content [19] 

ARI1, anthocyanin reflectance index                Anthocyanin content [20] 

PSNDa, pigment specific normalized difference                              
  

 Chlorophyll a [17] 

NDWI1240, normalized difference water index                                
  

 Water content [21] 

NDWI1640                                
  

 Water content [22] 

LWI, leaf water index                 Water content [23] 

CLSI, Cercospora leaf spot index                              
  
       Cercospora leaf spot classification [13] 
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In a case study, we carried out visual scoring and non-invasive phenotyping on trial fields with sugar 

beet breeding genotypes with different levels of CLS disease severity. The fungus evokes changes in 

leaf properties that differ according to developmental stages and disease severity [24]. Such changes 

result in modification of spectral signatures and thereby lead to alterations in index values. Beyond 

detecting the presence of a certain change, it is a challenging issue to assign this change to a biological 

response of the plants. Connecting dynamics in spectral properties with biological events allows the 

use of spectral data for monitoring plant status. In order to achieve this goal, we correlated measured 

data with biological reactions. In our study, we acquired spectral data using a FieldSpec point 

spectrometer and a Tetracam Agriculture Digital Camera and compared these data with visual  

disease scoring. 

2. Results and Discussion 

Sugar beet plants of three genotypes, KWS_1 (high susceptibility to CLS), KWS_2 (intermediate 

susceptibility to CLS), KWS_3 (low susceptibility to CLS) growing in plots at the Plattling (southern 

Germany) trial field were visually scored for CLS disease severity using the KWS scale scoring 

protocol [1]. Highly susceptible KWS_1 plants reached an average disease score of 9, meaning that 

there was severe leaf destruction. Plants of genotype KWS_2 were scored at 7.5 and the KWS_3, the 

genotype with the lowest susceptibility, had an average score of 5, corresponding to minor leaf damage 

(representative photos in Figure 1). 

Figure 1. Photographs of representative plants in plots planted with genotypes KWS_3 

(low susceptibility, disease score 5), KWS_2 (intermediate susceptibility, disease score 7.5), 

and KWS_1 (high susceptibility, disease score 9) at Plattling experimental field site. 
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In the same plots, plants were measured with non-invasive spectral devices. FieldSpec, a hyperspectral 

device acquired reflectance data in a broad range of wavelengths when positioned above canopy level. 

Tetracam, a multispectral camera, captured images of the plants comprising spectral information in 

green, red, and NIR range. Infection-free plants (score = 1) were measured with both instruments, too. 

Spectral data out of both instruments were used for calculation of vegetation indices describing 

physiological properties of the canopy [4]. 

2.1. Tetracam Allowed Quantitative Spectral Imaging of Diseased Vegetation 

Multispectral Tetracam images showed color-coded images of the vegetation, whereas colors 

referred to NDVI data calculated out of spectral information (Figure 2A). NDVI as such serves as an 

indicator for green vegetation. In images, ratio of pixels with NDVI ≥ 0.1 referred to vegetation 

whereas pixels with NDVI < 0.1 referred to soil background. Using the ratios we were able to 

distinguish between different degrees of canopy destruction by CLS disease progression on plots of 

genotypes KWS_1, KWS_2, and KWS_3 (Figure 2A). Fitting a cubic regression line through the data 

points shows that NDVI pixel ratios correlate with disease score values. In turn, there is potential for 

calculating disease score values from NDVI images. However, this holds true only when there are no 

other factors causing leaf damage. Therefore, the method seems applicable when measuring inoculated 

plants in a test site, but not for measurements in agriculture where source of leaf damage is unknown. 

Nevertheless, even when source of damage is not known, pixel ratios from NDVI images may be 

indicative of general plant status. A potential drawback of using Tetracam images for NDVI estimation 

is that some pixels may be classified as vegetation although they belong to the soil background as 

visible on the pictures. In conclusion, Tetracam allows an overview on vegetation damage, but does 

not allow highly accurate measurements of disease severity because of limited spectral information. 

2.2. FieldSpec Hyperspectral Data Enabled Assessment of Multiple Vegetation Indices 

Hyperspectral data measured with a FieldSpec instrument does not contain image information, but 

has a much higher spectral resolution than Tetracam images. Spectral signatures of measured plots 

contain a broad range of spectral information (350 nm to 2500 nm) giving the chance of calculating 

multiple vegetation indices using selected wavelengths, e.g., NDVI, PRI, CLSI, ARI, SIPI, PSSRa, 

PSSRb, WI, PSNDa, NDWI1240, NDWI1640, and LWI. 

In a first step, we conducted a principle component analysis (PCA) in order to evaluate whether 

spectral signatures discriminate between non infected plants and the infected plants of the different 

genotypes. We selected a subset of wavelengths in the range of 350–1350 nm and 1510–1800 nm 

(thereby eliminating the noise-driven regions in the spectrum) and performed the PCA with the 

averaged wavelength-specific reflection values (Figure 3). Non-infected plants clustered separately 

from infected ones. Among these, genotype KWS_3 exhibiting low infestation (disease score 5) 

separated from KWS_2 and KWS_1. The latter genotypes also clustered, but displayed an overlapping 

region. This might be due to a certain ratio of open soil between strongly infested leaves and the grey 

to brown color of the leaf spots that shares similarity to soil color. 
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Figure 2. Tetracam images of Cercospora Leaf Spot (CLS) infected sugar beets; (A) ratio 

of pixels with Normalized Differenced Vegetation Index (NDVI) < 1 (soil) or NDVI ≥ 1 

(vegetation) for plots with sugar beet plants of genotypes KWS_1, KWS_2, and KWS_3 

inoculated with Cercospora beticola as well as disease-free plants in correlation to visual 

disease scoring. Regression was calculated using 2nd degree polynomial fit. Pixel ratios of 

the three genotypes differ significantly (*** ANOVA, p < 0.001) from each other; (B) 

representative multispectral image of infected beet plants; (C) color coded NDVI image 

calculated out of image (B) using Tetracam PixelWrench2. 

 

Figure 3. Principle component analysis of the spectral signatures from FieldSpec 

measurements of non-infected and infected (KWS_1, KWS_2, KWS_3) sugar beets. Evaluated 

spectral regions comprise 350–1350 nm and 1510–1800 nm. First principal component 

accounts for 92% of the spectral variance (7% in the second component). 
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As PCA proved that data allowed discrimination between different levels of infestation, we 

calculated vegetation indices as a second step of data analysis. Whereas PCA uses a large spectral 

range for detecting differences between the genotypes, vegetation indices focus on a few specific 

wavelengths. Thereby, indices are reduced in information content, but this reduction might allow 

increased speed and throughput of measurements. 

Besides NDVI, which was also used with Tetracam, we evaluated a series of indices for correlation 

with disease score data (Table 1). Calculating linear regressions, CRI and ARI had poor correlation 

with the degree of disease, but there were high correlations for NDVI, PRI, SIPI, PSSRa, PSSRb, WI, 

PSNDa, NDWI1240, NDWI1640, and LWI. Linear regressions, however in many cases do not fit well 

with the data distribution and data can be described better using 2nd degree polynomial fits (Table 1). 

NDVI and LWI together with the Cercospora-specific CLSI were fitted with 2nd degree 

regressions to visual disease scores of the different genotypes (Figure 4). It could be shown that the 

NDVI decreased with decreasing vegetation density or increasing fungal leaf damage causing loss of 

green leaf area (Figure 4A). Leaf water content described by LWI changed with decreasing healthy 

leaf tissue because infected parts of the leaves dried out (Figure 4C). CLSI values increased with 

ascending disease severity (Figure 4B) which is consistent with previous reports [13]. 

CLS disease progression affects multiple traits that are characterized by vegetation indices. Color 

alterations in infected areas are due to cells becoming necrotic and senescence sets on [24]. This is 

accompanied by changes in pigment composition, and decrease of pigment content. Therefore pigment 

sensitive indices, such as PSSRa, PSSRb, ARI, and CRI proved to be responsive to different levels of 

disease severity. 

Similar with Tetracam images, measuring aperture of FieldSpec might capture reflectance from 

open soil areas between the plants, too. Tetracam data proved that reflectance from soil does influence 

indices, in this case NDVI. Data range of NDVI acquired from open vegetation-free soil (<−0.12, 

FieldSpec; <0.36, Tetracam) differed clearly from data ranges of plots with infected or non-infected 

sugar beet plants (>0.53, FieldSpec; >0.58, Tetracam). Visible open soil between plants occurs in plots 

with young plants, but current measurements were done at a growth stage after canopy closure. At this 

stage, open soil refers either to cultivar-specific shoot architecture or any type of leaf damage or loss. 

In sugar beet breeding however, plants normally are selected against sparse shoot architecture. 

Therefore, visibility of soil between plants might be considered as indicator for improper growth, too. 

The soil effect might be mitigated when using CLSI, an index with specificity for Cercospora leaf 

damage. Examples show that multiple indices were responsive to increasing Cercospora disease 

severity, but not all indices enable proper discrimination at each level of disease. In particular the 

water content related LWI did not allow significant discrimination between plants of disease scores 7.5 

(KWS_2) and 9.0 (KWS_1; Figure 4C), whereas other vegetation indices did so (Figures 4A,B and 2A). 

A possible reason might be that in both disease levels there was already high ratio of leaf desiccation 

due to the fungus necrotizing the tissue. 
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Figure 4. Field spec measurements. Vegetation indices were calculated out of measured 

spectral data and correlated with visual disease scoring values of CLS infected as well as 

infection-free sugar beet plants. (A) NDVI; (B) CLSI; (C) Leaf Water Index (LWI); 

Regressions were calculated using 2nd degree polynomial fits. Significant differences 

between index data of non-infected plants and diseased plants of genotypes KWS_1, 

KWS_2, and KWS_3 are denoted with *** ANOVA, p < 0.001. 

 

Nevertheless, regression curves indicated that vegetation indices derived from a few spectral bands 

can be used for estimation of disease scores. This means, that after a calibration with reference plants 

exhibiting different degrees of infestation, spectral data allow rating of the degree of infestation in test 

plots. Examples indicate that using a combination of a few indices is well suitable for this issue.  

A single index might be misleading in some cases, e.g., LWI when comparing KWS_1 and KWS_2 

(Figure 4C), but high correlations (Table 2) indicate that one does not need to apply a multitude of 

combinations. With this knowledge, one can set up a scenario in which a dedicated spectrometer is 

carried across test plots using a positioning system, e.g., a conveyor or an unmanned aerial vehicle 

(UAV)). Thereby, it becomes possible to monitor disease progression in test plots with high temporal 

resolution. For practical application, a combination of high-resolution spectrometers such as FieldSpec 
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with imaging devices such as Tetracam can be meaningful. The advantage of spectrometers is gaining 

more detailed information on plant performance, e.g., biomass (NDVI), water content (LWI), 

photosynthetic activity (PRI), UV-protection (SIPI, CRI1, ARI1), compared to visual scoring. Imaging 

devices in turn give the possibility of visual reviewing the results by the operator, e.g., when measuring 

canopies that are not completely closed and reflectance from soil might have major influences on the 

measured data. 

Table 2. Correlation of vegetation indices to visual disease scoring using 2nd degree 

polynomial fits. 

Index Sum of Squares Mean of Squares F Value p 

NDVI 0.73 0.36 111.76 0.00 

PRI 0.01 0.01 49.27 4.63 × 10−12 

SIPI 0.30 0.15 127.24 0.00 

PSSRa 271.85 135.93 145.48 0.00 

PSSRb 63.56 31.78 115.59 0.00 

WI 1.30 0.65 110.08 0.00 

CRI1 0.00 0.00 5.55 0.01 

ARI1 0.00 0.00 7.35 0.00 

PSNDa 0.78 0.39 112.78 0.00 

NDWI1240 0.78 0.39 112.78 0.00 

NDWI1640 1.03 0.51 124.22 0.00 

LWI 5688.85 2844.43 69.73 1.64 × 10−14 

CLSI 5.50 × 107 2.75 × 107 33.85 1.07 × 10−9 

3. Experimental Section 

Sugar beets lines—Beta vulgaris ssp. vulgaris—with different levels of susceptibility (high,  

KWS_1–moderate, KWS_2–low, KWS_3; KWS SAAT AG, Einbeck, Germany) to C. beticola were 

grown on a trial field in Plattling, Germany, in the growth season 2012. Additionally to naturally 

occurring infestation in this region, dried infected plant material was used for inoculation in order to 

increase the infection pressure. Measurements took place in August 2012 when experimental plots 

were strongly infected with CLS. Visual scoring as well as measurements with the FieldSpec 

instrument and Tetracam were done in two individual plots per genotype with three spots within one 

plot (together 6 measurement points for each genotype). 

The sugar beet genotypes were measured with two different spectrometers: the FieldSpec  

(ASD Inc., Boulder, CO, USA) with a spectral range from 350 to 2500 nm and Agriculture Digital 

Camera (Tetracam, Chatsworth, CA, USA) with three multispectral bands. 

FieldSpec acquires an averaged spectral signature of an area of interest with a spectral resolution  

of 3 nm at 700 nm and 8 nm at 1400 and 2100 nm. The sampling interval by FieldSpec spectrometer  

is 1.4 nm in the range from 350 to 1050 nm and 2 nm in the range from 1000 to 2500 nm. 

Hyperspectral FieldSpec data were normalized to relative values using white reference panel 
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(Specralon
®

,Labsphere Inc., North Dutton, NH, USA) spectra. After normalization index-specific 

wavelengths were chosen to calculate vegetation indices (terms see Table 1). 

Tetracam detects wideband channels of the green (520–600 nm), red (600–700 nm) and NIR  

(700–920 nm) region allowing multispectral imaging. Similar to FieldSpec, NDVI was calculated  

with the Tetracam data using the formula (NIR − RED) × (NIR + RED)
−1

. Values were coded in a 

color scale from −1 to 1, and pixels were classified either as vegetation (NDVI ≥ 0.1) or background  

(NDVI < 0.1). 

4. Conclusions 

Our case studies show that non-invasive spectral measurements have the potential to assist and 

complement disease scoring in breeding plot experiments. Vegetation indices correlate with disease 

severity and this allows calculating disease scores from spectral data. A constraint is that in many cases 

established indices are not disease-specific, meaning that they can be used for quantifying an 

infestation or damage, e.g., caused by CLS, but in most cases they do not allow distinguishing between 

different types of disease. Disease identification in turn requires development of disease-specific 

indices or index combinations [13,25,26]. 

In general, the study supports the use of spectral data for disease rating purposes given that data 

acquisition and data analysis can be achieved with an acceptable effort. Use of automated sensor 

displacement systems and targeted data selection based on prior evaluation and calibration are essential 

for this goal. Thereby, methods have the potential of assisting, automating, and accelerating of disease 

scoring in the plant breeding process. 
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