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Abstract: It is known that plant height is a suitable parameter for estimating crop biomass. 

The aim of this study was to confirm the validity of spatial plant height data, which is derived 

from terrestrial laser scanning (TLS), as a non-destructive estimator for biomass of paddy 

rice on the field scale. Beyond that, the spatial and temporal transferability of established 

biomass regression models were investigated to prove the robustness of the method and 

evaluate the suitability of linear and exponential functions. In each growing season of two 

years, three campaigns were carried out on a field experiment and on a farmer’s 

conventionally managed field. Crop surface models (CSMs) were generated from the  

TLS-derived point clouds for calculating plant height with a very high spatial resolution of 

1 cm. High coefficients of determination between CSM-derived and manually measured 

plant heights (R2: 0.72 to 0.91) confirm the applicability of the approach. Yearly averaged 

differences between the measurements were ~7% and ~9%. Biomass regression models were 

established from the field experiment data sets, based on strong coefficients of determination 

between plant height and dry biomass (R2: 0.66 to 0.86 and 0.65 to 0.84 for linear and 

exponential models, respectively). The spatial and temporal transferability of the models to 
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the farmer’s conventionally managed fields is supported by strong coefficients of 

determination between estimated and measured values (R2: 0.60 to 0.90 and 0.56 to 0.85 for 

linear and exponential models, respectively). Hence, the suitability of TLS-derived spatial 

plant height as a non-destructive estimator for biomass of paddy rice on the field scale was 

verified and the transferability demonstrated. 

Keywords: terrestrial laser scanning; plant height; biomass; rice; precision agriculture;  

field level 

 

1. Introduction 

Solutions to ensure the world’s food security are required due to the growing world population. 

Focusing on the supply with staple food, the cultivation of rice is essential. This is in particular for the 

Asian world important, where 2011 and 2012 about 90% of the estimated world rice production was 

cultivated, each year about 650 million tons [1]. Miao et al. [2] reviewed long-term experiments on 

sustainable field management and highlighted the required increase in cereal production to ensure food 

security in China. The authors emphasized the combination of traditional practices and modern  

sensor-based management approaches for addressing this challenge. 

In this context, precision agriculture (PA) rises in importance, which focuses on spatial and temporal 

variabilities of natural conditions and an adequate dealing with resources [3]. PA-improved management 

methods support farmers in closing the gap between potential and current yield [4]. Based on analyses 

of long-term field experiments, Roelcke et al. [5] concluded that there is a great need for on-farm 

experiments. Therefore accurate crop monitoring based on remote and proximal sensing has become 

increasingly important within PA in recent years [6,7]. A widely used indicator for quantifying the actual 

status of plants is the nitrogen nutrition index (NNI) [8–10]. The index shows the ratio between measured 

and critical N content. The latter is determined by the crop-specific N dilution curve, showing the relation 

between N concentration and biomass. Consequently, the accurate and non-destructive determination of 

biomass is a precondition for calculating the NNI. 

For rice, it has been shown that grain yield is positively correlated to biomass and nitrogen (N) 

translocation efficiency [11], but over-fertilization affects the nutrient balance in soil and groundwater. 

Consequently, the NNI should be used for optimizing rice production with PA-improved management 

methods. Therefore, non-invasive approaches for biomass estimation are of key importance as rice 

paddies should be entered with machinery as little as possible during the growing season. Satellite remote 

sensing images serve for estimating the actual biomass and yield of large paddy rice fields [12–16]. 

However, for monitoring within-field variability and more accurately estimating biomass, a higher 

spatial resolution is required. The potential of ground-based plant parameter measurements as input for 

biomass estimation models was recently demonstrated for rice, maize, cotton, and alfalfa [7]. However, 

therein, plant height was manually measured, which is prone to selection bias. A ground-based  

multi-sensor approach showed good results for predicting biomass of grassland [17]. For biomass 

estimation of paddy rice, in-situ approaches with hand-held sensors for measuring canopy reflectance 

provided good results [18–20]. Moreover, Confalonieri et al. [21] emphasized rice plant height as a key 
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factor for predicting yield potential and developed a model for estimating plant height increase, but 

accurate in-situ measurements of plant height on field level are rare. Although virtual geometric models 

of single rice plants in a high resolution exist [22,23], uncertainties remain about the transferability to 

the field, due to varying patterns of plant growth. Hence, accurate methods for determining plant height 

on field level are desirable. 

Light detection and ranging (LIDAR) sensors have been increasingly used in vegetational studies 

since the 1980s [24]. In-situ studies confirmed the potential of ground-based LIDAR methods, also 

known as terrestrial laser scanning (TLS), for the assessment of plant parameters in agricultural 

applications. Previous studies focused on the acquisition of plant height [25], post-harvest growth [26], 

leaf area index [27], crop density [28,29], nitrogen status [30], or the detection of individual  

plants [31,32]. Moreover, the potential of TLS for estimating the biomass of small-grain cereals was 

emphasized [33–36]. Regarding the accuracy, Lumme et al. [33] found that estimated heights of cereal 

plants correlated with tape measurements. The high precision for mapping of maize plants was shown 

by Höfle [31]. Little research has been done so far on TLS in-situ measurements of paddy rice. Hosoi 

and Omasa [37] examined vertical plant area density as an estimator for biomass, achieved with a 

portable scanner in combination with a mirror. Besides, biomass estimations based on TLS-derived 

spatial plant height was evaluated for some of the fields considered in the presented study [38,39]. But as 

stated above, multi-annual on-farm experiments are necessary for achieving a comprehensive 

understanding of plant growth and developing objective sensor-based measuring methods and models 

for biomass estimations [2,5]. 

Based on the promising results of the single year analyses [38,39], this study focused on (I) the 

robustness of the method, (II) the spatial and temporal transferability of the models, and (III) a model 

improvement. For the latter, in addition to partially existing linear models, exponential models were 

established, as a better suitability of these models is denoted in other studies of biomass estimations over 

different growth stages [20,40,41]. In two consecutive growing seasons, rice fields were monitored 

during the pre-anthesis period. Based on the data sets of a field experiment, estimation models for 

biomass were established and then applied on a farmer’s conventionally managed fields. 

2. Data and Methods 

2.1. Study Area 

Heilongjiang Province in the northeast of China is an important region for agricultural  

production [42]. Almost 25% of the total area is covered by the Sanjiang Plain (~120,000 km2). The 

regional climate with cold and dry winters and short but warm, humid summers is marked by the East 

Asian summer monsoon [43,44]. Three field sites around the city of Jiansanjiang (N 47°15′21′′  

E 132°37′43′′) were considered in this study. 

At the Keyansuo experimental station (Jiansanjiang, Heilongjiang Province, China) the same field 

experiment was monitored in 2011 and 2012 (Figure 1). For the experiment, nine N fertilizer treatments 

were repeated three times for the rice varieties Kongyu 131 and Longjing 21. Hence, the field with a 

spatial extent of 60 m by 63 m consisted of 54 plots, each about 10 m by 7 m in size. A detailed 

description of the experimental set-up is given by Cao et al. [45]. Related to the amount of N input, 
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variations in plant height and biomass were expected. These differences were useful for the TLS 

monitoring approach to capture varying patterns of plant growth at one growing stage. 

 

Figure 1. Design of the field experiment and scan positions. Three-digit number in the plot 

represents rice variety (1 = Kongyu 131; 2 = Longjing 21); treatment (1 to 9); and repetition 

(1 to 3). Modified from Tilly et al. [39]. 

In addition, one farmer’s conventionally managed field was investigated each year (hereafter referred 

to as farmer’s field). The aim was to provide independent validation data sets for checking the spatial 

and temporal transferability of the findings from the field experiment data. For the following, they are 

termed village 69 (year 2011) and village 36 (year 2012). In both years, it was not possible to find a field 

with one of the field experiment rice varieties, where destructive sampling was possible several times 

during the growing season. In village 69 the variety Kenjiandao 6 was cultivated, in village 36 the variety 

Longjing 31. Moreover, in village 36 management units with very heterogeneous development were 

chosen, including parts without any plants (Figure 2). On each field two management units were investigated. 

In village 69 and village 36 each unit was about 60 m by 40 m and 50 m by 70 m in size, respectively. 

 

Figure 2. One management unit with very heterogeneous plant growth in village 36. 
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2.2. Field Measurements 

On each site, three TLS campaigns were carried out in June and July of the respective year to capture 

the key vegetative stages of the rice plants. During this pre-anthesis period, differences in plant 

development occur mainly due to the increase of tillers and plant height. This period is important for 

fertilizer management decisions. In both years, the campaigns on the field experiment and the farmer’s 

field were carried out on two consecutive days to reach a best possible comparison regarding the plant 

development. For quantifying the phenological stages of plants and steps in plant development the 

BBCH-scale was used [46,47]. The abbreviation BBCH is derived from the funding organizations: 

Biologische Bundesanstalt (German Federal Biological Research Centre for Agriculture and Forestry), 

Bundessortenamt (German Federal Office of Plant Varieties), and Chemical industry. The campaign 

dates and BBCH-values for all sites are given in Table 1. 

Table 1. Dates of the terrestrial laser scanning (TLS) campaigns and corresponding 

phenological stages. 

Date/  
BBCH-scale a 

2011 2012 

Field experiment Village 69 Field experiment Village 36 

1. Campaign 
21 June 2011/  

13 
22 June 2011/ 

13 
1 July 2012/  

37 
30 June 2012/  

37 

2. Campaign 
4 July 2011/  

13–15; 22–23 
5 July 2011/ 

13; 21 
9 July 2012/  

42 
8 July 2012/  

37; 39 

3. Campaign 
18 July 2011/  

19; 29; 32 
19 July 2011/ 

19; 29; 34 
17 July 2012/  

50 
16 July 2012/  

19; 29; 34 
a Multiple values due to several samples. 

Terrestrial laser scanners operating with the time-of-flight technique were used for all campaigns. 

The relative positions of survey points are calculated from the distances, as well as the horizontal and 

vertical angles between sensor and targets. For this, the time between transmitting and receiving a pulsed 

laser signal and its angles are measured. In 2011 and 2012, the Riegl VZ-1000 and Riegl  

LMS-Z420i, respectively, were provided by the company Five Star Electronic Technologies (Beijing, 

China) [48,49]. Both devices operate with a near-infrared laser beam and have a beam divergence of 0.3 

mrad (VZ-1000) and 0.25 mrad (LMS-Z420i). The angular resolution was set to 0.04 deg. All scans 

were conducted from the dikes between the paddies to avoid entering them, resulting in an oblique 

perspective. More detailed descriptions are given in Tilly et al. [39]. 

The set-up for the campaigns on the field experiment was similar in both years. Each time, nine scan 

positions were established for covering all fields of the Keyansuo experimental station and minimizing 

shadowing effects. For this analysis, the scans from all positions were used, but four positions were of 

major importance, as they were located close to the investigated field experiment. Following, the largest 

number of points was acquired from these positions. Point clouds from other positions were used to 

avoid gaps in the final point cover due to information signs close to the field. As shown in Figure 1, two 

positions respectively were set up at the north and south edges. At each position the scanner was mounted 

on a tripod which raised the sensor up to 1.5 m above ground. Additionally, a small tractor-trailer system was 
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used for the positions at the south edge of the field for achieving a greater height of about 3 m. The narrow 

dikes along the other edges made it impossible to reach those positions with the tractor-trailer system. 

Due to a limited access on the dikes between the management units of both farmer’s fields, it was 

also impossible to use a trailer. Hence, the sensor height of the scanner on the tripod was about 1.5 m 

above ground. In village 69 the scan positions were established close to the four corners of the 

management units (Figure 3). As the investigated units in village 36 were located at the edge of the 

whole field, this set-up was slightly changed. Two positions in the north were established on a small hill 

close to the field for reaching a higher position and an additional position was placed at the center of the 

edge (scan position 5 in Figure 3). Further two positions were set up close to the south corners. In both 

fields, twelve thin, long bamboo sticks per management unit were stuck in the ground. These bamboo 

sticks can be easily detected in the TLS point clouds and located in the field to ensure the spatial linkage 

to other plant parameter measurements. 

 

Figure 3. Scan positions and bamboo stick positions on the farmer’s fields. 

Furthermore, ranging poles with high-reflective cylinders [50] were built upon the dikes between the 

fields, homogeneously distributed around the field. These can be detected by the laser scanner and act 

as tie points for merging the scan data in post-processing. In the first campaigns, the position of each 

pole was marked in the fields. By re-establishing the ranging poles at exactly the same position for the 

following campaigns, all scans of one site can be merged. In the data sets from 2011, alignment errors 

occurred due to imprecise re-establishing of the ranging poles or where an exact marking of the positions 

was difficult, particularly on the farmer’s fields. These errors could be rectified with software options 

but caused time-consuming post-processing. In 2012, additional tie points were used to avoid this. As 

shown in Figure 4 for village 36, five small, round reflectors were permanently attached to trees close 

to the fields and remained there during the observation period. A homogeneous distribution around the 

field was not possible, as no other stationary objects were available. 
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Figure 4. Small, round reflectors were permanently attached to trees in village 36. 

At all sites, manual measurements of plant height and biomass were performed during the whole 

vegetation period. Corresponding to each TLS campaign on the field experiment, the heights of eight to 

ten and four hills per plot were measured in 2011 and 2012, respectively. Each hill consisted of four to 

six rice plants. 

Regarding the measurement of biomass, differences between the sites and years must be pointed out. 

As part of the field experiment, destructive sampling was performed several times during the vegetation 

period. Samples were taken from both varieties, but only from the three repetitions of five treatments  

(n = 30). The dates of sampling differed from the TLS campaign dates in 2011, but due to the small plot 

size, it was not feasible to take additional samples. Thus, the biomass values were linearly interpolated. 

In 2012, the measurements could be carried out on the same day. 

On the farmer’s fields, four hills around each bamboo stick were destructively taken after the TLS 

measurements (each n = 24). For the following campaign, the bamboo sticks were moved in a defined 

direction to the center of four other hills. In each management unit of village 36, one bamboo stick was 

placed in the part without any plant and left at its position for all campaigns (no. 12 in Figure 3). 

The cleaned above ground biomass was weighed after drying. All samples were oven dried at 105 °C 

for 30 min and dried to constant weight at 75 °C. The dry biomass per m2 was calculated, considering 

the specific number of hills per m2. 

2.3. Post-Processing of the TLS Data 

The post-processing of the scan data was similar for all sites. A detailed description is given for the 

data sets from 2011 in Tilly et al. [39]. Riegl’s software RiSCAN Pro, also applied for the data 

acquisition, was used for the first steps of the data handling. The scans from all campaigns were imported 

into one RiSCAN Pro project file for each site. Following, a co-registration of all scan positions was 

carried out, based on the reflectors acting as tie points. As mentioned above, the data sets of 2011 showed 

alignment errors, due to non-optimal positioning or imprecise re-establishing of the ranging poles. The 

iterative closest point (ICP) algorithm [51], implemented in RiSCAN Pro as Multi Station Adjustment, 

was used to modify the position and orientation of each scan position in multiple iterations for getting 

the best fitting result. For the campaigns in 2012, additional small reflectors were permanently 

established. By first registering one scan position of each campaign based on these permanent tie points 
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and aligning all other positions to these, an accurate alignment was possible. After optimizing the 

alignment with the ICP algorithm the error, measured as standard deviation between the used point-pairs, 

was 0.06 m and 0.01 m on average for both sites of 2011 and 2012, respectively. 

Following, the point clouds were merged to one data set per campaign and the area of interest (AOI) 

was manually extracted. Clearly identifiable noise in the point clouds far below and above the field, 

caused by reflections on water in the field or on small particles in the air, was previously removed. The 

crop surface was then determined from the point clouds with a filtering scheme for selecting maximum 

points. A common reference surface is required for the calculation of plant heights. Therefore, the AOI 

is usually scanned without any vegetation. As it was not possible to obtain such data on the rice fields, 

the lowest parts in the point clouds from the first campaigns were selected. At this stage, the rice plants 

were small enough for clearly identifying points at the bottom of the hills, as shown in Tilly et al. [39]. 

The point clouds of the field experiment data sets were subdivided plot-wise to attain a common spatial 

base. Each management unit of the farmer’s fields was regarded as one data set. All data sets were 

exported as ASCII files, which contained the XYZ coordinates of each point for spatial and  

statistical analyses. 

2.4. Calculation of Plant Height and Visualization as Maps of Plant Height 

For the spatial analyses, crop surface models (CSMs) were constructed from the TLS-derived point 

clouds. CSMs were introduced by Hoffmeister et al. [50] for an objective and non-invasive deriving of 

spatial crop height and crop growth patterns. A CSM represents the crop surface at a specific date with 

a high spatial resolution. Therefore, the exported point clouds were interpolated to raster data sets with 

a consistent spatial resolution of 1 cm with the inverse distance weighting (IDW) algorithm in ArcGIS 

Desktop 10 (Esri, Redlands, CA, USA). IDW is suitable for preserving the accuracy of measurements 

with a high density, as it is a deterministic, exact interpolation and retains a measured value at its  

location [52]. Likewise, a digital terrain model (DTM) was generated from the manually selected ground 

points as common reference surface. Next, the DTM was subtracted from the CSM for calculating the 

plant heights. In the same way, plant growth between two dates can be spatially measured by calculating 

the difference between two CSMs. Herein, growth is defined as spatio-temporal difference in height. 

Finally, maps of plant height were created for visualizing the pixel-wise calculated values. 

For the following analyses, one plant height value per campaign for comparable spatial units was 

necessary. Therefore, the CSM-derived plant heights were averaged plot-wise for the field experiment 

(n = 54). Previously, each plot was clipped with an inner buffer of 60 cm for preventing border effects. 

As the manual measurements were used for validating the laser scanning results, these plant height 

values were also averaged plot-wise (n = 54). Around each bamboo stick on the farmer’s fields, a circular 

buffer with a radius of 1 m was generated to attain a common spatial base, for which the  

CSM-derived plant heights were averaged (each n = 24). 

2.5. Estimation of Biomass 

The field experiment analyses were taken to express the correlation between plant height and dry 

above ground biomass (hereafter referred to as biomass) in a biomass regression model (BRM).  

Since only the above ground plant height is determinable from the TLS data, statements about the 
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subsurface cannot be done. As mentioned above, other studies showed that exponential models 

performed better for biomass estimations over different growth stages. For establishing exponential 

models in addition to the linear ones, the biomass values were natural log-transformed. The models were 

used for estimating the biomass on the farmer’s fields based on the TLS-derived spatial plant height 

data. Previously, linear and exponential biomass regression models (BRMs) were established, only 

regarding the field experiment for checking the general concept and evaluating differences between the 

results for 2011 and 2012 (hereinafter referred to as trial BRMs). Afterwards, the transferability of the 

model to the farmer’s fields was evaluated. The workflow can be structured as following: 

I. Examination of concept with trial BRMs: Each linear and exponential model was derived from the 

measurements of two field experiment repetitions from one year. The biomass of the remaining 

third repetition was estimated and validated against the destructive measurements. 

II. Generation of BRM: Overall six models were established based on the measurements of all field 

experiment repetitions, separately for each year and as a combination of both years, each as linear 

and exponential model. 

III. Application of the BRMs: Each model was used for estimating the biomass at all campaign dates 

on both farmer’s fields based on the CSM-derived plant height of the buffer areas around the 

bamboo sticks. 

IV. Validation of the BRMs: By comparing estimated and destructively measured biomass values the 

general validity, robustness, and suitability of the linear and exponential BRMs were evaluated. 

The accuracy of each BRM was evaluated based on the coefficient of determination, index of 

agreement and root mean square error, calculated for each estimated value in comparison with the 

destructively measured biomass. The coefficient of determination (R2) is widely used as measure of the 

dependence between two variables, but often unrelated to the size of the difference between them.  

For validating models, Willmott’s index of agreement (d) shows to which degree a measured value can 

be estimated [53,54]. The index ranges between 0 and 1, from total disagreement to entire agreement.  

In addition, the root mean square error (RMSE) indicates how well the estimated values fit to the 

measured values [55]. 

3. Results 

3.1. Maps of CSM-Derived Plant Height 

The TLS-derived CSMs and the DTM were used to calculate plant height pixel-wise for all plots of 

the field experiment and each management unit of both farmer’s fields. The resulting raster data sets 

have a high resolution of 1 cm. Maps of plant height were created for visualizing spatial and temporal 

patterns and variations. In Figure 5, maps of plant height are shown for two field experiment plots for 

all campaigns of both years. The respective first repetition of two fertilizer treatments for the rice variety 

Kongyu 131 are selected as an example, whereby the plot numbers, 111 and 151, refer to the lower and 

higher amount of applied N fertilizer, respectively. In particular in the maps of plot 111, the linear 

structure of the rice plant rows is detectable in both years. In 2012, Plot 151 shows a discernible pattern 

with higher plant height values in the north corner, which is visible in all campaigns. Moreover, 

differences in plant height occur between the different fertilizer treatments. The mean plant heights are 
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higher for plots with a higher amount of applied N fertilizer, with a difference ranging from 

 ~7 cm to ~13 cm and ~4 cm to ~16 cm for 2011 and 2012, respectively. 

 

Figure 5. Crop surface model (CSM)-derived maps of plant height for two field experiment 

plots of both years, given with mean plant height per plot. 

3.2. Analysis of Plant Height Data 

Regarding the field experiment, averaged CSM-derived and manually measured plant heights were 

used for validating the accuracy of the scan data (Table 2). The mean heights are quite similar for both 

years, with an average difference of ~7% and ~9% for 2011 and 2012, respectively. The standard 

deviation within each campaign increases over time. All values and the resulting regression lines are 

shown in Figure 6. The coefficients of determination are high for 2011 and 2012 with R2 = 0.91 and  

R2 = 0.72, respectively. 
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Table 2. Mean crop surface model (CSM)-derived and manually measured plant heights of 

the field experiment (n, number of samples; xത, mean value; SD, standard deviation; min, 

minimum; max, maximum). 

Date Plant height from CSM (cm) Measured plant height (cm) Difference 

 n xത SD min max xത SD min max % 

21 June 11 54 24.84 3.63 17.90 32.99 24.37 2.06 19.13 28.88 1.89 

04 July 11 54 34.62 4.36 24.59 42.71 37.94 2.42 32.38 44.13 9.59 

18 July 11 54 55.38 7.22 44.28 70.30 63.56 4.25 53.10 70.70 14.77 

01 July 12 54 44.72 3.08 37.80 53.25 40.85 4.87 31.00 49.50 8.64 

09 July 12 54 57.09 3.61 48.87 64.64 46.84 4.30 37.50 56.50 17.95 

 

Figure 6. Regression of the mean CSM-derived and manually measured plant heights of the 

field experiment of both years (each n = 162). 

3.3. Analysis of Estimated Biomass 

Following the set-up of the field experiment, only five treatments were considered for the destructive 

biomass sampling (n = 30). Thus, the number of samples and averaged plant height values differ from 

the comparison shown in Table 2. On both farmer’s fields, biomass was taken around all bamboo sticks 

(each n = 24). Mean value, standard deviation, minimum, and maximum were calculated for the plant 

height and dry biomass of all campaigns on each site (Table 3). The analysis of the mean plant heights 

can be summarized to: (I) the differences between the field experiment 2011 and village 69 are less than 

~5 cm, (II) the data sets from the field experiment 2012 and village 36 show considerably larger 

differences with ~25 cm, (III) the difference between the data sets of the field experiment lies between 

~10 cm and ~20 cm, (IV) comparing the farmer’s fields, the difference increases over the growing season 

from ~2 cm to ~20 cm, and (V) the standard deviations within each campaign are almost similar and 

below ~5 cm, despite the results from village 36 with values between ~6 cm and ~8 cm. 

Regarding the biomass measurements, comparative statements have to be limited, due to the 

interpolated values for the field experiment 2011. Nevertheless, the results can be summed up as 
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following: (I) all mean values are considerable higher for 2012, (II) the difference between the values of 

the field experiment 2011 and village 69 increases over time from less than 5% for the first campaign to 

~40% and ~30% for the second and third campaign, respectively, (III) the difference between the values 

of the field experiment 2012 and village 36 is constantly less than 5% during the whole observation 

period, and (IV) the standard deviation is much higher for all measurements in 2012, ranging from ~75 

g/m2 to ~145 g/m2, in contrast to ~15 g/m2 to ~80 g/m2 for the measurements in 2011. 

Table 3. Mean CSM-derived plant heights and destructively measured biomass values of all 

sites (n, number of samples; ܠത , mean value; SD, standard deviation; min, minimum;  

max, maximum). 

Site/  Plant height from CSM (cm) Biomass (g/m2) a 
Date n xത SD min max xത SD min max 

Field experiment         
21.06.11 30 24.93 2.85 20.59 30.33 59.51 18.86 24.04 100.70
04.07.11 30 33.80 3.74 27.25 40.75 131.72 30.03 66.71 199.41
18.07.11 30 56.69 5.49 44.91 63.03 422.27 80.90 274.74 599.53
01.07.12 30 43.81 2.95 37.80 48.14 231.42 74.48 104.47 421.35
09.07.12 30 56.08 3.73 46.66 62.28 449.92 105.62 225.40 673.79
17.07.12 30 66.63 5.05 54.62 75.24 636.10 127.87 372.06 946.15

Village 69         
22.06.11 24 20.80 4.82 13.39 31.44 57.58 13.02 25.64 80.01 
05.07.11 24 34.09 4.52 27.13 44.60 217.43 29.44 146.54 278.12
19.07.11 24 59.49 4.87 51.79 72.58 589.71 73.01 482.33 723.32

Village 36         
30.06.12 24 18.13 7.59 1.96 45.00 251.67 91.46 123.00 479.88
08.07.12 24 30.23 6.22 19.25 41.73 469.93 104.00 171.90 639.00
16.07.12 24 40.36 8.28 21.54 52.82 717.61 143.73 399.36 966.42

a values for the field experiment 2011 are linearly interpolated from other dates. 

The regression equations from the field experiment data were used to establish linear and exponential 

BRMs. Previously, the general concept was examined with trial BRMs, each achieved from two field 

experiment repetitions of one year, validated against the third repetition. Table 4 shows the equations of 

the linear and exponential trial BRMs with the estimated and measured biomass values. In both years 

over- and underestimations occur, depending on the repetition combination and linear or exponential 

model. However, for the linear models the mean deviations of the estimated values from the actual 

measured values are small for 2011, less than 19% and very small for 2012, less than 1%. On the 

contrary, for 2011 the coefficients of determination (R2) as well as the indices of agreement (d) between 

estimated and measured biomass values are higher and the root mean square error (RMSE) is lower. 

Similar R2 and d values were achieved with the exponential models. Due to the log-transferred biomass 

values, the RMSE values cannot be directly compared. However, whereas the differences between 

estimated and measured values are much lower for 2011 (below 5%), they are slightly higher for 2012 

(up to ~2.5%). 
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Table 4. Trial biomass regression models (BRMs) and validation of estimated against 

measured biomass (R2, coefficient of determination; d, index of agreement; RMSE, root 

mean square error). 

Year/ 
Trial BRMs a 

Estimated 

Repetition

Mean biomass (g/m2) Difference 

(%) 
R2 d RMSE

Repetition estimated measured

L
in

ea
r 

2011         

1 & 2 y = 11.06x − 211.23 3 249.79 210.61 −18.60 0.92 0.96 61.54

1 & 3 y = 11.12x − 237.97 2 174.05 208.32 16.45 0.81 0.93 79.90

2 & 3 y = 11.15x − 229.41 1 189.38 194.56 2.66 0.88 0.97 52.90

2012         

1 & 2 y = 14.33x − 379.96 3 427.12 426.06 −0.25 0.72 0.91 93.27

1 & 3 y = 14.87x − 413.65 2 404.44 402.35 −0.52 0.55 0.85 125.13

2 & 3 y = 14.36x − 379.12 1 413.28 417.20  0.94 0.71 0.91 92.77

E
xp

on
en

ti
al

 b 

2011         

1 & 2 y = 0.06x + 2.76 3 4.99 5.22 4.58 0.88 0.95 0.38 

1 & 3 y = 0.06x + 2.64 2 5.01 4.83 −3.64 0.80 0.93 0.41 

2 & 3 y = 0.06x + 2.80 1 4.91 5.05 2.91 0.91 0.97 0.30 

2012         

1 & 2 y = 0.04x + 3.79 3 5.95 5.96 0.22 0.68 0.89 0.28 

1 & 3 y = 0.04x + 3.82 2 5.88 6.02 2.44 0.58 0.82 0.36 

2 & 3 y = 0.04x + 3.67 1 5.94 5.88 −1.03 0.72 0.91 0.25 
a x = plant height (cm); y = biomass (g/m2); b biomass values are natural log-transformed. 

The final linear and exponential BRMs were established from the field experiment data sets for each 

year separately and for both years combined (Table 5). All values and the resulting regression lines are 

plotted in Figure 7 for the linear and exponential models, the corresponding equations are given in Table 5. 

Strong coefficients of determination for all data sets prove the dependency of biomass on plant height 

during the regarded pre-anthesis period. Comparable results were achieved for linear (2011: R2 = 0.86; 

2012: R2 = 0.66; combination: R2 = 0.81) and exponential models (2011: R2 = 0.84; 2012: R2 = 0.65; 

combination: R2 = 0.84). Each model was used for estimating the biomass of the buffer areas around the 

bamboo sticks on both farmer’s fields based on the CSM-derived plant height. The reliability of the 

estimated values was validated against the measured biomass values. In Table 5 the mean differences 

are given, averaged for each campaign and over all campaigns on each farmer’s field. Further, the 

coefficient of determination (R2), index of agreement (d), and root mean square error (RMSE) are given 

for each BRM. Generally, the estimations for village 69 are better overall, verifiable through smaller 

percentage deviations, higher R2 and d as well as lower RMSE values for linear and exponential models. 

The differences between linear and exponential models for each site are small with slightly better R2 

values for the linear BRMs. Within each site, the three models yielded almost similar results. Regarding 

the BRMs of the single years, the linear function showed slightly lower percentage deviations with the 

data set from 2011, whereas the exponential with the one from 2012. For the combined data set, the 

linear model functioned slightly better than both single year BRMs, whereas with the exponential models 

it performed weaker. 
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Table 5. Biomass regression models (BRMs), derived from field experiment and validation 

of estimated against measured biomass for the farmer’s fields (R2, coefficient of 

determination; d, index of agreement; RMSE, root mean square error). 

 
Site/ 

BRM a 

Mean difference R2 d RMSE

 per campaign (g/m2) all campaigns    

 Data set 1. 2. 3. (g/m2) %    

L
in

ea
r 

Village 69          

2011 y = 11.06x − 224.18 51.69 64.56 110.79 90.73 31.48 0.90 0.92 119.70

2012 y = 14.51x − 390.58 146.33 113.35 115.10 125.59 43.57 0.90 0.91 146.90

combination y = 12.37x − 273.19 73.47 68.95 98.30 89.83 31.16 0.90 0.93 115.22

Village 36          

2011 y = 11.06x − 224.18 254.34 320.62 380.60 336.87 74.48 0.60 0.53 377.04

2012 y = 14.51x − 390.58 281.90 382.73 425.57 375.82 83.09 0.60 0.51 429.33

combination y = 12.37x − 273.19 175.02 330.06 383.54 312.30 69.04 0.60 0.53 383.62

E
xp

on
en

ti
al

 b  

Village 69          

2011 y = 0.06x + 2.74 0.04 0.59 0.32 0.23 4.35 0.85 0.95 0.46 

2012 y = 0.04x + 3.76 −0.58 0.25 0.24 −0.03 −0.65 0.85 0.92 0.45 

combination y = 0.05x + 2.95 0.07 0.72 0.58 0.41 7.81 0.85 0.91 0.56 

Village 36          

2011 y = 0.06x + 2.74 1.58 1.52 1.42 1.47 24.31 0.56 0.44 1.47 

2012 y = 0.04x + 3.76 0.65 1.12 1.13 0.97 15.97 0.56 0.51 1.06 

combination y = 0.05x + 2.95 1.38 1.62 1.58 1.51 24.92 0.56 0.42 1.51 
a x = plant height (cm); y = biomass (g/m2); b biomass values are natural log-transformed. 

Figure 7. Linear (left) and exponential (right) regression between mean CSM-derived plant 

height and dry biomass for the field experiment of both years (each n = 90); regression 

equations are given in Table 5. Biomass values for the exponential regression are  

natural log-transformed. 
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4. Discussion 

Overall, the acquisition with both laser scanners worked very well. The reliability of the devices was 

shown in earlier studies [38,39,50]. Due to the lightweight build-up and higher measurement rate the 

Riegl VZ-1000 is preferable to the Riegl LMS-Z420i, but was not available in 2012. As mentioned, 

alignment errors in the data sets from 2011 caused time-consuming post-processing. The positioning of 

additional reflectors was helpful for aligning the data sets from 2012 and led to better results, reflected 

by the lower error after the whole alignment process. A further source of error in TLS measurements is 

noise in the point cloud, caused by reflections on rain, insects, or other small particles in the air. Due to 

the small size of the measured crops and uneven surfaces, this issue has to be regarded in particular for 

applications in agriculture, as also reported from other studies [33,35]. The measuring speed of the used 

time-of-flight scanners reduced the noise already and filter options in RiSCAN Pro simplified its 

removal, but further developments are desirable. In this context, intensity values should be investigated 

for establishing filtering schemes. So far, they are used for separating laser returns on canopy from 

ground returns [56] or for detecting single plants [31,32]. 

Regarding the practical implementation, this approach indicates advantages towards similar studies. 

Good results were achieved for estimating biomass of rice plants based on the vertical plant area density, 

measured with a portable scanner in combination with a mirror [37]. However, for the application on 

larger-scale fields their set-up might be less practical. Through the non-invasive TLS acquisition from the 

edges of the field, undisturbed plant growth can be ensured and the scan positions with the tractor-trailer 

system profited from the greater height. As the linear structure of the rice plant rows is observable, a 

more precise acquisition of the crop surface can be assumed. Thus, lightweight scanners are desirable, 

which can easier be brought to a lifted position. Moreover, cost-effective systems like the Velodyne 

HDL-64E LiDAR sensor [57] and mobile laser scanning systems like the ibeo ALASCA XT [58] should 

be considered for realizing practical applications of the presented approach for farmers. 

Further, the oblique perspective of the scanner must be taken into account, which is unavoidable from 

a ground-based system without entering the field. Studies indicate that the height of reflection points 

might be overestimated through the influence of the scanning angle [59]. As the measured signal is 

influenced by the scanning geometry and beam divergence [31,60], a radiometric calibration is supported 

for stationary TLS by other studies [26,61]. In this study, the merged and cleaned point clouds were 

filtered with a scheme for selecting maximum points. Hence, the crop surface was determined from an 

evenly distributed coverage of the field and overestimations should be precluded. 

Manual measurements of plant height were conducted for validating the TLS data. However, therein 

differences between the measurement methods must be denoted. Whereas with less than ten hills per 

field experiment plot, only a small and mostly the highest part of the entire crop surface was considered 

for the manual measurements, the scanner captures the whole plot, including the lower parts. Hence, 

only plot-wise averaged values could be compared but the high R2 values up to 0.91 between both 

measurements confirmed the accuracy of the TLS data. However, the approach of using the 90th 

percentile [36] instead of the maximum values for the CSM-based plant height calculation should be 

considered for achieving values which are more robust against low scanning resolutions. Generally, the 

precision of the TLS-derived CSMs is difficult to determine by the manual measurements due to these 

differences. The good performance of TLS measurements for agricultural applications is presumed from 
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other studies [31,33] and performance tests by the manufacturer validate the high accuracy and precision 

of the Riegl scanners [48,49]. Nevertheless, a main advantage is the objective assessment of plant height 

by CSMs, which avoids the selection bias of manual measurements. The non-invasive acquisition of the 

whole area in a high spatial resolution is one of the main benefits of the presented approach. In the 

context of PA, this is required for accurate crop monitoring [6]. 

Considering the upscaling of known plant information, the transferability of the virtually modelled 

geometry of single rice plants to field level might be evaluated with the high resolution CSMs [22,23]. 

Referring to the model of predicting yield potential for rice [21], the CSM-derived plant heights can be 

used as input data. Border effects cause problems in estimating rice yield, due to differences between 

internal and external rice plants in a plot [62]. In this study, an inner buffer was used to avoid border 

effects. For further studies, the high resolution of the TLS-derived CSMs might be useful for determining 

the differences between internal and external rows. 

The pixel-wise calculated plant heights were visualized in maps of plant height for discovering spatial 

or temporal patterns and variations. As shown in Figure 5 the high resolution of 1 cm allowed an exact 

representation. In contrast, rice field mapping based on space-borne data has not been carried out with 

resolutions finer than 1 m so far [12,15,16]. However, new satellites like the WorldView-3 [63], 

providing a panchromatic resolution of ~0.3 m, should enable a more detailed acquisition. The high 

resolution is one of the major advantages of TLS data and enables the usability as in-situ validation for 

space-borne data. Although, the spatial extent of air- or space-borne methods cannot be reached with 

ground-based methods and the data acquisition effort is high, they are more flexible for the application 

in the field. Consequently, the presented approach may offer a tool for comparative analyses between 

TLS and airborne laser scanning (ALS). As shown by Bendig et al. [64] good results were achieved for 

the creation of CSMs from unmanned aerial vehicle (UAV)-based imaging for barley (R2 up to 0.82 

between CSM-derived and manually measured plant heights). Furthermore, promising results for the 

assessment of trees have already been achieved with UAV-based laser scanning systems [58,65]. 

However, the influence of the oblique and nadir scanning perspectives of ground- and air-borne 

measurements, respectively, have been less investigated so far. A comparative study on TLS and 

common plane-based ALS showed that the scanning angle and possible resolution influences  

the results [66]. Therefore, multiple sensors and acquisition levels should be combined for  

comprehensive analyses. 

For confirming the general validity of spatial plant height data as a non-destructive estimator for 

biomass of paddy rice and proving the robustness as well as the spatial and temporal transferability of 

all established models, destructive biomass sampling was performed on all sites, revealing differences 

between the fields (Table 3). Basic differences were a lower human impact and larger size of the 

management units on the farmer’s fields as well as the presence of different rice varieties and fertilizer 

treatments on all sites. 

The three repetitions of each fertilizer treatment on the field experiment were useful to set up trial 

BRMs for proving the general concept (Table 4). High coefficients of determination and indices of 

agreement between the estimated and measured biomass values for each repetition of both years support 

linear and exponential models with comparable results. Nevertheless, further research is necessary for 

defining the differences between rice varieties and the influence of varying fertilizer treatments. 
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In addition to the final BRMs of each year, a model based on the combined data set of both years was 

established, each as a linear and an exponential model. The transferability of the BRMs from the small 

scale field experiment for estimating biomass on larger scale farmer's fields was shown  

(Table 5). Besides the transferability of existing models, a model improvement through the combined 

data set and through additional exponential models was investigated. As shown in Figure 7 for the data 

sets of the field experiment, the dependency of biomass on plant height can be described by linear and 

exponential regressions with similar high coefficients of determination. However, herein, only the  

pre-anthesis period was regarded. After anthesis, increasing biomass is mostly related to the development 

of grains while plant height remains almost constant. Thus, further studies are necessary for investigating 

the performance of linear and exponential BRMs for the estimation of rice biomass during the  

later stages. 

The results of the linear and exponential models are almost similar for each site, with overall better 

values for village 69. As stated above the linear and exponential BRM yielded better results with the 

data sets from 2011 and 2012, respectively. A possible explanation might be the slightly different 

captured growth stages or the interpolated biomass values for 2011. Moreover, analyses are necessary, 

concerning the influence of different rice varieties, fertilizer treatments, or soil conditions. Additionally, 

the lower human impact on the farmer's fields might influence the plant development. For village 36 the 

heterogeneous plant development in the management units has to be stated as a source for the differences 

between estimated and measured values. The varying performance of the combined model might be 

caused by these differences. Of most importance might be the fact that the relation between plant height 

and biomass in the two regarded periods seems to be best represented by different models. Overall, the 

results support the applicability of BRMs for biomass estimations based on TLS-derived spatial plant 

height data and substantiate the potential of ground-based plant parameter measurements as input for 

biomass estimation models [7,17]. 

5. Conclusions 

The applicability and high suitability of terrestrial laser scanning for monitoring plant height of paddy 

rice based on multi-temporal CSMs were confirmed. An outstanding feature is the objective assessment 

of the whole field in a very high spatial resolution. Moreover, as the scans are non-invasively acquired 

from the field edges, entering the rice paddies is avoided. By investigating a repeated field experiment 

and two farmer’s conventionally managed fields in two years, varying patterns of plant development and 

growth were covered. 

For PA, monitoring of plant parameters for adjusting site-specific fertilization is a major topic. Strong 

coefficients of determination between plant height and biomass show the applicability of spatial plant 

height data as a non-destructive estimator for biomass of rice plants. Based on the promising results of 

single year analyses [38,39], in this contribution, the annual transferability of the BRMs and the 

applicability on different fields were regarded. Moreover, a model improvement through exponential 

models was examined. During the regarded pre-anthesis period, the linear and exponential models 

performed equally well. Further studies are necessary regarding a presumed differing performance 

during the later stages. However, the spatial and temporal transferability of the BRMs to a larger scale 

is supported by estimations of biomass on farmer’s fields based on TLS-derived CSMs. High coefficients 
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of determination and indices of agreement between estimated and measured values demonstrate the 

coherence of the results and prove the robustness of the method. Regarding the accuracy of the 

estimation, best results were achieved with different models, depending on the used data. Overall, higher 

R2 values were achieved with the linear models, whereas the exponential models yielded smaller 

percentage deviations. 

To summarize, the novelty in this contribution is the comparative analysis of linear and exponential 

models based on objectively assessed plant height as a reliable estimator for the biomass of paddy rice 

over different growing seasons and different fields. Further long-term experiments and comprehensive 

monitoring approaches are required for investigating the performance of linear and exponential models 

for the pre-anthesis and for later growing stages. 

In the future, combined approaches involving plant height and spectral measurements should be 

developed for accurately determining the actual biomass and N content of plants. Following, spatially 

resolved NNI calculations could be executed for improving N management strategies [67]. Thereby, 

over-fertilization could be reduced while keeping or enhancing the yield. 
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