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Abstract: In this study, the occurrence of Cochlodinium polykrikoides bloom was predicted based on
spatial information. The South Sea of Korea (SSK), where C. polykrikoides bloom occurs every year,
was divided into three concentrated areas. For each domain, the optimal model configuration was
determined by designing a verification experiment with 1–3 convolutional neural network (CNN)
layers and 50–300 training times. Finally, we predicted the occurrence of C. polykrikoides bloom
based on 3 CNN layers and 300 training times that showed the best results. The experimental
results for the three areas showed that the average pixel accuracy was 96.22%, mean accuracy was
91.55%, mean IU was 81.5%, and frequency weighted IU was 84.57%, all of which showed above
80% prediction accuracy, indicating the achievement of appropriate performance. Our results show
that the occurrence of C. polykrikoides bloom can be derived from atmosphere and ocean forecast
information.

Keywords: Cochlodinium polykrikoides; convolution neural network (CNN); prediction; South Sea of
Korea (SSK)

1. Introduction

Harmful algal bloom (HAB) is a common phenomenon that has been recorded in the
past, but in recent years, the number and duration of occurrences have increased due to
human influence [1]. Particularly, in the South Sea of Korea (SSK), where aquaculture farms
are densely populated, the HABs that repeatedly occur almost every year cause economic
damages to the aquaculture industry. HAB outbreaks in the SSK were mainly caused by
diatoms in the early 1990s, but after 1995, Cochlodinium polykrikoides with dinoflagellate has
become the primary cause [2–4]. C. polykrikoides blooms mainly occurring between Naro-do
and Namhae-do are not limited locally and spread to the entire SSK, the East Sea (Sea of
Japan), and the Yellow Sea coasts, causing significant damage [3,5]. Therefore, a novel
method is required because early detection and monitoring are limited by the investigation
of only the local area.

HAB monitoring has been conducted by vessel surveys, coastal visual observations,
and aerial surveys for a long time. In Korea, the National Institute of Fisheries Science (NIFS)
has conducted such studies as the central institution since the 1970s. However, because
in-situ observation is manual-labor-intensive and expensive, there is a limit concerning
monitoring the entire sea, and therefore, the method of remote sensing has attracted
considerable attention. Because remote sensing has the advantage of affording wide-area
information immediately, research using satellites has been actively conducted, and various
HAB detection algorithms have been developed. However, HABs occur mainly on the
coast, and high concentrations of suspended matter and dissolved organic matter on the
coast degrade the quality of satellite data [6], making it challenging to detect HABs [7,8].
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HAB prediction is an essential step in minimizing economic losses. Until now, most
efforts have been made to predict the scale and migration of HABs and reduce damage
through ecological research and monitoring of harmful algae. However, it is difficult to
predict and prepare for HABs because the cause or process of occurrence has not yet been
clearly identified [1].

It is extremely difficult to predict HABs because these phenomena consist of highly
complex physical, chemical, and biological processes. Physical prediction models encounter
difficulties prescribing related variables and coefficients when predicting HABs; moreover,
enormous computational resources are required for calculation [9]. Furthermore, the use of
data-driven prediction methods have become increasingly common in the prediction of
HABs [10–12].

In this study, we predict HABs using a correlation model of non-linear environmental
and biological factors [5]. Bak et al. [13] proposed a method to determine the presence of
HABs in the SSK by applying logistic regression and decision trees to satellite images. Bak
et al. [14] predicted the occurrence of C. polykrikoides blooms in the SSK by constructing
a deep neural network with eight hidden layers. Shin et al. [15] applied sea surface tem-
perature (SST) and photosynthetically available radiation (PAR) to a deep neural network
model of long short-term memory (LSTM) to predict the timing of C. polykrikoides bloom
in the SSK; the results were five days ahead of the actual occurrence of HABs, therefore it
could be used for early prediction. Kim et al. [16] constructed a U-Net convolution neural
network model based on GOCI’s normalized water-leaving radiance (nLw) based on the
red tide index (RI) of Shin et al. [17] and predicted HABs with 13% higher accuracy than
that in the case of the four-band dataset in the six-band dataset.

Recently, with the development of advanced spatial image analysis and deep learning,
research on the correlation between spatial information and phenomena has received
considerable attention. Until now, the prediction of HAB occurrence using the model in
the SSK has been studied with the remote sensing reflectance (Rrs) of the satellite as a
parameter. Satellite Rrs may cause detection accuracy problems due to low data accuracy of
the coast and high spectral similarity between HABs and turbid coastal water. Previous
studies [13–15] showed that environmental parameters are closely related to the occurrence
of C. polykrikoides. In this study, ocean and weather model data were used to predict
the blooms of C. polykrikoides, the main species that cause HABs in the SSK. The spatial
distribution was predicted using a convolutional neural network (CNN) model.

2. Data and Methods
2.1. C. polykrikoides Bloom Data

The C. polykrikoides occurrence prediction model was trained and verified using NIFS
breaking news data (http://www.nifs.go.kr/red/main.red (accessed on 20 December
2021)). The C. polykrikoides observational data are based on vessel, land, and aerial surveil-
lance results of the studies conducted by the NIFS, fisheries technology offices, and maritime
security and safety headquarters (Table 1). In the C. polykrikoides blooms, observation time
and location are recorded using GPS, and the density and water temperature are provided.
In this study, we used the time and location of C. polykrikoides blooms. These data were
mapped to a 3-km grid considering the minimum resolution of the marine and meteoro-
logical numerical model data. Based on the cumulative number of C. polykrikoides bloom
occurrences per grid over the past 10 years (Figure 1), the predicted area of C. polykrikoides
bloom occurrence is equally divided into three zones in the SSK because the characteristics
of water masses are different based on the complex topography and islands (for example,
Namhae-do and Geoje-do) in the South Coast of Korea [18]; this affects the location and
timing of the occurrence of C. polykrikoides blooms [15,17].

http://www.nifs.go.kr/red/main.red
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Table 1. C. polykrikoides monitoring system in the SSK.

Type Surveillance Area Surveying Periods Organization in
Charge

Vessel surveillance 102 stations
March to November

(one to two times
per month)

NIFS

Land surveillance 130 stations April to October
(two times per week)

Fisheries technology
offices

Aerial surveillance Area where HABs
occurs On-demand Korea Coast Guard

Figure 1. Cumulative occurrence days of C. polykrikoides per grid from 2010 to 2019 in the SSK
based on the observed data provided by NIFS (A, B, and C indicate the C. polykrikoides forecasting
experiment area).

2.2. Meteorological Data

Meteorological reanalysis data were obtained from the National Centers for Environ-
mental Prediction (NCEP) Global Forecasting System (GFS, https://www.ncdc.noaa.gov/
data-access/model-data/model-datasets/global-forcast-system-gfs (accessed on 20 De-
cember 2021)). GFS provides dozens of atmospheric and soil parameters. The spatial
resolution was 0.5◦, and prediction information was produced at 1h intervals for the first
120 h and provided at 3h intervals for 5–16 days. From the GFS data, we selected 13 param-
eters for the input data for the growth and movement prediction of C. polykrikoides (Table 2).
Because the C. polykrikoides occurrence information is provided daily, the meteorological
model data were also averaged daily. Only the regions shown in Figure 1 were extracted
for efficient time management and tensor optimization, when training the model.

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
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Table 2. Meteorological input data from NCEP GFS for the HAB prediction model.

Number Level Valid Time Parameter Description

435 2 m above ground 3h forecast TMP Temperature (K)

438 2 m above ground 3h forecast RH Relative Humidity (%)

442 10 m above ground 3h forecast UGRD U-Component of
Winds (m/s)

443 10 m above ground 3h forecast VGRD V-Component of
Winds (m/s)

446 Surface 3h forecast PRATE Precipitation Rate
(km/m2/s)

462 Surface 0–3 h average LHTFL Latent Heat Net
Flux (W/m2)

463 Surface 0–3 h average SHFTL Sensible Heat Net
Flux (W/m2)

465 Surface 0–3 h average UFLX
Momentum Flux,

U-Component
(N/M2)

466 Surface 0–3 h average VFLX Momentum Flux,
V-Component (N/M2)

497 Surface 0–3 h average DSWRF
Downward

Short-Wave Radiation
Flux(W/m2)

498 Surface 0–3 h average DLWRF
Downward

Long-Wave Radiation
Flux (W/m2)

499 Surface 0–3 h average USWRF
Upward Short-Wave

Radiation Flux
(W/m2)

500 Surface 0–3 h average ULWRF
Upward Long-Wave

Radiation Flux
(W/m2)

2.3. Oceanographic Data

The temperature and salinity of GLBv0.08 provided by the Center for Ocean-Atmospheric
Prediction Studies (COAPS) Hybrid Coordinate Ocean Model (HYCOM) (https://www.
hycom.org/ (accessed on 20 December 2021)) were used as the ocean reanalysis data. C.
polykrikoides blooms occur in a wide range of water temperatures and salinities [19–24].
COAPS HYCOM provides a spatial resolution of 0.08◦ from 40◦ S to 40◦ N. The HYCOM
data are provided in standard z-levels of 40 layers from the sea surface to the seafloor. We
used sea surface height (SSH), eastward velocity, northward velocity, temperature, and
salinity fields as inputs for the HAB prediction model.

2.4. Model Structure and Training

Deep learning is a subfield of machine learning in which data clustering and classifica-
tion are performed after extracting key features of data through the high-level abstraction
of training data using a nonlinear transformation technique. Various neural networks based
on Convolutional Neural Network (CNN) show excellent performance in the prediction or
detection of ocean and weather parameters [25–28].

2.4.1. Convolution Neural Network

CNN is a deep learning model that was proposed by Lecun et al. [29] for handwriting-
character recognition and is a model that mimics the human optic nerve structure processing

https://www.hycom.org/
https://www.hycom.org/
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vision information. Among all the deep learning algorithms, the CNN model is specialized
for image processing, and the CNN structure is shown in Figure 2. The image input to the
input layer is converted into a number for each pixel and is saved as a feature map from
which the features of the image are extracted through a filter in the convolution layer. In
this case, various features of the image may be extracted according to the filter size and
the calculation method used. In the next pooling layer, the size of the image is reduced
through max pooling, reducing the amount of computation, and transferring the main
features of the image to the next layer. After repeating this process, in fully connected, the
three-dimensional (3D) value is converted to 1D to determine whether the object image
to be identified matches, and the identification result is output at the last output layer.
In this study, two-dimensional(2D) CNN (CONV2D) automatically extracts the features
of the object to be recognized from the learning image by alternately performing the
operations at the convolution layer and pooling layer to extract the 2D features. In this
study, using the CNN model, a model capable of spatially discriminating the occurrence
of C. polykrikoides blooms from the 2D information of the meteorological model and ocean
model was developed and verified.

Figure 2. A convolutional neural network sequence to classify ocean data.

To evaluate the accuracy according to the number of CNN layers and the number of
training times, the root mean squared error (RMSE) and prediction accuracy (ACC) were
used to evaluate the validation loss and validation accuracy. The indices of the accuracy
evaluation are as follows:

RMSE =
∑n

i=1 (Xobs,i − Xmodel,i)
2

n
(1)

ACC = 1−
∑n

i=1

(
|Xmodel,i−Xobs,i|

Xobs,i

)
n

(2)

where Xobs,i is the observed value, Xmodel,i is the value modeled at position i, i is the low
column number, n is the number of pixels to be predicted, and n = M×N. RMSE represents
the absolute error, whereas ACC represents the relative accuracy. A smaller RMSE indicates
a higher performance, and the opposite is true for ACC. Spatially averaged RMSE and
ACC were used for areal prediction.

The time interval of the prediction model is one day, following the input parame-
ters from ocean and weather numerical models. Because we used one-to-one forecast
neural networks, HABs prediction period is equal to the ocean and weather numerical
forecast models.

For neural network optimization, we investigated an optimal number of training
epochs. The performance increased up to epoch 300, but deteriorated after the optimal
epoch number. This showed that better convergence and accuracy could not be obtained in
the number of training more than 300 times, due to the overfitting problem.
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Before experimenting, the effect of predicting the occurrence of C. polykrikoides blooms
was evaluated based on pixel accuracy, mean accuracy, mean Intersection over Union (IU),
and frequency weighted IU as the indicators of the accuracy of the experimental results.
The indices of the accuracy evaluation are as follows:

pixel accuracy = ∑i nii/ ∑i ti (3)

mean accuracy = (1/ncl)∑i nii/ti (4)

mean IU = (1/ncl)∑i nii/
(

ti + ∑j nji − nii

)
(5)

frequency weighted IU =
(
∑k tk

)−1
∑i tinii/

(
ti + ∑j nji − nii

)
(6)

where nji is the number of pixels of class i predicted to belong to class j, and there are ncl
different classes; ti = ∑i nji is the total number of pixels of class i.

2.4.2. Model Structure

Figure 3 illustrates the structure of the model developed in this study. This experiment
was conducted by configuring the hidden layers of one to three CONV2D into one to
three layers. The input layer and the hidden layer are each composed of 14 features,
and the output layer comprises one feature corresponding to the spatial distribution of
C. polykrikoides blooms. For the weight, the bias was set to zero, and the global uniform
kernel initializer was used. During training, the Adam optimizer was used, and tanh
(hyperbolic tangent) was applied as the activation function of the hidden layer because
it could learn the characteristics of the occurrence of C. polykrikoides blooms as a training
target. In addition, in this experiment, 14 variables of the input data were normalized to
optimize the training because the deviation was large, depending on the parameters of the
input data.

Figure 3. Network structure of the HAB prediction model.

2.4.3. Training and Test Period

Our deep learning prediction model was trained using meteorological and oceano-
graphic input data from 2010 to 2019. The occurrence information of C. polykrikoides was
also considered. The ratio of training, verification, and test data was set at 8:1:1, the training
structure was one-to-one based on matching of the ocean and meteorological data on the
same date as the corresponding C. polykrikoides bloom date, and the possible C. polykrikoides
bloom occurrence forecasting date is the same as the future forecasting period of HYCOM
and GFS. For example, if HYCOM and GFS each have a prediction result of 3 days and
10 days, respectively, the maximum predictable period in this study is 3 days.

2.4.4. Model Domain and Information

In Figure 1A,B and C are all composed of a 12 × 13 grid, and the ocean and meteo-
rological data used for model training were also interpolated to form a grid of the same
size as A, B, and C. Because there are 14 marine and meteorological variables, the input
layer is composed of 12 × 13 × 15 3D data, and the output layer provides 12 × 13 × 1 2D
C. polykrikoides bloom information. In the case of the hidden layer, the padding is set such
that the input layer and grid size are the same, and the filter size is 14 that is the same as
the number of input variables.
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HABs are affected by various environmental factors, not only around the location of
blooming, but also those that are far from the blooming areas. This study was conducted
based on the hypothesis that the impacts of environmental factors on HABs are proportional
to the distance from the blooming areas; therefore, we set the kernel size to three.

2.4.5. Network Architecture

In the experiment, the dates of HAB occurrence and non-occurrence in each domain
were randomly mixed. The ratios of training, verification, and testing were 80%, 10%, and
10%, respectively. The test was conducted on HAB information for 24 days that corresponds
to 10% of the total period of HAB information.

3. Results
3.1. HABs Occurrence Status

In the SSK, HABs occur mainly from July to October, most frequently in August.
Therefore, we simulated the HABs from July to October from 2010 to 2019. The HAB
occurrence days during the analysis period was 279 days. Figure 4 shows the cumulative
occurrence days of HABs per month from 2010 to 2019.

Figure 4. Cumulative days of HABs per month from 2010 to 2019 at the SSK.

The test data (ocean, meteorology) were used along with training data (ocean, mete-
orology) and its label (HABs observation data) to verify the HAB occurrence prediction
performance. Figure 5a shows the number of days of HAB occurrence per month for each
domain. In Domain A, HABs began to occur in August, with the highest frequency (69 days)
in September. Domain B and C show similar occurrence days of HABs. HABs began to
occur in July, the highest frequency being (Domain B: 118 days, Domain C: 102 days) in
August that gradually decreased from September due to the decrease in water temperature.
Figure 5b shows the monthly HAB occurrence area (number of pixels) for each domain.
Domain A showed the largest occurrence area in September that was proportional to the
number of days of HABs. In Domain B, the difference in the occurrence area between
months is small, indicating that the HABs in Domain B are widely distributed. Domain C
had the largest distribution area in July that gradually decreased until October. Therefore,
it can be confirmed that HABs actively occur in July and August in Domain B and C and
decrease in September, while Domain A shows the maximum HABs in September. SSK had



J. Mar. Sci. Eng. 2022, 10, 31 8 of 12

different spatial and temporal characteristics for each region. Accordingly, the domains
were divided considering the characteristics of each area.

Figure 5. Monthly HABs occurrence days (a) and areas (b) by domains.

3.2. CONV2D Forecasting of HABs for the Three Domains

The grid size of the meteorological and ocean input variables was set as 58 × 78 at
0.5◦ grid resolution and interpolated accordingly. The input time was 279 days, and the
total number of HAB occurrence days between 2010 and 2019 and the total number of input
variables was 15, including meteorological and oceanic variables. Therefore, the number of
variables in the HAB generation prediction model was 18,932,940 (= 79 × 58 × 78 × 15). The
output variables corresponded to each experimental area, and the experiment considered
the information regarding the presence or absence of HABs in each grid in a grid of size
12 × 13 at 0.5◦ grid resolution. Therefore, the number of output variables of the HAB
occurrence prediction model was 43,524 (= 79 × 12 × 13). After setting each experimental
group based on the aforementioned configuration, we attempted to predict the occurrence
of HABs using CONV2D. The structure of the HAB occurrence prediction using CONV2D is
shown in Figure 3. This model configuration results from the input data set specified in the
HAB occurrence information true value as predicted daily HAB occurrence (one-to-one).

Subsequently, the experiments were conducted for different numbers of classes. In
other words, one to three layers were used. As presented in Table 3, all the three weighted
convolutional LSTM layers demonstrated the best performance in Domain A, B, and C. It
can be seen that as the number of layers decreases, the result is equal or lower. Therefore,
3 weighted convolutional layers and 300 training times were considered optimal for the
HAB occurrence prediction model. The experiment was conducted for the period set as the
test experiment. The bold characters in Table 3 indicate the best performance: the smallest
RMSE and the largest ACC.

In terms of the number of CONV2D layers, the accuracy with 300 training times for
a single stack of Domains A, B, and C was 96.88%, and the accuracy with 300 training
times for three stacks was 97.46%, demonstrating a 0.58% improvement. In terms of the
number of training times in the three-stack CONV2D layer, the convergence of training
and verification loss was not observed for less than 200 training times. It appeared to be a
less stable training model when the training was performed at least 300 times. Therefore, a
stable training model was obtained, and prediction results showing an improved accuracy
were obtained.
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Table 3. Validation result (Average MSE and ACC) using different convolution strategies and iteration
times for Domain A, B, and C.

Domain Layer
Iterations (times)

50 100 150 200 250 300

A

1
Loss 0.0159 0.0152 0.0144 0.0147 0.0146 0.0133

Accuracy 0.9812 0.9811 0.9818 0.9825 0.9825 0.9837

2
Loss 0.0157 0.0147 0.0140 0.0131 0.0129 0.0126

Accuracy 0.9813 0.9823 0.9828 0.9844 0.9843 0.9846

3
Loss 0.0164 0.0146 0.0146 0.0137 0.0132 0.0125

Accuracy 0.9803 0.9818 0.9818 0.9833 0.9842 0.9852

B

1
Loss 0.0405 0.0386 0.0370 0.0352 0.0342 0.0340

Accuracy 0.9484 0.9515 0.9541 0.9569 0.9572 0.9568

2
Loss 0.0387 0.0347 0.0321 0.0310 0.0281 0.0298

Accuracy 0.9505 0.9564 0.9598 0.9614 0.9661 0.9634

3
Loss 0.0394 0.0345 0.0304 0.0286 0.0293 0.0271

Accuracy 0.9498 0.9566 0.9628 0.9649 0.9628 0.9669

C

1
Loss 0.0351 0.0330 0.0310 0.0306 0.0295 0.0288

Accuracy 0.9577 0.9600 0.9629 0.9628 0.9650 0.9660

2
Loss 0.0341 0.0313 0.0284 0.0267 0.0256 0.0252

Accuracy 0.9596 0.9624 0.9662 0.9685 0.9713 0.9707

3
Loss 0.0352 0.0313 0.0299 0.0264 0.0254 0.0250

Accuracy 0.9582 0.9634 0.9657 0.9686 0.9716 0.9716

Table 4 presents the performances of the proposed model in Domain A, B, and C, as
well as the overall results. The evaluation metrics are the pixel accuracy (PA), mean accuracy
(MA), mean IU (mIU), and frequency weighted IU fwIU). The average pixel accuracy is
96.46%, while the mean accuracy is 84.94%. The mean IU and frequency weighted IU are
79.31% and 94.63%, respectively.

Table 4. Average test result (pixel accuracy, mean accuracy, mean IU, frequency weighted IU) of
Domain A, B, and C.

Domain Pixel Accuracy Mean Accuracy Mean IU Frequency
Weighted IU

A 97.78 88.57 83.59 96.63

B 94.61 86.19 79.72 91.95

C 96.98 80.06 74.63 95.31

Total 96.46 84.94 79.31 94.63

Overall, the proposed model realized a high accuracy for all the domains. Domain A
showed the best precision for all the metrics. In Domain B, PA and fwIU were lower than
the average values, while MA and mIU in Domain C were lower than the average values.

4. Summary and Discussion

In this study, we combined spatial and temporal information to predict the occurrence
of HAB. The SSK region, where HABs frequently occurs, consists of many inner bays owing
to its complex ria coast. Because each inner bay has its own maritime characteristics, we
established prediction domains for three regions.

The optimal model setup was achieved by conducting various experiments using 1–3
convolutional Long-Short Term Memory(convLSTM) layers and 50–300 iterative pieces of
training for each domain. The best deep learning network setup was obtained from the
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experiments using 3 convLSTM layers and 300 iterative pieces of training. Because the
complexity of the deep learning model is extremely high, it is necessary to establish several
layers and a corresponding iterative training number. Recently, deep learning techniques
have been used for performing predictions in various fields; however, owing to the limi-
tations of the memory capacity of the mounted GPGPU (General-Purpose Computing on
Graphics Processing Units), it is difficult to address the complexity of the multi-dimensional
models used in this study. GPGPU performance can be improved in the future using higher
resolution meteorological and oceanic input data that are available, and consequently, the
prediction accuracy is expected to increase further.

The performance metrics corresponding to the domains showed high efficiency. How-
ever, in all the domains, the results were over-predicted; this is also associated with the
results where the accuracy was higher than the IU. For the performance evaluation metrics,
accuracy represents only the percentage of successful predictions of red tide occurrences,
and predictions of non-occurrence are not considered, whereas IU considers both occur-
rence and non-occurrence. Furthermore, fwIU and PA show higher values than mIU and
MA that is in accordance with the definition of metrics. MA and mIU represent the straight-
forward average of the occurrence and non-occurrence predicted hit rates, but PA and
fwIU increase the proportion of the larger class between occurrence and nonoccurrence.
Consequently, PA and fwIU can be more useful when HABs are distributed in most regions.

The characteristics of HABs differed for each domain, with frequent HABs in July and
August in Domain A, as the past data used for training includes cases in which HABs oc-
curred in the western SSK in 2013 and 2014 due to abnormally high water temperatures [30].
It is also considered that the accuracy of Domain B and C was lower than that of domain
A is related to the characteristics of the ocean currents in the SSK. The Tsushima Warm
Current inflow, which plays a key role in the circulation of the SSK, flows from the west
to the east. Consequently, in Domain B and C, HAB occurrences are not only induced by
environmental factors, but also by easterly flowing ocean currents.

Overall, the deep learning model proposed in this study is considered to be useful for
predicting HAB occurrence off the southern coast of Korea. A more complex and accurate
prediction method combining spatial and temporal information can be applied to various
marine disasters based on the improvement of deep learning models and computational
equipment performances in the future.

The deep learning method can be applied widely and generally to various problems.
We expect our proposed method can be modified and applied to other environment pre-
dictions, such as hypoxic state and shellfish toxin which are closely related to oceanic and
atmospheric states.
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