

Supplementary materials (O'Toole et al. 2018)

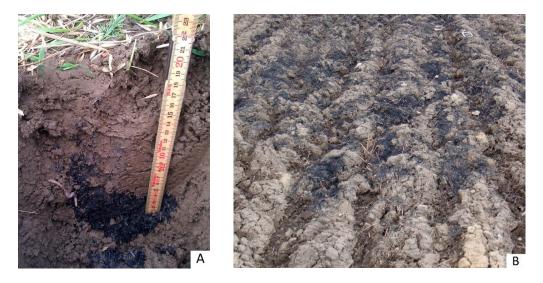


Fig. S1: (A) Concentrated seams of biochar due to inverse ploughing of surface applied biochar (photo taken june, 2011), and (B) resurfacing of biochar with ploughing in the opposite driving direction (April 2012).

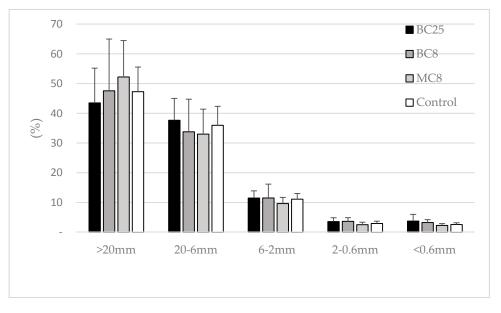


Fig. S2. Aggregate size distribution after machine dry sieving. Error bars indicate ± SD (n=4)

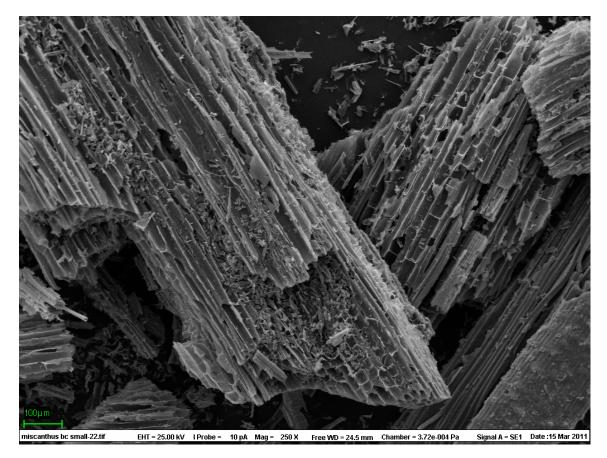
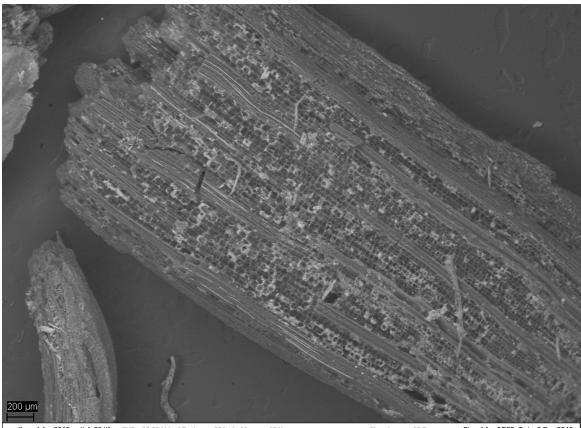



Fig.S3 SEM images of fresh *Miscanthus* biochar showing the porous surface and irregular shape

weatheredchar2015particle02.tif EHT = 30.00 kV | Probe = 391 pA Mag = 68 X Free WD = 8.5 mm Chamber = 39 Pa Signal A = QBSD Date :8 Sep 2015

Fig.S4. SEM image of weathered *Miscanthus* biochar collected after 5 years of field incubation. Evidence of partial clogging of surface micropores with soil particles.

Fig. S5. Approximately 15 g of 2-6mm sized aggregates placed in small sieves prior to prewetting and wet sieving. Some of the aggregates were later found to be large biochar particles encrusted in thin films of clay.

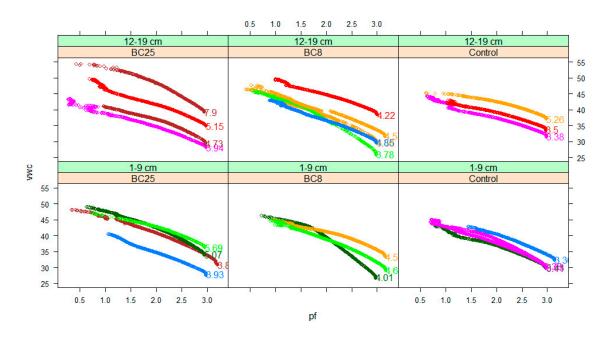


Fig. S6. Illustrative evidence of "Biochar patchiness" from field samples. This sample is from 4 years after biochar addition and is the same sample used for the retention curve in Fig. 9a.

Fig.S7. Water retention curves for each intact soil core in each treatment and depth, with corresponding SOM content for each soil core

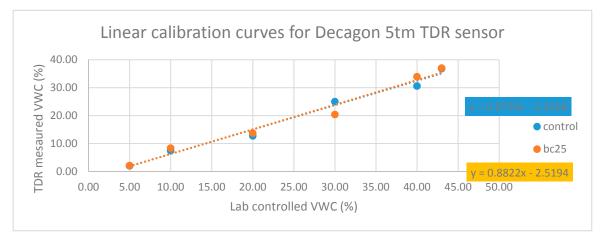


Fig.S8. Linear calibration curves for Decagon 5TM TDR sensor used for field based soil water content measurements. Calibration is presented only for BC25 and control. BC8 and MC8 calibration were not different from the control, and thus control calibrations were used for BC8 and MC8.

Table S1. Mean air temperature (°C) and monthly precipitation (mm) in Ås, Norway for four growing seasons (2011-14) compared with normal (1961-1990) monthly averages											
Mean daily air temperature (°C)						Total precipitation (mm)					
Month	Normal (1961-1990)	2011	2012	2013	2014	Normal (1961-1990)	2011	2012	2013	2014	
April	4	8	4	3	7	39	41	31	57	62	
May	10	10	11	12	11	60	63	14	64	40	

Agriculture 20	18 , 6, x								5 of 44	
June	15	15	13	14	15	68	136	84	112	25
July	16	17	16	17	20	81	89	110	12	46
Aug.	15	15	15	16	15	83	175	83	57	123
Sept.	11	12	10	11	12	90	158	83	57	31

Table S2: Classes of stability and crustability according to MWD values (reprinted with permission from Le Bissonnais (1996))

Class	MWD (mm)	Stabilty	Crustability		
1	<0.4	Very unstable	Systematic crust formation		
2	0.4-0.8	Unstable	Crusting frequent		
3	0.8-1.3	Medium	Crusting moderate		
4	1.3-2.0	Stable	Crusting rare		
5	>2.0	Very Stable	No crusting		

Table. S3 Maximum limit for heavy metals for soil improvement materials from organic origin (according to Norwegian law 'Gjødselvareforskriftet' (Mattilsynet, 2003) and actual values for Miscanthus biochar used in field trial

					Miscanthus
Quality class	0	1	2	3	biochar
mg kg ⁻¹ DM					
Cd	0,4	0.8	2	5	< 0.01
Pb	40	60	80	200	< 0.31
Hg	0.2	0.6	3	5	< 0.01
Ni	20	30	50	80	2.50
Zn	150	400	800	1500	39.00
Cu	50	150	650	1000	4.60
Cr	50	60	100	150	1.50