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Abstract: Crop cultivation is crucial for the existence of human beings, as it fulfills our nutritional
requirements. Crops and other plants are always at a high risk of being attacked by phytopathogens,
especially pathogenic fungi. Although plants have a well-developed defense system, it can be
compromised during pathogen attack. Chitinases can enhance the plant’s defense system as they
act on chitin, a major component of the cell wall of pathogenic fungi, and render the fungi inactive
without any negative impact on the plants. Along with strengthening plant defense mechanisms,
chitinases also improve plant growth and yield. Chitinases in combination with recombinant
technology can be a promising tool for improving plant resistance to fungal diseases. The applicability
of chitinase-derived oligomeric products of chitin further augment chitinase prospecting to enhance
plant defense and growth.
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1. Introduction

The demand for agricultural land for crop cultivation has increased to a great extent in order
to serve food to the world’s rapidly increasing population. Approximately 1.5 billion hectares of
land are utilized for crop cultivation out of the 13.4 billion hectares of the world’s total available
land [1]. The swift increase in population requires additional land for crop cultivation and existence.
The limitation of cultivable natural land resources has created the need for the improvement of
the management of crop diseases and yield. Plant growth and productivity is affected by various
biotic and abiotic factors. Plant diseases are mainly caused by pathogens including bacteria, fungi,
viruses, and nematodes. Among these, fungal pathogens are considered to be the predominant
pathogens responsible for a drastic decrease in crop yields. Fungi are the causative agents of a range
of plant diseases viz. basal stem rot, fusarium wilt, leaf mold, crown rot, rust, white rot, black mold,
southern leaf blight, etc. [2]. Fungal species such as Fusarium, Botrytis, and Magnaporthe are the most
common pathogens of crop plants worldwide [3]. Fungicides are being developed to overcome these
phytopathogens and have succeeded to some extent, but improving plant resistance towards these
pathogens is still necessary.

In the context of fungal disease management, the chitinolytic enzymes, mainly chitinases,
have been in the limelight for a few decades due to their catalytic ability to degrade chitin, a key
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component of the fungal cell wall, with no harm to the host plant. Chitinases can be isolated from
a repertoire of organisms viz. plants, fungi, bacteria, insects, and marine resources [4]. Due to the
significant affinity of chitinases towards the polysaccharide chitin, biotech companies are exploring
its potential for the development of transgenic plants, disease-resistant seeds, as well as fungicides
and insecticides. This review summarizes the potential and applicability of chitinases for controlling
phytopathogenic fungi in order to enhance plant defense, growth, and yield.

2. Chitinases

Chitinases belong to the glycosyl hydrolase family, which catalyzes the hydrolysis of glycosidic
bonds in chitin. The molecular size of chitinases varies from 20 to 90 kDa [5]. Chitinases mainly
belong to families 18 and 19 of glycosyl hydrolases [6] on the basis of characteristics viz. N-terminal
sequence, enzyme localization, isoelectric pH, signal peptides, and inducers. Family 18 contains
chitinases of classes III and V, whereas family 19 includes chitinases of classes I, II, and IV. Chitinases
are produced naturally by a wide range of organisms i.e., fungi, bacteria, yeasts, plants, actinomycetes,
arthropods, and humans [7]. The molecular structure and the mode of action of chitinases cannot be
easily determined due to the rapid hydrolysis rate of chitin by chitinases [8]. The molecular structure of
plant chitinases largely consists of only one catalytic domain, whereas extracellular chitinase from yeast
contain four domains—a signal sequence, a catalytic domain, a serine/threonine rich region, and a
C-terminal chitin-binding domain [9,10]. Likewise, the fungal chitinases have been observed to consist
of five different domains: (a) N-terminal signal peptide region, (b) catalytic domain, (c) chitin-binding
domain, (d) serine/theonine rich-region, and (e) C-terminal extension region [4].

Chitinases possess specific affinity towards polymer chitin to degrade it into low-molecular-weight
COS (chitooligosaccharides) and GlcNAc (N-acetylglucosamine) [4]. On the basis of the mode of
action, chitinases can be endo- or exo-acting. Endochitinases randomly act on the chitin chain at an
internal site, whereas exochitinases (chitobiodidases and 1,4 β-glucosaminidases) show progressive
catalytic action starting from the non-reducing end of chitin [4]. Chitinases have been reported to
exhibit diverse functions i.e., morphogenesis, pathogenesis, parasitism, nutrition, growth regulation,
immunity, and defense [11]. Nowadays, chitinase-induced degraded products of chitin i.e., COS and
GlcNAc, are gaining attention due to their enormous applicability for plant protection and growth
enhancement [12].

2.1. Major Groups of Chitinases

Chitinases are found in a wide range of organisms to serve specific functions. Subsequently,
on the basis of natural occurrence/source of production, chitinases can be clustered into the following
major groups [4].

2.1.1. Chitinases from Plants

Plants possess endochitinases in their stems, seeds, flowers, and tubers that randomly hydrolyze
internal β-1,4-linkages of chitin, resulting in the production of COS and GlcNAc [13]. Plant chitinases
(majorly grouped in family 19 of glycosyl hydrolases) play a significant role in embryogenesis, ethylene
synthesis, and in combating environmental stresses i.e., cold, drought, and high salt concentration [13].
Moreover, plants produce chitinases in response to phytopathogen attack [14]. Plant chitinases are
mainly found in monocotyledonous and dicotyledonous crop species viz. bean, barley, cabbage, carrot,
corn, cucumber, garlic, oat, onion, pea, peanut, potato, rice, tomato, etc. [14]. Many plant chitinases
have been demonstrated to possess potential antifungal activity. In one study, Kabir et al. [15] reported
the antifungal activity of a 39 kDa chitinase from Trichosanthes dioica seeds against Aspergillus niger
and Trichoderma sp. Similarly, a 29 kDa chitinase with antifungal activity against T. viride was isolated
from Diospyros kaki fruits [16] and showed an ability to hydrolyze colloidal chitin into chitotriose,
chitobiose, and N-acetylglucosamine. Recently, a 32 kDa recombinant chitinase was isolated from
barley, which showed better antifungal activity upon expression in E. coli [17]. The produced
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recombinant chitinase was able to inhibit the growth of Alternaria solani, Fusarium sp., Rhizoctonia solani,
and Verticillium dahlia [18]. Plant chitinases have also shown remarkable potential for tolerating abiotic
stresses i.e., chitinase from Hippophae rhamnoides for cold stress [19] and chitinase from soybean for
arsenic and cadmium stress [20].

2.1.2. Chitinases from Mammals

Mammalian chitinases belong to family 18 of glycosyl hydrolases. Mammalian chitinases can
be divided into two sub-categories i.e., true chitinase and chitinase-like proteins based on their
enzymatic activity and dormancy. Bussink et al. [21] reported the first mammalian chitinase, known as
chitotriosidase. The molecular structure of mammalian chitinases revealed the presence of an
N-terminal catalytic domain consisting of a triose-phosphate isomerase fold. In true mammalian
chitinases, the glutamic acid donates a proton to hydrolyze the β (1-4) glycosidic bond in chitin,
whereas in chitinase-like proteins, glutamic acid is exchanged for glutamine, leucine, and isoleucine
as proton donor [22]. Mammalian chitinases have largely been explored for medicinal purposes viz.
asthma [23], inflammation, cancer [24], tissue remodeling, and injury [25]. Still, there is a room for the
exploration of mammalian chitinases in crop protection and yield enhancement.

2.1.3. Chitinases from Insects

Chitinases in insects are usually found in the ectodermal epithelial tissues such as the foregut,
cuticles, trachea, and hindgut, as well in the intestinal peritrophic matrices in insects [26]. The digestion
of old cuticle prior to ecdysis takes place by the combined action of hydrolytic enzymes viz., chitinases,
proteinase, lipase, and β-N-acetylglucosaminidases [27]. Insect chitinases exhibit endo-hydrolyzing
activity and mostly belong to family 18 of glycoside hydrolases [28]. Chitinases from Manduca sexta and
Bombyx mori are those most widely studied [4]. Insect chitinases are beta/alpha-barrel proteins; the beta
sheets are mostly arranged in parallel fashion [29]. The modular structure of insect chitinases reveals
the presence of catalytic, cysteine-rich chitin-binding, and serine/threonine-rich linker domains [30].
Due to their nematocidal, fungicidal, and insecticidal properties, the enzymes have shown enormous
applicability in agriculture. Reddy and Rajam [31] developed Helicoverpa armigera-resistant tobacco
and tomato plants through the host-induced RNA interference. Insect-resistant transgenic maize plants
were developed by the expression of a chitinase gene from Spodoptera littoralis [32]. The developed
transgenic maize plants showed a significant increase (50%) in resistance against Sesamia cretica (50%).
Agrawal et al. [33] designed a vector to produce artificial microRNA (amiR-24) to target the chitinases
gene of one of the most damaging polyphagous pests, H. armigera. Insect chitinases have proved to be
a significant biocontrol agent but their effectiveness can be further augmented by enhancing the gene
expression levels in combination with other insecticidal agents.

2.1.4. Chitinases from Microorganisms

Most of the chitinases from microbial sources have been grouped into family 18 of glycosyl
hydrolases [6], with the exception of some of the Gram-positive bacteria that are included in family
19 [34]. Microorganisms are considered as the preferred source of chitinases due to their vast
abundance in nature and easy availability of raw material for cultivation that results in the lower
production cost of chitinases [11]. Bacteria such as Serratia marcescens [35], Aeromonas punctata and
A. hydrophila [36], Bacillus pumlius [37], B. thuringiensis, B. licheniformis [38], etc. have shown the potential
to produce chitinases. Also, the fungi Humicola grisea [39], Rhizomucor miehei [40], and A. flavus [41]
have proved to be potential candidates for the production of high chitinase titres. Actinomycetes
viz. Thermobifida fusca [42], Streptomyces pratensis [43], and Saccharothrix yanglingensis [44] have
also been reported to produce notable levels of chitinase. Bacteria primarily produce chitinases
in order to degrade chitin for its utilization as an energy source, whereas some bacterial chitinases
have shown potentiality as biological control agents against a variety of plant diseases caused by
phytopathogenic fungi [45–47]. Fungal chitinases have also been observed to play a key role in
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the nutrition, morphogenesis, and developmental processes in fungi [48]. The later sections of
this review describe the role of fungi in plant pathogenicity and their mode of action, followed by
the state-of-the-art information of the research conducted related to the application of chitinases
in agriculture.

3. Fungi as Phytopathogens

Fungi, well-known organic matter decomposers and recyclers, interact with plants in both positive
and negative manners [49]. In plant pathogenesis, fungi are known for their ability to be the prime
causative agents for >70% of major diseases in agricultural crops, trees, and landscapes. Most of the
species of flowering plants around the world are affected by pathogenic fungi. Some of the common
fungal diseases in crops include rice blast, rice sheath blight, wheat rust, powdery mildew of pulses,
etc. In molecular plant pathology, fungal pathologists have nominated some fungal pathogens as the
prominent agents for the most frequently occurring plant diseases. The top 10 fungal pathogens on
the basis of scientific/economic importance are Magnaporthe oryzae, Botrytis cincerea, Puccinia spp.,
F. graminearum, F. oxysporum, Blumeria graminis, Mycosphaerella graminicola, Colletotrichum spp.,
Ustilago maydis, and Melampsora lini [3]. Generally, opportunistic fungal parasites use natural openings
or wounds in order to invade plants, but true phytopathogenic fungi transverse the plant’s outer
structural defense (the cuticle and epidermal cell wall) through a secreted hydrolytic enzyme cocktail
consisting of chitinases, pectinases, cellulases, and proteases. For successful invasion into plants,
fungi have to compete with the physical and chemical defense barriers of plants [50]. A plant’s
structural components i.e., cuticle, not only prevents the direct penetration of fungal pathogens
but also averts fungal spore germination by wax secretion [51]. Fungi overcome plant defense by
employing several strategies. In some cases, fungi secrete effector molecules to interact with the basal
plant defense response [52]. Fungi also secrete chemical messengers to interact with the signaling
process of the host plant to compete with the plant’s chemical barriers [53]. Symbiotic fungi suppress
plant defense by interacting with host defense signaling as well as other soil microorganisms [54].
Some fungi can also hide their identity by altering the physicochemical properties of proteins usually
recognized by plant receptors [55].

A range of phytopathogenic microorganisms circumvent plant defenses; however, very few
succeed. Plants induce a rapid defense response in localized cells and tissues, called hypersensitive
response [56]. In the process of microorganism-assisted plant pathogenesis, following the invasion of
pathogens into the plant interior, they have to conquer the rigid cell wall, followed by the interface
with the plasma membrane where microbes encounter extracellular surface receptors that recognize
pathogen-associated molecular patterns (PAMP). This results in the initiation of PAMP-triggered
immunity that is suppressed by the pathogenic microorganisms either by secreting effector molecules
into the cell cytosol to alter the resistance signaling or by interfering with recognition at the plasma
membrane [57]. Apart from this, a panoply of defense responses viz. pH changes, the production of
reactive oxygen species, swift ion fluxes, the production of local and systemic signaling molecules and
antimicrobials, etc. are generated by plants to impede the invasion of pathogens.

Pathogenic fungi usually exploit conserved proteins during the infection process, in spite of
their differences in lifestyle. [58]. One of the common phenomena among pathogenic fungi is to
invade the host through appressoria i.e., a specialized infection structure required to penetrate
the cuticle of the host cells. An extensive study was conducted on the mode of fungal infection
through appressoria (Figure 1) on the rice blast fungus M. oryzae [59]. The development and infection
caused by appressorium in M. oryzae can be divided into four different stages: pre-appressorium
development, appressorium turgor generation, appressorium maturation, and the penetration of the
peg [60]. The pre-appressorium development stage consists of a spore landing on the host surface,
followed by the germination of conidium and attachment to the leaf surface. This attachment leads
to the germination of spores as well as the development of germ tubes from the conidium [61].
Finally, the extension of the developed germ tubes takes place, followed by their differentiation into a
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unicellular appressorium. During the appressorium turgor generation, along with the appressorium
maturation, there is a rapid synthesis of glycerol and other polyols that results in the generation of
turgor and a melanin layer on the inner side of the appressorium cell wall to provide support to the
infected cell [62]. The turgor generation is followed by the maturation of appressorium, in which
the development of an appressorium pore occurs that is the base of the infection cell. From these
appressorium pores, the penetrating hypha emerges. These pores are also the site of the remodeling of
the actin cytoskeleton and, during the formation of the penetration peg, rapid F-actin polymerization
occurs, leading to the rapid polarized growth of the hypha. The formation of the penetration peg
leads to the production of effector proteins, which suppress plant immunity responses and smooth the
proliferation of the pathogens within the plant tissue [63].
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Figure 1. Process of fungal pathogenesis in plants. The figure illustrates the infection caused through
am appressorium in M. oryzae. The whole process is sub-divided into four steps: formation of a
pre-appressorium (spore arrival, attachment, germination, germ tube development, and differentiation
into unicellular appressorium), appressorium turgor generation (appressorium maturation and
synthesis of polyols), maturation (development of the appressorium pore and emergence of the
penetration hypha), and penetration of the peg (effector proteins aid in plant infection).
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4. Application of Chitinases in Agriculture

Plant diseases caused by pathogens play a major role in the reduction of crop yield. There are
many chemical and biological means available for fighting against these pathogens, including the
utilization of chitinolytic enzymes [64]. Chitinolytic enzymes like chitinases have been proven to
be among the most promising candidates in plant disease maintenance, as the enzymes are able to
hydrolyze chitin which is commonly present in plant fungal pathogens [9]. Chitinases not only provide
assets to enhance plant immunity, but also take part in plant growth and development. The current
scenario of plant pathogenesis focuses on the development of disease-resistant transgenic plants by the
incorporation of chitinases encoding genes from any species to any plant in order to boost the disease
resistance in plants (Table 1).

Table 1. Chitinase gene expression and application.

Gene Origin Application Reference

Maize chitinase 2 gene Zea mays Effective against rot
pathogen F. graminearium [65]

Tobacco osmotin (ap24) and
rice chitinase (chi 11) gene

Nicotiana sp. (Tobacco)
and Oryza sativa (Rice)

Reduce sheath blight
disease caused by

R. solani
[66]

Chitinase I gene Hordeum vulgare cultivar,
Haider-93

Inhibits phytopathogenic
fungi A. solani, R. solani,

F. spp., V. dahliae
[18]

Class II endochitinase gene Hordeum vulgare Inhibit growth of
A. solani [67]

Chitinase (Chit 33) Trichoderma atroviride

Resistance against
Sclerotinia

sclerotiorum-mediated
stem rot disease

[68]

Endochitinase gene
IIHR-JBMch Trichoderma harzianum

Resistance against wilt
disease caused by

F. oxysporium
[69]

Rice class I chitinase
gene (Rchit) Rice

Resistance against late
leaf spot, rust disease,
and A. flavus infection

[70]

Rice chitinase-3 gene Rice
Resistance against leaf

spot in peanut by
Cercospora arachidicola

[71]

The transformation of canola by an endochitinase gene, chit33 from Trichoderma atroviride, had led
to increased resistance towards Sclerotinia sclerotiorum [68]. A detached leaf assay following chit33
expression illustrated decreased lesion sizes as compared to non-transgenic canola. Transgenic varieties
of peanuts expressing the Rchit gene from rice showed increased resistance towards major soil borne
and foliar fungal pathogens. Two to 14-fold higher chitinase activity was detected in the leaves of
transgenic peanut lines along with increased resistance against leaf rust spot and rust disease as well
as A. flavus infections.

4.1. In Plant Defense

Plants are known to produce pathogenesis-related enzymes in response to phytopathogens and
this naturally acquired defense mechanism can be implicated in strengthening the defense [72,73].
Nowadays, chitinase genes have been cloned and expressed into various plant species, resulting in
improved disease resistance in the developed transgenic plants [74,75]. A class I chitinase gene
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(AF153195) from potato was introduced into the tea genome and its overexpression resulted in an
enhanced resistance against blister blight disease [76]. Zarinpanjeh et al. [77] reported improved
resistance against Sclerotinia stem rot in Brassica napus by the co-expression of defensin and the
chimeric chitinase gene. The study utilized the developed transgene for constitutive expression in
transgenic lines that suppressed the growth of Sclerotinia sclerotiorum [77]. Resistance against the
stripe rust disease in transgenic wheat (Triticum aestivum L.) was achieved to a greater extent by the
expression of the rice chitinase gene RC24 [78]. Shin et al. [79] reported increased resistance against the
fusarium head blight disease by expressing a barley class II chitinase gene in wheat. The co-expression
of tobacco osmotin (ap24) and rice chitinase (chi11) genes resulted in enhanced resistance in rice plants
against the sheath blight disease caused by Rhizoctonia solani [66]. Karmaka et al. [80] showed improved
resistance of rice plants against sheath blight disease by the co-expression of chitinase and oxalate
oxidase 4 genes. Similarly, the chitinase gene LOC_Os11g47510 overexpression in rice plants also
showed improvement in the resistance against sheath blight disease [81]. Apart from utilization in the
enhancement of plant defense system, chitinases also play a significant role in the enhancement of
plant growth and yield.

4.2. In Plant Development and Yield

Chitinases support plant growth by improving their endurance towards various biotic and
abiotic stresses that diminish crop productivity [82]. The endochitinase and chitobiosidase genes
from S. albidoflavus were expressed in tomato plants and a significant decrease in plant height along
with reduced flowering time was observed [83]. The study also reported an increased number of
flowers and fruits on the transgenic tomato plants, leading to an enhanced yield [83]. Guo et al. [84]
investigated a drought-induced gene (DIP3) encoding a chitinase III protein as a stress-induced protein
that can regulate the plant stress response against abiotic stress viz. drought, salt, and low temperature.
The overexpression of CHIT33 and CHIT42 genes from T. harzianum in transgenic tobacco resulted in
enhanced forbearance against phytopathogens, salinity, and heavy metals stress [85]. Jeong et al. [86]
developed transgenic rice plants by overexpressing the OsNACS gene under the control of root-specific
(RCc3) or constitutive (GOS2) promoters and obtained 9–23% and 9–26% increments in yield under
normal environmental conditions. Moreover, the study also suggested a higher grain yield of 22–63%
in RCc3:OsNAC5 under drought conditions. Kumar et al. [87] developed transgenic tomato showing
enhanced tolerance to salt and drought stress by the expression of Osmotin-like protein and chi11
genes. The research also reported the significant role of phosphofructokinase2 in the enhancement of
root biomass [87].

5. Chitooligosaccharides in Agriculture

In recent decades, the utilization of catabolic products of chitin, i.e., COS, has been studied
for strengthening plant protection and growth [88]. COS is accepted as a potential bactericidal
and fungicidal agent for plants. COS not only protects plants from pathogens, but also serves as
a plant growth regulator [89]. The application of COS with different degrees of polymerization in
synergy was also investigated by the researchers [89]. The utilization of a low-molecular-weight
chitin mix consisting of dimers (92%), trimers, and tetramers resulted in a notable enhancement
in the in vitro fresh weight (10%), radical weight (25%), total carbon (6%), and nitrogen content
(8%) [89]. The application of COS for the improvement of plant growth has been extensively researched
and patented [90,91]. Zong et al. [92] reported improved levels of cadmium tolerance and plant
growth in B. rapa plants when COS was sprayed on the leaves. COS (50–100 mg L−1) resulted in
significant tolerance. Zou et al. [93] reported the use of sulfated COS on wheat to overcome salt
stress. Sulfated COS treatment was able to decrease the content of malondialdehyde, increase the
chlorophyll contents, and modulate fluorescence characters in wheat seedlings under salt stress.
The ease of utilization along with a vast range of applicability of the chitin-based bioactive derivatives
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and chitinolytic enzymes could, in the near future, contribute significantly to the enhancement of plant
growth and yield via boosting plant defense systems against phytopathogens.

6. Conclusions

Chitinases are among the most effective biocontrol agents in controlling phytopathogenic fungi.
Chitinases can be implicated in strengthening plant immunity by the expression of the desired
chitinase, resulting in enhanced activity and sensitivity against pathogens. Chitinase-treated seeds
and transgenic plants are able to provide better protection from the infection of pathogenic fungi.
Directed evolution and site-directed mutagenesis could be explored to develop chitinases with broad
activity and specificity. Ease of applicability makes COS a potential leading candidate of the near
future in controlling plant diseases. However, not much is known about the role of fungal chitinases in
their interaction with plants. Thus, intensive research is required to understand the mechanism and
role of fungal chitinase during plant pathogenesis.
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