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Abstract: Signal grass (Brachiaria decumbens) is a highly productive tropical grass that is 

widespread through South America, Australia, Indonesia, Vanuatu and Malaysia due to its 

adaptation to a wide range of soil types and environments. Animal production from these  

B. decumbens pastures is highly variable due to sporadic outbreaks of photosensitisation 

associated with low growth rates of young animals, anorexia and wasting. The 

identification of B. decumbens toxicity through clinical signs may grossly underestimate 

the impact and severity of the disease. Affected animals without clinical signs have 

elevated serum liver enzyme concentrations resulting from blockage of the bile ducts by 

birefringent crystals, identified as calcium salts of steroidal saponins found in leaves and 

stems. The concentrations of the steroidal saponins vary through the year and within the 

plant. Young, green leaves contain 5–10 times the saponin concentration of mature 

leaves indicating that B. decumbens pastures are likely to be more toxic during 

sprouting and early growth. Previous exposure, selective grazing, and avoiding toxic leaves 

may partly explain apparent resistance of some animals to B. decumbens toxicity. Further 

research is needed to define growing conditions that produce elevated saponin levels and to 

investigate the impact of B. decumbens on rumen function. 
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1. Introduction 

Brachiaria spp., generally referred to as signal or palisade grasses based on the similarity of the 

flower head structure to a railway signal, originated in East Africa (Uganda, Kenya, Tanzani Rwanda, 

Burundi and Zaire) as a pasture resource for grazing by cattle and wildlife, growing at a range of 

altitudes from 500 to 2300 m a.s.l. These species have since been replaced with other forage  

species [1] that are more suitable to the changing climate. There has been confusion with Brachiaria 

species names being interchangeable over the past 50 years with B. eminii, B. decumbens, and  

B. ruziziensis all being used for the same plant material [2,3]. The most widely used cultivar as a 

grazing pasture globally is B. decumbens cv. Basilisk which was bred from seed introduced into 

Australia in 1930 from Uganda [4] and approved for registration in 1973. Signal grass (Brachiaria 

decumbens) has been introduced into many tropical countries including tropical and sub-tropical areas 

of Australia [5–8], Vanuatu [9], Colombia [10,11], Indonesia, Fiji [12], Trinidad [13] and  

Venezuela [14] with Brazil currently having more than 50 million hectares of Brachiaria spp.  

pastures [4,15,16]. In Malaysia, Brachiaria species have been planted on more than 80% of improved 

farming pastures with B. decumbens as the most favoured species [17]. Livestock production from 

these pasture systems has been variable even when both pasture quality and quantity were high. This 

review will focus on constraints to the use of B. decumbens cv. Basilisk as a pasture for  

grazing ruminants. 

2. Agronomy of Brachiaria decumbens (Signal Grass) 

B. decumbens is a low-growing decumbent perennial grass with flowering stems up to 100 cm high 

originating from the prostrate, multi-noded stems; plants can spread by both rhizomes and stolons as 

well as through seed production. B. decumbens has been widely adopted as a pasture for grazing 

ruminants due to its high nutritive value and aggressive growth habit that provides a dense ground 

cover able to suppress weeds. However, the aggressive growth habit can result in pastures becoming 

monocultures [2,18] by suppressing companion plants such as legumes, thus reducing the potential 

nutritive value of the pastures for livestock. Legumes with stoloniferous growth habits, such as Arachis 

pintoi (pinto peanut) and Desmodium heterophyllum (creeping hetero) and plants with shrubby/tree 

growth habits (such as Leucaena leucocephala and Stylosanthes guianensis) have been used with some 

success as legume companion species B. decumbens pastures [18–21]. The ability of B. decumbens to 

withstand shading has made it an important companion to Leucaena [22], and it has been successfully 

grown as a pasture in coconut plantations [23,24]. 

B. decumbens is resilient and is grown over a wide range of soil types including infertile acid soils 

with low pH (<3.5) and high aluminium levels [4,25] and climates ranging from tropical to  

sub-tropical. In Western Australia, B. decumbens was included in a mixed species pasture mix for the 

sub-tropics (sandy soils and a maximum annual rainfall of around 600 mm) [26]. This recommendation 

has now been withdrawn due to outbreaks of photosensitisation in grazing livestock on the mixed 

pastures. B. decumbens is able to withstand short-term drought conditions [2,27–29] by re-allocation of 

biomass and adjustment of growth rates resulting in no significant differences in biomass yield [29] but 

is highly susceptible to waterlogging [2] and can only tolerate flooding for a few days. 



Agriculture 2015, 5 973 

 

 

B. decumbens produces more dry matter than most tropical grasses during the dry season [30] and is 

capable of producing 15–27 mt (metric tonnes) dry matter (DM)/hectare/year [31–33]. In a study 

undertaken in South Sulawesi, Indonesia, B. decumbens produced more dry matter than other 

improved pasture species during the dry season (5700 kg/ha and 1910–3500 kg/ha respectively). It has 

been suggested that the ability to respond to small amounts of rainfall that occurred in the dry season 

was due to the extensive root system of B. decumbens [29,30]; plants produce new growth rapidly with  

out-of-season rain events during the dry season and with the break of season. Young vegetative 

material has been associated with reported outbreaks of photosensitisation among ruminants grazing B. 

decumbens pastures [34–37] (see Section 3). 

B. decumbens responds well to defoliation either through grazing, harvesting or complete 

defoliation such as burning [23,38]. In Papua New Guinea, B. decumbens regrows readily after fire, a 

practice used by local villagers to hunt animals or as part of the “slash and burn” management of 

standing grass to prepare new food gardens [39–42]. B. decumbens has been shown to persist better 

than Panicum maximum (guinea grass) under high stocking rates in far north Queensland  

(Australia) [43]. 

Brachiaria species, including B. decumbens, utilise nitrogen efficiently [2] due to an ability to  

favour root growth in extreme conditions and to harvest biological nitrogen from bacterial species in 

the soil [44,45] equivalent to 30–50 kg N/hectare. B. decumbens cv. Basilisk has the ability to uptake 

higher levels of calcium, phosphorus and nitrogen than other Brachiaria species in both high and low 

soil fertility conditions [45]. Data from a number of experiments, extrapolated by Rao et al. [45] have 

indicated that 40% of plant nitrogen content in B. decumbens was derived from biologically fixed N2. 

B. decumbens has shown, in plot trials, an increasing response to the addition of nitrogen  

fertiliser up to 400 kg N/hectare depending on nitrogen source [46,47], producing more than  

40 mt DM/hectare/year at this level. In Brazil, the late summer application of nitrogen  

(100 kg N/ha) together with 95 days of deferred grazing, were found to produce the greatest biomass 

on an annual basis [48]. Split applications of nitrogen fertiliser have been recommended, as the growth 

response is greater in the period immediately following the application of nitrogen [49]. 

3. Animal Production on B. decumbens Pastures 

Brachiaria species have been widely implemented as quality pastures for animal production. 

Nitrogen content in early regrowth periods (2–5 weeks) ranged from 10–28 g N/kg dry matter 

decreasing to 7–15 g N/kg DM for 10–12 weeks regrowth [2,21,40,50–52]. In vitro dry matter 

digestibility showed similar variation with early growth ranging from 56%–78% up to five weeks of 

age decreasing to 41.6% to 63.7% as the pasture matures [2,21,30,47,51,53,54]. The estimated 

nutritive value, and therefore the potential level of liveweight gain, of B. decumbens is similar to other 

tropical pasture species such as Panicum maximum (guinea grass), Digitaria decumbens (pangola 

grass) and Setaria anceps (setaria) [20,30,51,54,55]. Analytical data on chemical composition and 

potential digestibility (in vitro DM digestibility) of B. decumbens have shown high variability between 

data sets sampled through the growing period. This variability may be due to one or more factors such 

as season (wet or dry), fertiliser applications (timing and level), species combinations (e.g., presence of 
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legumes), growing conditions (trial plot vs. grazing pasture), sampling procedures (plot harvest or 

picked selection) and analysis methods (in vivo vs. in vitro digestibility determination). 

Based on estimated nutritive values, animal production from B. decumbens pastures would be 

expected to be comparable to production from other commonly used tropical grass species and from 

medium quality temperate pastures. This expectation is supported by grazing trials that compare 

pasture species/composition, stocking rate and growth rates of sheep, goats and cattle; these 

comparisons have shown that daily and annual live weight gains from grazing B. decumbens is 

comparable toormayexceed growth rates on P. maximum pastures—0.46 to 0.78 kg/head/day and 0.49 to 

0.61 kg/head/day, respectively [10,18,21,55,56]. Cattle in North Queensland, aged 15 months to three 

years of age, grazed tropical pastures including B. decumbens under a rotational grazing  

system at stocking rates that ranged from 0.7 to 5 head/ha [47]; annual weight gains were  

211 to 950 kg/ha/year [43,47,55,57] with the highest live weight gains achieved on B. decumbens 

pastures. B. decumbens persist under high stocking rates and continuous grazing [55,58]. 

However, conflicting data from trials and from on-farm records indicate that nutritive value, as 

determined by chemical analysis, may not be a true indicator of potential animal performance. 

Analysis of growth rates for Brahman cattle in the Markham and Ramu Valleys of Papua New Guinea 

and in Queensland, Australia showed lower growth rates on B. decumbens pastures  

(0.29–0.37 kg/head/day) in the late wet season/early dry season pastures following rapid pasture 

growth compared to growth rates during the late dry season (0.57–0.65 kg/head/day) [47,59,60]. Since 

pastures in the early dry season would be considered to have a high nutritive value following the 

seasonal rains, these data conflict with performance expectations. Growth rates calculated from farm 

records over five years, from two different production systems in the Ramu Valley in Papua New 

Guinea, showed that Brahman weaner cattle on B. decumbens pastures (with supplements) averaged 

0.05 kg/head/day and 0.2 kg/head/day for 1–100 days and 100–200 days post weaning,  

respectively [59] irrespective of the production system. The two production systems were (i) born, 

reared and weaned onto B. decumbens pastures or (ii) born onto native pastures and weaned onto B. 

decumbens pastures. Studies in Brazil, however, have shown that sheep adapted to B. decumbens 

pastures gained weight at a similar rate to animals on P. maximum but had evidence of liver 

dysfunction indicated by elevated serum enzyme levels [16]. Naïve sheep (i.e., sheep which had no 

previous exposure to B. decumbens pastures) lost weight rapidly, had elevated serum liver enzyme 

levels and a 50% mortality rate. 

Grazing trials report rates of weight gain and persistence of the pasture under grazing for  

B. decumbens pastures. No reports of production problems, photosensitization or deaths have been 

found in grazing trial data. However production/disease issues on these pastures have appeared as 

disease outbreak reports, generally from commercial farms rather than from trials. Recent studies in 

Brazil have attempted to link live weight gain and grazing history of the livestock species to clinical 

andsub-clinical disease occurrences [16,41]. 

4. Toxicity of B. decumbens Pastures 

Although analyses and animal production studies indicate that B. decumbens pastures can  

produce high live weight gains in grazing livestock, there are many reports of low weight gains, 
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general ill-thrift and sporadic outbreaks of photosensitivity in goats [36,61], sheep [34,62–65],  

llama [66], buffaloes [67], deer [68] and cattle [69] across Colombia, Brazil, Australia, Papua New 

Guinea [59,70], Malaysia and Sri Lanka. 

4.1. Photosensitisation and Clinical Biochemistry 

Photosensitisation outbreaks are often reported when the pasture is young and actively growing. 

This includes growth after cultivation or slashing [62], in the early wet season or during the dry season 

following an out of season rain event [34,36,61]. Photosensitisation outbreaks have often been 

observed in sheep and goats within 10 days of grazing established B. decumbens pastures [61–63] and 

after three weeks in new growth pastures following out of season rainfall events [34,37,40,71,72]. 

Clinical signs of photosensitisation include progressive weight loss and anorexia, oedema and necrotic 

tissue, crusting and sloughing of skin in non-pigmented and exposed areas such as ears, face, rump, 

flank and vulva regions in females as well as visible jaundice [40,62]. Affected animals seek shade, 

grazing in the evening or early mornings or remaining under trees and shrubs rather than actively 

grazing [36,40,63]. Data from reported outbreaks indicate that young animals (sheep <12 months and 

cattle <2 years) are most likely to show clinical signs [41,42,65,73,74] with older animals not exhibiting 

clinical signs. In these outbreaks, morbidity in sheep varied from 0.42% to 100% and 0.08% to 7.9% for 

cattle [40–42,63,74–76]. 

B. decumbens or signal grass toxicity outbreaks are reported as clinical signs (predominantly 

secondary hepatogenous photosensitisation) and descriptions of behavioural changes. Secondary 

photosensitisation is a result of the build-up of phylloerythrin in the skin. Phylloerythrin is a 

photodynamic molecule produced from the metabolism of plant chlorophyll [77] by microorganisms 

and normally removed from blood for excretion in bile. Circulating phylloerythrin levels are increased 

due to hepatic dysfunction and/or bile duct lesions [78]. Skin cells become highly reactive in the 

presence of visible and UV radiation through increased photoexcitation of these photodynamic 

molecules [79]. Animals with pigmented skin are less likely to show clinical signs [34,40,63,79,80]; 

hair and skin pigments protect animals from the impacts of UV exposure. For this reason, areas most 

affected on animals displaying signs of photosensitivity tend to be those that have minimal hair cover 

and are unpigmented [79] such as ears, muzzle, vulva and areas around the tail. Clinical signs (i.e., 

photosensitisation), as the indicator of animals affected by B. decumbens toxicity, is likely to be a 

gross underestimate of the number of animals affected, especially in a pigmented flock or herd. 

Biochemical data from clinical and experimentally induced cases suggest that liver dysfunction is a 

major component of observed subclincal and clinical disease signs. Clinical outbreaks are 

accompanied by changes in liver enzyme concentrations, particularly serum AST (aspartate 

aminotransferase) and serum GGT (gamma glutamyltransferase); increased concentrations of these 

enzymes indicate impaired liver function and have been recorded with other grass species that have 

also been associated with hepatogenous photosensitisation [16,40,64,66–68,72,76,80]. Clinical 

biochemistry collected from reported outbreaks and from feeding/grazing trails indicates that serum 

GGT levels are likely to be more highly elevated (compared to normal range information) than serum 

AST levels. Recorded serum GGT levels of affected animals ranged from 100 U/L to 978 U/L  

(normal range 20–52 U/L) and serum AST levels ranged from 88.8 U/L to 1810 U/L (normal range  
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60–300 U/L) [40,64,68,76,80,81]. Similar serum concentrations have been recorded for animals in the 

same grazing groups but not displaying clinical signs. The correlation between serum GGT levels and 

possible B. decumbens toxicity is higher than for serum AST levels possibly due to the narrow normal 

range associated with serum GGT levels. GGT is an enzyme located in the cell membranes in the bile 

ducts and hepatocytes [82]; serum levels increase with membrane damage due to accumulation of bile 

salts resulting in oxidative stress and decreased antioxidant potential [82,83]. Changes in serum AST 

could be confirmed only when initial values for each animal or herd/flock had been determined. 

Animals with dark wool and/or pigmented skin are less likely to display clinical signs but are as likely 

to have elevated liver enzymes [40,63,80] suggesting that clinical signs are not suitable indicators of 

the number of animals affected by B. decumbens toxicity. 

Comparison of serum biochemistry of clinically affected and non-affected animals indicated that, in 

many cases, serum AST and GGT levels were elevated to the same extent in both groups [64,68,84]. 

The proportions of affected naïve sheep and goats in three grazing trials on B. decumbens pastures in 

Papua New Guinea determined as clinical signs or through serum biochemistry was 38% and 75%, 

15% and 42% and 27% and 82%, respectively [40]. These data suggest that the use of clinical signs to 

define outbreaks may be flawed, severely underestimating the number of affected animals. Weight loss 

(with or without clinical signs) of grazing livestock has often been associated with B. decumbens 

pastures where outbreaks have occurred and with animals in experimental feeding  

trials [16,40,42,80,84]; monitoring of condition score and live weight may be better tools for 

identifying affected animals. 

The proportion of animals clinically affected does, however, appear to be greater for naïve livestock 

and for young and/or newly weaned livestock [64,74]. Naïve sheep introduced to B. decumbens 

pastures in Brazil had increased morbidity and mortality compared to experienced sheep (33.3% and 

11.1% compared to 8.69% and 4.34% respectively) [42,76,80]. Data from reports for other pasture 

species associated with secondary hepatogenous photosensitisation found that 30%–60% of lambs less 

than 12 months of age were most affected resulting in case fatalities of up to 90% [64,85,86]. In Papua 

New Guinea, cattle born and weaned onto B. decumbens pastures had low numbers of clinically 

affected cattle compared to cattle born onto native pastures and weaned onto B. decumbens  

pastures [40] where the annual mortality rate was between 5% and 10%. However, based on farm 

records, the growth rates recorded in the two management systems were the same suggesting that the 

observed poor growth rates for livestock grazing B. decumbens pastures may be due either to  

B. decumbens toxicity per se or to extremely low intakes of pasture, possibly based on previous negative 

experience for those animals reared on B. decumbens pastures. Animals that were born and weaned onto 

B. decumbens pastures camped near the molasses/copra meal supplement and pastures have very 

limited evidence of grazing suggesting that cattle have developed avoidance behaviour [40]. 

4.2. Histopathology 

Post-mortem examination of animals with B. decumbens toxicity indicates that the liver and kidneys 

are the major sites of cellular damage. Blockage of bile ducts is associated with thickening of bile 

canaliculi and the presence of birefringent crystals [40,64,65,67] within the bile ducts. Hydropic 

degeneration of hepatocytes, necrotic cells and the presence of foamy macrophages were found in 
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association with degenerated hepatocytes [42,64,65,67,74,87]. Multifocal cholangitis was common to 

these cases. Microscopic examination of liver tissue has provided evidence of bile duct proliferation 

and blockages with birefringent crystals often found in the bile ducts [40,41,64–67,69,80,87,88]. The 

severity of damage to hepatocytes is closely linked with the clinical symptom of jaundice [83]. 

Physical appearance of the liver shows brown/yellow discolouration, a high degree of mottling and an 

increased lobular pattern [40,42]. The link between B. decumbens pastures and the apparent toxicity 

recorded has been verified through trials where animals have been dosed with rumen contents from 

affected animals; clinical, biochemical and histopathological patterns were similar to those found in 

outbreaks and grazing trials [88–90]. Although these experiments did not identify the compound(s) 

responsible for elevated liver enzymes, histopathological changes and photosensitisation, a link 

between B. decumbens consumption and physical/physiological/biochemical observations was confirmed. 

Similar histopathological signs and the presence of birefringent crystals have been associated with  

pasture species such as Panicum schinzii [85,91,92], Panicum coloratum [93,94], Panicum  

dichotomiflorum [95,96], Panicum miliaceum [97] and Tribulus terrestris [98,99]. As a consequence, 

identification of possible toxic compounds has been focused across these pasture species as a group. 

Initial focus was on the possible role of sporidesmin, a toxin produced by the fungus Pithomyces 

chartarun as the physical signs were similar to those observed in animals suffering from facial  

eczema [100,101]. 

4.3. The Role of Pithomyces chartarum 

Clinical signs of animals affected by B. decumbens toxicity are similar to those of animals with 

facial eczema. This disease affects sheep, deer, alpacas and cattle in New Zealand particularly in late 

summer/autumn [75,102]. Facial eczema is a secondary photosensitisation disease caused by the 

mycotoxin sporidesmin produced by the saprophytic fungus Pithomyces chartarum and was initially 

thought to be contributing factor to B. decumbens toxicity [100,101]. Early studies attempted to 

reproduce the symptoms observed in animals affected by Panicum toxicoses by dosing lambs with 

commercially available saponins with or without sporidesmin; the saponins used had been identified as 

components of birefringent bile crystalsthat are commonly associated with secondary 

photosensitisation. The dosed saponins did not produce liver lesions and sporidesmin produced a weak 

response only [103]. Further studies on the possible role of sporidesmin in B. decumbens toxicity have 

shown that there are negligible numbers of spores on pastures associated with either outbreaks or 

grazing studies, thus discounting any role of sporidesmin in this disease [42,64,72,76,104–106]. 

5. Identification and Metabolism of Toxic Compounds 

Potentially toxic compounds have been isolated from leaf and stem fractions of plants associated  

with secondary hepatogenous photosensitisation, including B. decumbens, and identified as steroidal 

saponins [8,40,93,96,106–113]. Saponins are surface-acting glycosides that have the ability to produce 

a stable foam in an aqueous solution [114] and are classed as either triterpenoid or steroid based on 

structure [114]. Triterpenoid saponins are commonly found in dicotyledons while steroidal saponins 

are found in monocotyledons [115]. The activity of a saponin is a function of the position and type of 

sugar component of the molecule [115] with many plant species containing multiple saponins—for 
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example lucerne (alfalfa) roots contain 29 identified saponins. Saponins create pores in cell 

membranes and are associated with haemolytic activity [114,116]—this has been used as a qualitative 

test for the presence of saponins. The ability to disrupt blood cells is a consequence of interactions 

between the saponin and the sterols present in the red blood cell membrane and can be used as an 

indicator of the presence of saponins [116]. 

Steroidal saponins are found in the plant as glycosides of sapogenins with the sugar fraction being 

composed of one or more sugars. Although saponins have been found in a wide range of plants and 

crops, their role in plant metabolism and function is poorly understood [114,115]. Steroidal saponins 

have been commercialised as supplements, health foods for human consumption and potential  

anti-cancer treatments [116–121]. 

Saponins are present in a number of forages that are important for livestock. These include fodder 

plants such as Acacia spp., Gliricidia sepium and Sesbania sesban as well as legumes including 

soybean (Glycine maxima), lupins (Lupinus spp), lucerne (Medicago sativa), red clover (Trifolium 

pretense) and ladino clover (Trifolium repens) [115]. Saponins commonly found in forages include 

soyasapogenin, soyasapogenol, diosgenin, dioscin/protodioscin, and yamogenin [115]. Concentrations 

of saponins in plant tissues are highest in those that are vulnerable to insect, fungal or bacterial  

attack [115] suggesting that these compounds may act as a plant defense mechanism. It would 

therefore be expected that saponin concentrations in plant tissues would be highest when the plant is 

most vulnerable; this could include early growth after prolonged dry spells and flowering and/or seed 

set. B. decumbens spreads by seed distribution and through vegetative growth (stolons). This is 

supported by studies that found higher protodioscin concentrations at seed set and seed fall [64,112] 

and other studies that showed highest concentrations in new leaf shoots [35,40,105,108,111,122]. 

Outbreaks tended to be associated with growth after rain, particularly at the end of the dry season or 

after prolonged dry periods [34] rather than total rainfall through the growing season [105] suggesting 

that saponin concentrations were high. However, de Oliveira et al. [15] found positive correlations 

between total saponin concentration and green leaf mass (p < 0.01) and total saponin concentration and 

rainfall (p < 0.05). Protodioscin concentration was elevated after the first rains of the season (32.4 to 

35.4 mg/g DM) but decreased as the wet season continued (3.9 to 8 mg/g DM) suggesting that initial 

high concentration could act as a deterrent to grazing animals and attack by insects, bacteria or fungi 

ensuring survival and establishment. 

The main steroidal saponins found in B. decumbens, as well as many of the other species associated 

with secondary hepatogenous photosensitization, have been identified as dichotomin, protodioscin and 

dioscin [108,110,112]. Diosgenin is produced from acid hydrolysis of either dioscin or  

protodioscin [123]. Prior to 2000, the saponin content of pasture species including B. decumbens was 

reported as diosgenin and/or yamogenin concentrations (mg/kg DM). As these compounds have been 

identified as derivatives of the parent saponin “dioscin”, through improved analytical methodology, 

diosgenin equivalents can be calculated from protodioscin concentration using the conversion 

“(protodioscin mg/kg)/2.5” [8] to allow data comparison. Protodioscin concentrations in pastures 

associated with outbreaks, expressed as mg/g plant dry matter ranged from 5.2 mg/g DM to  

35.4 mg/g DM [64,67,74,76]. Moore et al. (2014) [8] used a protodioscin concentration of 2 mg/g or  

0.8 mg/g diosgenin equivalent as the critical value for potential toxicity of pastures. From data from 
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planted plot and field pasture trials, protodioscin concentrations ranged from 0 mg/g to 60.25 mg/g 

plant DM [8,16,40,64,76,80,105,108,111,112,122,124]. 

Steroidal sapogenins, derived from the parent plant tissue saponins, have been isolated from rumen 

contents [125,126] and from bile in affected animals and identified primarily as metabolic derivatives 

of diosgenin [109,127] and yamogenin (the 25 S isomer of diosgenin) [93,108,109,126,128]. Lambs 

dosed with extracts from B. decumbens plant material developed liver lesions, bile duct proliferation 

with birefringent crystals found in the bile ducts [88,89,126]. Photosensitisation was not observed as 

the lambs were kept out of direct sunlight. Similarly, geeldikkop, the hepatogenous photosensitization 

disease associated with steroidal saponins found in Tribulus terrestris, was reproduced using crude 

plant extracts, producing similar liver lesions and birefringent crystals [90,129]. The extracts contained 

a mixture of saponins including diosgenin and yamogenin [129]. However, lambs dosed with  

the commercially available saponins diosgenin and sarsasapogenin into the rumen showed neither loss 

of appetite nor any evidence of liver damage [40,103] suggesting that either the individual saponins 

may not be hepatotoxic or that the doses were not high enough. 

Metabolism of plant saponins found in B. decumbens and other species associated with  

hepatogenous photosensitisation has been elucidated using plant extracts; ingested diosgenin-derived 

saponins were rapidly hydrolysed by rumen microflora to parent sapogenins [127,129]; diosgenin was 

converted to epismilagenin, smilagenone, smilagenin and tigogenin and primarily absorbed from the 

jejunum [127,130,131]. However, these dosing trials did not produce either clinical or biochemical 

evidence of toxicity, the direct relationship between intake of saponin-containing plant material and 

clinical or subclinical disease [40,127,131]. The ruminal hydrolysis of plant saponins was confirmed 

through the analysis of rumen contents of sheep identified as suffering from B. decumbens  

toxicity [125,126]. Cattle dosed with rumen contents from affected sheep showed evidence of liver 

dysfunction through elevated serum liver enzyme concentrations, providing a further link between 

saponins in plant material, rumen metabolism and liver dysfunction [89]. 

Crystals found in the bile ducts of animals suffering from hepatogenous photosensitisation 

associated with Panicum miliaceum and Tribulus terrestris have been identified as insoluble calcium 

salts of the plant saponins [96,99,132,133]. These investigations have provided important information 

on the possible links between steroidal saponins in plant tissue, rumen metabolism and absorption of 

the derived compounds and the formation of crystals capable of blocking bile ducts. However,  

although the birefringent bile crystals have been shown to be calcium salts of saponins derived from 

diosgenin [90,132,133], dosing experiments using plant extracts or isolated saponins have provided 

limited evidence of the link between plant steroidal saponins, liver dysfunction, bile crystals and the 

clinical signs of this disease [40,103,127,129,130]. Similar results have been obtained for dosing 

experiment (rumen contents or extracted saponins) for the other species associated with secondary 

hepatogenous photosensitisation and containing steroidal saponins [88,90,99,129]. It is possible that 

the observed liver dysfunction and associated physical signs may be either the consequence of 

interactions between saponins or other chemical constituents in the plants or linked to the metabolic 

activity of rumen microorganisms. Dosing with rumen contents of affected animals has proved more 

successful in reproducing biochemical and clinical signs 

Saponin (particularly protodioscin) concentration varies with plant and leaf age with senescing 

leaves generally containing lower concentration of saponins than younger leaves [40,111,134]. Data 
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from Brazil and Papua New Guinea have shown that there is a 5–10 fold increase in saponin 

concentration between new leaves and mature leaves [40,134]. This finding supports the observations 

that clinical outbreaks tend to be associated with new leaf growth. Ferreira et al. [134] found a strong 

relationship between saponin concentration on young leaves and hours of solar radiation. Ensiling B. 

decumbens has been shown to decrease protodioscin concentrations significantly (2.28 mg/g DM to  

0 mg/g DM) over 20 days while conserving B. decumbens as hay only reduced protodioscin 

concentration by 48% [135]. There is no clear trend in saponin concentration with plant age  

per se [76,105,122], with higher concentrations found in plant material 60 days of age or younger but 

almost stable levels over the following 300 days [105,122]. Brum et al. [112] found that saponin 

concentrations varied with environmental factors, age, stage of growth and cultivation methods. There 

was no significant relationship in protodioscin concentrations in commercial paddocks sown with B. 

decumbens in Western Australia over a north to south range of 450 km even though some locations 

had consistently higher concentrations; protodioscin concentrations within sample dates over a two 

year period ranged from 15 mg/g DM to 60 mg/g DM [8]. Sample collection methods varied from 

selecting leaf only to whole plant and have been sampled by plucking, hand picking and plot harvest. 

Samples collected from outbreak sites have been obtained after the outbreak has been detected and 

may not be representative of plant material consumed by grazing livestock. 

Differences in apparent susceptibility (or the possibility of resistance) to B. decumbens  

toxicity [16,64,80] may be due to selective grazing, with animals avoiding plants or plant parts that 

contain higher concentrations of saponins. Lambs dosed with plant secondary compounds avoided 

grazing pastures containing the dosed compound [136] and actively sought out species that did not 

contain the specific compound. Brahman cattle grazing drought stressed B. decumbens pastures in the 

Markham Valley in Papua New Guinea selected older and senescing leaves, leaving new leaves 

untouched; this suggests an active avoidance of plant components with high saponin  

concentration [40]. Brahman weaners born onto B. decumbens pastures avoided grazing B. decumbens 

pastures after weaning, relying on a molasses/copra meal/mineral supplement [40]; examination of the 

pasture revealed that very few plants had been consumed and showed evidence of individual leaf 

selection [40]. The apparent resistance of some animals to pastures containing high levels of saponins 

may therefore be a consequence of modified grazing behaviour, particularly where supplements or 

alternative species are available. However, since B. decumbens pastures tend towards monocultures by 

outcompeting companion species, avoidance of plants with high saponin concentrations may be 

difficult. Avoidance behaviour could provide a possible explanation, on predominantly B. decumbens 

pastures, for poor growth rates and wasting or weight loss often associated with livestock grazing B. 

decumbens pastures since minimising the intake of high risk pastures will reduce nutrient intake and 

thus reduce growth rates. 

Low growth rates from animals consuming B. decumbens pastures could also be related to liver 

dysfunction (as indicated in elevated serum AST/GGT) or to changes in the rumen microbial  

population. Early studies showed reduced microbial population and cellulolytic activity of sheep 

grazing B. decumbens pastures, resulting in significantly lower levels of volatile fatty acid  

production [137]. Although saponins have been shown to reduce protozoal numbers in the rumen 

through rupture of the protozoal cell membrane and reduce methane production and to decrease the 

numbers of cellulolytic bacteria, the effects depend on the source of the saponins [115,138]. There is 
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some suggestion that rumen bacterial populations adapt to saponins under long term feeding, but this is 

yet to be confirmed [115]. Grazing trials with naïve and experienced sheep showed that naïve sheep 

had higher morbidity and mortality rates than experienced sheep [80]. Adaptation of  

rumen microorganisms may provide grazing livestock with an element of protection from  

B. decumbens toxicity. 

6. Conclusions 

B. decumbens is a tropical/sub-tropical pasture species that produces high quality feed for grazing 

ruminants. The suitability of B. decumbens as a quality pasture for ruminant livestock production is 

compromised by the presence of steroidal saponins including protodioscin, diosgenin and yamogenin. 

These compounds have been linked to sporadic outbreaks of secondary hepatogenous 

photosensitisation, particularly in young animals and have been implicated in sub-clinical disease 

leading to poor growth rates, wasting and anorexia. The occurrence of B. decumbens toxicity and its 

impact on animal productivity may be grossly underestimated since diagnosis is based solely on 

outbreaks of photosensitisation and recorded as such. Steroidal saponins have been linked to 

birefringent crystals that potentially block the bile ducts resulting in elevated liver enzymes. 

Assessment of liver dysfunction is not possible in a production system. Animal behavior changes (such 

as shelter seeking and grazing avoidance behaviours may be indicative of toxic pastures. The 

concentration of these compounds is influenced by management, season, stage of growth and 

environmental conditions. Further research is needed to elucidate the factors influencing saponin 

concentrations in B. decumbens, to study the impact of the saponins from B. decumbens on rumen 

function, and to investigate apparent differences in susceptibility between individual animals. 
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