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Abstract: Climate change poses a challenge to agricultural production and its impacts vary depending
on regional focus and on the type of production system. To avoid production losses and make use of
emerging potentials, adaptations in agricultural management will inevitably be required. Adaptation
responses can broadly be distinguished into (1) short-term incremental responses that farmers often
choose autonomously in response to observed changes and based on local knowledge and experiences,
and (2) long-term transformative responses that require strategic planning, and which are usually
implemented at a larger spatial scale. Models can be used to support decision making at both response
levels; thereby, different features of models prove more or less valuable depending on the type of
adaptation response. This paper presents a systematic literature review on the state-of-the-art in
modelling for adaptation planning in agricultural production systems, investigating the question of
which model types can be distinguished and how these types differ in the way they support decision
making in agricultural adaptation planning. Five types of models are distinguished: (1) empirical
crop models; (2) regional suitability models; (3) biophysical models; (4) meta-models; and (5) decision
models. The potential and limitations of these model types for providing decision-support to
short- and long-term adaptation planning are discussed. The risk of maladaptation—adaptation
that implies negative consequences either in the long term or in a wider context—is identified
as a key challenge of adaptation planning that needs more attention. Maladaptation is not only
a risk of decision making in the face of incomplete knowledge of future climate impacts on the
agricultural production system; but it can also be a threat if the connectedness of the agroecosystem
is not sufficiently acknowledged when management adaptations are implemented. Future research
supporting climate change adaptation efforts should thus be based on integrated assessments of risk
and vulnerabilities (considering climate variability and uncertainty). To secure adaptation success in
the long term, frameworks for monitoring management adaptations and their consequences should
be institutionalised.

Keywords: agricultural modelling; decision-support; adaptation planning; maladaptation risk

1. Introduction

1.1. Climate Impacts and Adaptation in Agricultural Production Systems

Climate, with its regional and temporal variability, is a major determinant of agricultural
production. All agricultural production is related to the performance of (cultivated) species, which
are bound to particular environmental conditions. As climatic conditions change, also production
conditions are likely to change with possible positive or negative implications on agricultural
production [1–3]. While agriculture provides humanity with essential goods (i.e., food, fodder, fiber or
biofuel), agricultural management also affects important ecosystem services such as the provision of
clean water or soil protection [4]. It is important to anticipate future changes in the agroecosystem
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to be able to respond adequately and maintain its functionality with regard to multiple ecosystem
services. If climate change impacts on agroecosystem functioning are known, measures can be planned
to adapt agricultural management in order to prevent the negative impacts of climate change and to
exploit new, emerging potentials [5,6].

The need for “urgent action to combat climate change and its impacts” has recently been called for
in the 13th of the 17 UN Sustainable Development Goals that were officially ratified in September 2015
and should be achieved over the next 15 years. This goal places particular emphasis on strengthening
resilience and adaptive capacity to climate risks and natural disasters. In the context of adaptation in
agroecosystems, Goal 13 is linked to the second goal, which is to “end hunger, achieve food security
and improved nutrition and promote sustainable agriculture”. One of the targets to achieve this goal,
which is clearly linked with the 13th Goal, is to “ensure sustainable food production systems and
implement resilient agricultural practices that increase productivity and production, help maintain
ecosystems, strengthen the capacity for adaptation to climate change, extreme weather, drought,
flooding and other disasters, and progressively improve land and soil quality”. The desire to maintain
and improve productivity, while promoting synergies with other functions of the socio-ecological
agroecosystem, is thus clearly articulated and agreed upon in an international arena.

While being high on international and national agendas, climate change adaptation is clearly also
in the interest of individual farmers or farming cooperatives that rely on the revenue generated from
agricultural production. On farm properties, changes in land use and management will be required in
order to adapt food production systems to changes in climate and other emerging pressures.

1.2. Two Types of Adaptation Responses

Even though different authors make distinctions based on different criteria, two types of
adaptation responses can broadly be distinguished [7–10]:

• Type A—the short-term, incremental responses that are often chosen autonomously in response
to observed changes and based on local knowledge and experience, and

• Type B—the long-term, transformative responses that require strategic planning, which is usually
implemented at a larger spatial scale (regional, national or international).

Both types of adaptation responses are essential for reducing risks from weather and climate
extremes (high agreement, robust evidence, [11]). Type A responses help to improve management
efficiency within existing technological, governance, and value systems, whereas Type B responses
may involve alteration of the fundamental attributes of those systems.

The realised ratio of these two types of responses depends on the balance between climate impact
and the adaptive capacity of the affected socio-ecological system. If climate impacts are relatively mild,
not pushing the existing production system beyond its feasibility boundaries, and if adaptive capacity
is high, adaptation can be facilitated by Type A responses. If climate impacts are more extreme, and
the scope for Type A responses is narrow (e.g., due to limited access to resources and technologies),
Type B responses can quickly become indispensable.

1.2.1. Type A Adaptation: Short-Term, Incremental, Autonomous, Reactive, and Localised

Moderate impacts of climate change occurring over a longer time period can usually be addressed
successfully with Type A responses without a great need for strategic planning or coordination. Type A
adaptation responses can include changes in sowing dates, cultivar or crop choice, and the adaptation
of water, nutrient, residue and canopy management. By shifting the sowing date, farmers can make
use of the extended growing season associated with climate warming. Also, sowing date shifts
provide the possibility of avoiding crop exposure to particular climatic stresses such as heat or drought
during sensitive phenological stages. If the growing season is extended, double-cropping or even
triple-cropping may become suitable options for increasing the land productivity under climate change
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(e.g., [12]). Shifting to cultivars or crops with increased tolerance to the most dominate stress factors
can help to mitigate climate risks.

In livestock systems, adaptation can involve flexible herd management, stable construction and
indoor climate control systems, choosing alternative livestock breeds or species, dietary choices, and
innovative pest management (e.g., [13]).

Diversification of farm management is also one possibility for adaptation that is often suggested,
especially under conditions of high climatic variability or high uncertainty (e.g., [14,15]). In a diversified
production system with different crops, cultivars and staggered planting dates, stability is increased
by compensating possible yield losses in response to a particular climate incidence by other yields that
are less affected by this incidence or that may even benefit from it.

1.2.2. Type B Adaptation: Long-Term, Transformative, Strategic, Anticipatory, and Large-Scale
(Regional, National or Even International)

Where climate change impacts exceed a certain threshold that can no longer be alleviated by
Type A responses, more fundamental transformative changes may be required [16]. These can include
spatial shifts in production zones, structural changes in production systems implying substantial shifts
in farming activities, or breeding of new crops and cultivars. For farmers, this may imply investment
in the infrastructure required for the new production systems. At the public levels, incentive systems
may have to be adapted to help steer the direction of transformative adaptation and support farmers’
adaptation efforts. Agro-industries need to plan ahead in their development of new technologies
and the breeding of new cultivars. Examples of specific breeding goals include resistance to high
temperatures that cause spikelet sterility and altered phenology so that cropping systems can be
redistributed as climate conditions for agroecological zones shift [17,18]. Further breeding goals for
adaptation can include tolerances to flooding, drought or increased salinity as well as water- and
nutrient-use-efficiencies. Also, the ability of crops to adapt their phenotype to changing environmental
conditions (phenotypic plasticity) can be considered a desirable trait when breeding for climate-resilient
crops [19,20].

Transformative adaptation—since it requires greater foresight and coordination—would rely on
appropriate intuition and mechanisms to promote the implementation of sustainable adaptation
strategies. Transformative changes require a long-term planning vision and involve a series of
challenges, risks, and benefits [9]. The fact that transformative decision making involves greater
uncertainty than that associated with incremental adaptation presents a particular challenge in this
context [21]. Risk management and robust decision making will thus represent the core features of
transformation [5].

Models can provide decision-support for adaptation planning in agriculture in three major
ways: (1) they can foster the understanding of physical and socio-economic systems and their
scientific theories, helping to identify major drivers and limitations; (2) the predictive capabilities of
modelling tools can be utilised to anticipate future climatic risks; and (3) models may be applied in
explorative modes to test and eventually rank particular options of climate adaptation according to their
environmental and socio-economic impacts. Since the 1980s, model-based tools have been applied for
climate impacts assessments in agriculture ([22,23]). The level of integration over different responses,
pressures, and systems was initially low, but increased with method development over the following
decades [24]. Reidsma et al. [25] call for further improvements in model integration—especially linking
biophysical and economic models—to better address the challenges of agricultural adaptation to
climate change. Harrison et al. [26] highlight the need for cross-sectoral climate impact assessments to
avoid misinterpretation of impacts and consequent poor decisions about climate adaptation.

1.3. The Risk of Maladaptation in Agriculture

If adaptation decisions are taken under the wrong assumptions, they may lead to undesirable
outcomes. Barnett and O’Neill [27] define this as “maladaptation”, i.e., as the result of an action taken
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ostensibly to avoid or reduce vulnerability to climate change that impacts adversely on, or increases the
vulnerability of other systems, sectors or social groups. Maladaptation can occur if short-term benefits
outweigh longer-term (social, economic or environmental) costs, or if possible negative external effects
of management adaptation are simply not taken into consideration, because they do not impact the
welfare of the decision maker. For example, if a desalination plant or irrigation infrastructure is built
to adapt to increasing water scarcity, possible maladaptive outcomes could be increased emissions
by building and operating the infrastructure, increasing water costs or negative impacts on aquatic
biodiversity [28]. Such negative externalities can only be accounted for in an integrated assessment of
adaptation strategies (see also Reidsma et al., [25]). Once a choice has been made for an adaptation
option, it can reduce the portfolio of adaptation options for the future—i.e., path dependencies
may occur—either because the selected adaptation option is connected with a high expenditure that
constrains financial resources for further options or because the choice of the adaptation option leads
to an over-exploitation of natural resources (e.g., [29,30]). Maladaptation at the policy level can limit
the producers’ own independent moves towards adaptation if the wrong incentives are created [31].

One risk of maladaptive decision-support thus lies in the under- or misrepresentation of possible
negative externalities if underlying models neglect important system linkages. Another risk of applying
models for supporting decisions in adaptation planning lies in the potentially large uncertainties in model
estimates originating from (1) context uncertainty, (2) input uncertainty, (3) model structure uncertainty,
(4) parameter uncertainty, and (5) modelling technical uncertainty [10,32,33]. Uncertainties in model
estimates cascade down from pathways of radiative forcing to climate models, downscaled climate
projections, impact estimates and finally to recommendations for appropriate adaptation responses [34].

It is thus evident that to avoid maladaptive decision making, model uncertainties have to be
treated thoroughly and findings should be incorporated into integrated assessments of possible
negative externalities.

2. Systematic Literature Review

To gain a systematic overview of the “state-of-the-art” of model applications dealing with climate
change adaptation in agriculture, a literature survey was conducted using SCOPUS, searching for
the terms “modelling”, “climate change”, “adaptation” and “agriculture” within titles, abstracts and
keywords. Subject areas included in the search were “Agricultural and Biological Sciences” (64),
“Computer Science” (4), “Earth and Planetary Sciences” (60), “Environmental Science” (147), and
“Social Sciences” (19). Only journal articles in English, French and German language were considered.
The survey conducted on 25 September 2017 resulted in a selection of 210 papers. 169 of these papers
were published in the years between 2013 and 2017, which shows that the subject of the review is at
the centre of current scientific debate. After a first review of these 210 articles, 51 papers were excluded
because they did not report on modelling case studies in the context of climate change adaptation in
agriculture, but used methods other than modelling (e.g., interview studies) or were rather general
reviews, editorials, project descriptions, opinion papers or dissertations. The 159 papers selected for
this review are not considered inclusive, but are assumed to provide a representative overview of
modelling case studies conducted on climate change impact assessments and adaptation in agriculture
up to the time when this review was conducted. The review of the remaining 88 papers is summarised
in the Supplementary Material. The studies were analysed in terms of the model approaches applied,
the impact indicators considered and adaptation options tested. Based on this analysis, the following
five model approaches can be distinguished:

• Empirical models
• Regional suitability models
• Biophysical models
• Meta-models
• Decision models
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2.1. Empirical Crop Models

Empirical crop models estimate climate-yield relationships based on empirical time series and/or
panel datasets of spatial and temporal variation in yield and climate variables. Such models do not
usually explicitly account for the possibilities of adaptation. However, since autonomous adaptation
is continuously progressing, it would be implicitly accounted for if models are based on long-time
series of data. The study of Gornott and Wechsung [35] applies this approach, stating that autonomous
adaptation measures taken by farmers such as shifts in sowing dates and choice of cultivars are
implicitly accounted for in the empirical model. Due to its limited ability to model possible adaptation
responses, the empirical crop model approach is mostly applied for agricultural climate impact
assessments (e.g., [1,36]). An exception included in this review is the study by Jiang and Koo [37],
which applies an empirical crop model that integrates not only climatic predictor variables, but also
management-related input variables (i.e., fertilizer prices and crop prices lagged one year to represent
producer-expected output prices). Similarly, Hobbs et al. [38] developed and applied statistical models
of forest biomass production given different planting designs.

A general advantage of the empirical model approach is that it can be applied to fit yield
response functions to available data, even if that data is scarce or only available in an aggregated form
(e.g., monthly climate data). It can be applied analytically for identifying region-specific main climatic
drivers of yield and yield changes. Predictions of validated models can be considered valid within the
range of data that was used for fitting the models. However, their ability to provide correct predictions
beyond observed conditions may be hampered by the fact that causal relationships hypothesised based
on observed data may not represent the process-relationships beyond observations.

2.2. Regional Suitability Models

Regional land or climate suitability approaches are usually applied to quantify biophysical land
use potential under current and future climatic conditions at a regional scale [39,40]. For example,
Pelizaro et al. [40] apply a multi-criteria evaluation approach based on soil, landscape and climate
criteria to assess agricultural land suitability. Brown et al. [39] apply a rule-based evaluation
of agricultural potential based on accumulated temperature and maximum soil moisture deficit.
These two approaches utilise expert judgement and/or empirical field evidence to define responses
to the different evaluation criteria. Examples of fully empirical regional suitability approaches, as
they are commonly applied for modelling potential distributions of natural species, can be found in
the studies of Bennett et al. [41] and Malviya et al. [42]. In contrast to empirical crop models, which
aim at predicting yields, suitability approaches estimate the probability of occurrence of a particular
species. Malviya et al. [42] apply a species distribution model for evaluating the potential of Simarouba
glauca under climate change. Results of their study may suggest where the cultivation of this species
can be a suitable adaptation option. Bennett et al. [41] apply a climate niche modelling approach
(DOMAIN by Carpenter et al., [43]) for investigating natural adaptation of native pasture species
in Western Australia. Their results help to prioritise novel pasture species for use in water-limited
agriculture. Similar to the empirical crop model approach, land suitability evaluation approaches
usually do not allow for testing explicit management adaptations. However, since the approach
quantifies land potential for particular crops, it can highlight regions of increasing or decreasing
suitability for particular land use types, indicating where shifts in cultivation zones can be considered
as suitable adaptation options. Information for adaptation planning can also be derived based on this
approach if changes in particular limiting factors can be identified, thus steering the identification
of suitable adaptation measures. For example, Zhang et al. [44] and Perdinan et al. [45] provided
an indicator-based evaluation of regional drought hazards under current climate and future climate.

Besides regional quantifications of abiotic limitations, the regional suitability approach can also
be applied to estimate the potential distribution of pests and invasive species under current and future
climatic conditions (e.g., [46,47]).
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2.3. Biophysical Models

The vast majority of case studies selected for this review applied process-based biophysical
models (57 references). Biophysical models simulate biophysical processes such as plant growth,
nutrient and carbon dynamics, water cycling and flood inundation based on mechanistic process
understanding, which is mathematically formalised.

The most frequently applied models are CropSyst (Cropping Systems Simulation Model [48];
7 studies), CERES (Crop Environment REsource Synthesis [49]; 8 studies), SWAT/SWIM (Soil
Water Assessment Tool/ Soil and Water Integrated Model [50]; 12 studies), CROPWAT/AquaCrop
(the FAO crop model [51]; 10 studies), APSIM (Agricultural Production Systems sIMulator [52];
11 studies), DSSAT (Decision Support System for Agrotechnology Transfer [53]; 9 studies), EPIC
(Erosion Productivity Impact Calculator [54]; 4 studies), STICS (Simulateur mulTIdiscplinaire pour les
Cultures Standard [55]; 4 studies), LPJmL (Lund-Potsdam-Jena managed Land model [56]; 4 studies),
and MIKE (Modeling System for Rivers and Channels [57]; 2 studies). These biophysical models
differ in terms of spatial scale, levels of integration and complexity. While APSIM, CropSyst, CERES,
DSSAT, CROPWAT/AquaCrop, STICS and EPIC are designed for simulating biophysical processes
at the plot level, LPJmL, SWAT/SWIM and MIKE are spatially distributed models, usually applied
at regional or even global scale. The plot-scale models mostly focus on representing crop growth
processes with different degrees of complexity. The more simplistic approach of CROPWAT/AquaCrop
simulate water limitations to potential crop yields. STICS, CERES and the crop modelling suite DSSAT
(which integrates CERES amongst other crop models), simulate crop responses to the dynamics of
soil water, nutrients and soil carbon. EPIC and CropSyst simulate crop growth processes at a similar
level of complexity, but also integrate the effects of climate and management on soil erosion. A very
detailed representation of crop growth processes is integrated in the model APSIM, which differentiates
between plant components (leaf, stem, head, and root) and also allows for simulating competition
between species in crop mixtures.

Since the models incorporate explicit process descriptions, they allow for testing the effects of
climate and management changes and interactions thereof, thus providing an excellent basis for
simulating not only the impacts of climate change on various agroecosystem functions, but also for
testing adaptation options (e.g., irrigation as an obvious measure to prevent drought stress).

2.4. Meta-Models

With respect to meta-models we summarise approaches that integrate information collected
from different sources (e.g., model results derived from complex mechanistic models, collections of
databases, literature studies) to provide a broad basis for multi-criteria decision making. Life-cycle
assessment (LCA) approaches, for example, utilise information from a wide range of exemplary impact
studies to provide a broad basis for prioritising products or production pathways in terms of their
overall impacts. Examples of such studies included in this review are Renaud-Gentie et al. [58] and
Tendall and Gaillard [59]. A literature-based meta-analysis to provide a semi-quantitative overview
of current and possible future climate-related risks to agriculture is presented in Schaap et al. [60].
Audsley et al. [61] apply the neural network approach to derive meta-models from outputs of
previously developed very complex and integrated models. The benefit of applying the meta-model
instead of the complex integrated model is the reduced run-time, which increases the feasibility of the
model to be applied for explorative analyses. By testing many alternative scenarios on-the-fly within
learning sessions, decision makers can gain understanding of the system responses to environmental
and management changes, which can help them in finding the most desirable management alternative.
The strength of these meta-model approaches is their integrative capacity. They can provide a broad
base for decision making in terms of climate change adaptation, since they consider a large variety
of impacts (not only on the agricultural sector). Thus, they can be applied to identify trade-offs
and synergies in management adaptations beyond the local agroecosystem (e.g., synergies between
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adaptation and mitigation objectives). The integrative capacity brings with it also the possibility to
foster social learning and integrated system thinking amongst stakeholders and decision makers.

2.5. Decision Models

The second-largest proportion of case studies analysed in this review apply models which
consider the decisions that farmers take in response to changing climatic, economic or social conditions.
Since decisions are explicitly incorporated in these models, these models are termed decision models
here. The majority of these models simulate farmers’ adaptation decisions in response to biophysical
and economic drivers. These models are also termed bio-economic models. They are usually based
on a coupling between a process-based biophysical model or an empirical production model and
an economic farm optimization model. Exceptions from these bio-economic models are the studies
of Berry et al. [62] and Yegbemey et al. [63]. They focus on farmers’ adaptive behavior in response
to socio-economic drivers. For example, Yegbemey et al. [63] apply a multi-variate probit model
determining farmers’ decisions to adapt to climate change given characteristics such as gender, level
of education, experience in agriculture, household size, contact with extension services, access to
credit, ownership or rights of cutting/selling/renting land. Berry et al. [62] apply hierarchical linear
regression modelling to examine the extent to which, in a multivariate analysis, the use of adaptive
practices was predictively associated with self-assessed health. Both these case studies aimed at
quantifying what determines farmers’ adaptive capacity (i.e., their ability to respond adequately to
increasing climatic and/or economic variability).

3. The Value of Model-Based Information for Adaptation Planning

Depending on the level of the organisation at which adaptation decisions are taken (i.e., farm
level or governmental) and depending on the planning horizon, different types of information are
needed and different types of representations may be required to communicate findings effectively [64].
Based on the review of modelling studies of climate change adaptation in agriculture, we discuss the
suitability of each model type for addressing different climate adaptation challenges. Information about
future climate impacts on crop yields and, in particular, on changes in different climatic limitations can
be the most valuable to inform long-term, transformative adaptation responses (Type B). For identifying
breeding targets, for example, it is essential to know which crop traits would be beneficial under climate
change, and in responding to particular climatic stresses. For the planning of adequate irrigation
infrastructure, it is relevant to know how irrigation demands and water availability will be affected
by future climate change. Results from climate impact assessments based on statistical crop models,
process-based biophysical models and regional suitability models can provide such information.

While impact studies conducted using statistical, process-based or regional suitability approaches
can provide a basis for discussing possible adaptation options, the effectiveness of adaptation
options usually requires the use of process-based models. These models can either be applied
to simulate the effects of adaptation options in scenario analyses or they can be integrated in
simulation-optimization applications. Such studies allow for systematically exploring a predefined
adaptation space in the search for optimum management scenarios with regard to particular adaptation
goals. If multi-objective optimization is applied to identify all Pareto-optimal solutions, trade-offs
and synergies can be explored systematically—providing relevant insights into system linkages in an
agroecosystem. The benefits of this type of application for environmental management applications
have been increasingly explored over the last few decades (e.g., [65–69]). The strong uptake of
the approach by the community highlights its great potential. Particular optimum management
scenarios can be considered as idealised targets for transformative adaptation pathways. As such,
they can have strong potential for communicating feasible planning visions as a basis for normative
discussions of planning objectives. However, given the potentially large model uncertainties, the target
scenarios cannot be considered as static planning visions, but would have to be reassessed in regular
decision cycles, following an adaptive management approach. One possibility for increasing the
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usability of target scenarios for planners and decision makers may lie in the combined use of
optimum scenarios together with adaptation scenarios developed based on plausible storylines of
developments. The potential of combining the benefits of both approaches (optimum achievement of
targets and plausibility) could be explored in future studies. In general, the successful application of
simulation-optimization techniques for solving real-world management problems remains a challenge
due to a common lack of interaction between scientists and decision makers [70]. To overcome
this challenge and link optimization applications more closely to real-world management problems,
Wu et al. [71] recently proposed a framework for including stakeholder input at various stages in the
optimization process. In this context, integrating model outputs into meta-model-type learning
environments can help to visualise cross-benefits between management measures and facilitate
communication and social learning in participatory planning. The higher the level of organisation
dealing with adaptation planning, the greater the value of integrated large-scale assessments to
support the coordination of policy measures (i.e., regulations, incentives) towards congruent outcomes.
Approaches such as the Bayesian network approach can be useful to provide a broad integrated
vulnerability assessments under climate change, while making prediction uncertainties explicit (see
also Lynam et al., [72]). The large potential benefit of integrated assessment tools to help foster food
security by providing a platform that brings modellers and stakeholders from different backgrounds
together was also highlighted by Webber et al. [73].

While long-term transformative adaptation planning requires information about projected
changes in relevant drivers (e.g., climatic, economic, demographic, political), decisions on short-term
adaptation responses (Type-A) are mostly taken autonomously based on farmers’ individual
experiences and knowledge. Farmers with many years of experience managing their land and
observing responses to their management and local climate variability may have no need for
decision-support based on a generic computer model. However, knowledge, experience and
understanding may not be uniform across the farming community and farmers may lack experience
on measures which are new to a particular farm. Knowledge integration across the farming and
the scientific community has the potential to improve the information base for adaptation for all,
helping to make short-term adaptation responses more effective. Approaches such as the Bayesian
network approach could be promising in this respect since they have shown great value for compiling
best available data and knowledge and can easily be updated as new evidence becomes available.
One example of such an application was recently provided by de Nijs et al. [74], who developed a
Bayesian Belief Network incorporating climate projections, local environmental data, information
from peer-reviewed literature and expert opinion to account for the adaptation benefits derived from
Climate-Smart Agriculture activities in Malawi. The field of machine learning is evolving rapidly
due to increasing availability of data and information (e.g., from social networks). The promising
potential of emerging techniques for integrating adaptation knowledge could be explored in the future.
Integrated into operational, web-based tools, such techniques can be very valuable to communicate
relevant information to stakeholders. Besides providing information services, these platforms can
also be designed to collect user feedback to improve the collective knowledge base. The ability to
integrate user feedback could also help to track ongoing autonomous adaptation, thus collecting
relevant information for anticipating emerging threats of maladaptation.

Furthermore, coordinated web-based knowledge platforms can provide the basis for building
collaborative partnerships between scientists and decision makers, for sharing data, knowledge and
experiences and thus for promoting the transition of scientific findings into decision making processes
in adaptation planning (e.g., [75,76]).

4. Integration

The model applications reviewed here show a large variation in levels of integration in terms
of the impacts considered (Table 1). Empirical crop models and regional suitability models focus on
yield, and production potential only, while biophysical model approaches are applied to estimate
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impacts of climate and management changes on a much wider range of environmental objectives.
Meta-models and decision models expand the scope of integrated objectives, with an increasing
emphasis on economic objectives in decision models.

Table 1. Number of modelling studies simulating impacts on different objectives with each of the five
identified model approaches.

Empirical
Crop Model

Regional
Suitability Model

Biophysical
Model Meta-Model Decision

Model
yield/yield potential 7 9 62 10 25
water availability 0 0 28 6 4
water quality 0 0 10 1 1
flooding 0 0 4 1 0
soil loss 0 0 4 0 0
irrigation demand 0 2 15 4 4
wildlife habitat 0 0 2 1 0
pests, invasive species 0 2 0 0 0
soil carbon 0 0 1 0 0
peat cover 0 0 1 0 0
GHG emissions 0 0 0 1 3
livestock 0 0 3 2 1
food demand 0 0 0 0 2
farmers’ profits 0 0 0 1 23
farmers’ adaptation
decisions 0 0 0 0 2

Total number of studies 7 13 94 16 30

Management adaptations were not modelled explicitly in all modelling studies reviewed here
(Table 2). Statistical crop model approaches consider management adaptations only implicitly. In these
modelling studies, the results of climate impact assessments are however discussed in context with
adaptation options that may be advisable to alleviate the quantified impacts. Regional suitability
approaches provide a basis for exploring the potential for adaptation through changes in production
zones, which can be tested explicitly or simply discussed. Biophysical models provide a more
straightforward basis for testing adaptation options, since management impacts are explicitly simulated
with these approaches. This is also apparent from the large number of modelling studies of this type,
exploring a wide range of management adaptations. Beyond these options, decision models integrating
also economic and behavioral components allow for testing the effects of financing instruments and
utilisation of forecasts.

Modelling tools for integrating large quantities of information either in the form of decision
models, meta-models or integrated biophysical models have great potential to help reduce the risks of
maladaptation (as predictive tools to anticipate impacts, as predictive and explorative tools to test the
suitability of different adaptation options, or as explorative learning tools supporting social learning
and participatory decision making).
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Table 2. Number of modelling studies explicitly simulating different adaptation options with each of
the five identified model approaches.

Empirical
Crop Model

Regional
Suitability Model

Biophysical
Model Meta-Model Decision

Model
Sowing shift 0 0 18 0 1
Crop/cultivar choice 2 1 15 1 12
Irrigation 0 0 28 4 10
Fertilization 0 0 13 1 6
Soil management 0 0 4 0 1
Livestock breed 0 0 1 0 3
Grazing intensity 0 0 0 0 2
Water
harvesting/storage 0 0 5 1 1

Re-wetting 0 0 1 0 0
Wasterwater treatment 0 0 1 0 0
Buffer zones 0 0 1 0 0
Relocation of cultivation
areas 0 1 9 2 5

Availability of forecasts 0 0 0 0 3
Financing/policy
instruments 0 0 0 4 5

Total number of studies 7 13 94 16 30

5. Uncertainties

Most of the modelling studies reviewed here did account for uncertainties in one way or another
(77% of the reviewed studies), showing that the importance of handling uncertainty is generally
well acknowledged within the research community. The uncertainty source that is most commonly
represented is climate projection uncertainty (63.5% of the studies considered between 2 and 24 climate
scenarios). The climate scenarios were based on different combinations of emission pathways and
global/regional climate model simulations and where only a few scenarios were used to keep the
computational effort to a minimum, these scenarios were selected to represent extremes. An alternative
approach to accounting for climate projection uncertainties is to explore impact model sensitivities
to changes in radiation, precipitation, temperature and CO2 changes (12.5% of the reviewed studies).
This approach is most frequently applied in combination with decision models (7% of all studies
and 30% of the decision model applications reviewed here). Some studies, particularly decision
model applications also accounted for other uncertainty sources such as change in land use or
price changes. These assumptions were usually based on storylines of coherent developments of
socio-economic drivers.

Of the remaining 23% of studies without explicit consideration of uncertainties, many used
historical climate data for their investigations of climate impacts and adaptation possibilities;
e.g., focusing on selected extreme years in observations. Only a few studies (10%) estimated climate
change impacts on agriculture based on a single climate projection and impact model specification.
While uncertainties in impact estimates are usually well represented and discussed in the reviewed
studies, the robustness of adaptation measures is rarely evaluated.

6. Summary and Conclusions

In this review paper, the use of current models to support climate change adaptation in agriculture
was explored. Based on a systematic literature review, five different modelling approaches were
distinguished: (1) empirical crop models, (2) regional suitability models, (3) biophysical models,
(4) meta-models, and (5) decision models. The five approaches differ in terms of their applicability for
decision-support in short-term and long-term adaptation planning. For transformative adaptation
planning, which requires longer planning horizons, the main value of model-based tools lies in their
ability to predict climate change impacts and to explore possible adaptation measures. While empirical
crop model approaches and regional suitability models are mostly applied to estimate climate change
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impacts on yield potentials at local and regional levels, biophysical models and meta-models show
great strength in assessing impacts on multiple objectives. Adaptation possibilities are mostly explored
using biophysical models, meta-models and decision models. Integrated simulation-optimization
applications of biophysical models show particularly significant potential for supporting decisions
in transformative adaptation planning (e.g., optimum breeding targets, farm input schedules and
allocations of productions zones can be identified demonstrating the idealised scope for adaptation).
Future research should further explore the use of optimization results as a basis for normative
discussions of planning objectives and suitable adaptation pathways.

For short-term, reactive adaptation responses, statistical and biophysical models are less useful,
but meta-models and decision models can be valuable to help build system resilience, by making
synthesised information on socio-ecological system linkages available. Both these model approaches
have great potential for being used as explorative learning tools, which should be explored in future
research and participatory applications. Also, the potential of emerging machine-learning techniques
for integrating adaptation knowledge should be explored.

Both short-term and long-term adaptation responses bear the risk of maladaptation
(e.g., if adaptation measures imply disproportionally high environmental, economic or social costs).
To prevent such maladaptation, integrated assessments of climate and management changes and
the consideration of uncertainties are key elements for model-based decision-support. Integrated
assessments allow for identifying unintended effects/costs that would be neglected in studies with a
singular focus on agricultural productivity. If uncertainties in model outputs are quantified, robust
adaptation responses can be identified, preventing the implementation of adaptation responses that
fail to meet their objectives. It also has to be acknowledged that not all risks are predictable and not
all uncertainties affecting decision making can be quantified and anticipated. Therefore, adaptive
management cycles should be institutionalised, within which adaptation behaviour/autonomous
adaptation, consequences of adaptation responses and changes in impacts are continuously monitored.
Predictive modelling tools should be continuously improved on the basis of this data and applied
to anticipate the impact of future climate change and adaptive management changes and thus help
reduce emerging risks to other functions and sectors.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0472/7/10/86/s1.
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