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Abstract: Quantitative probability has been computed for the tsunami hazard posed by earthquakes
from the Manila Trench, which has been regarded as a huge threat in the South China Sea. This
study provides a spatial distribution of the tsunami hazard covering the affected area with a spatial
resolution of 0.1◦ for disaster prevention of islands and continental coasts. The quantitative probability
of the tsunami hazard is computed by an efficient model, which can realize a large amount of potential
tsunami scenarios analysis in order to consider the randomness and uncertainty in earthquake
magnitude, source location and focal depth. In the model, for each potential tsunami scenario, the
occurrence probability of the corresponding earthquake and the intensity of tsunami waves at each
target location are computed. The occurrence probability of each scenario is estimated based on the
historical earthquake records. Then, the subsequent tsunami caused by each scenario is computed
using a new, efficient approach, instead of direct simulation using an ocean dynamics model. A total
of 1,380,000 scenarios are computed in order to obtain a stable statistical result. Based on the results,
the spatial distribution of the tsunami hazard is discussed and high-hazard regions along the coast
have been identified.

Keywords: Manila Trench; tsunami; hazard assessment; dataset; disaster prevention

1. Introduction

Hazard regionalization is an important part of disaster prevention and mitigation in
ocean and coastal management. Since tsunamis are one of the most hazardous disasters in
continental coasts and islands, quantifying the tsunami hazard probability can be helpful
in developing the disaster strategy and the designing of nearshore and offshore structures.
The Manila Trench is located on the east of the South China Sea and to the west of Luzon
Island, where the Eurasian plate has subducted beneath the Philippine plate at a fast speed
of 55–91 mm per year [1–4]. Some studies showed that large earthquakes can occur in this
region and the maximum possible magnitude is estimated to be 8.8–9.2 [5]. Once a large
earthquake happens, it might trigger dangerous tsunami in the South China Sea. Thus, the
Manila Trench has been widely considered as the main source of tsunami hazards in the
South China Sea [6,7].

Over the past two decades, some studies have assessed the tsunami hazard of some
coastal areas in the South China Sea. For example, Wu and Huang modeled tsunami
hazards from the Manila Trench to Taiwan [8]. Dao et al. analyzed tsunami hazards to
the coast of China, Vietnam, Brunei, Malaysia, Singapore and the Philippines [9]. Ren
et al. investigated worst-case-scenario tsunami hazards for cities in Guangdong Province,
Hainan Island and Taiwan Island [10]. However, these studies are mainly based on several
hypothetical extreme tsunami scenarios. The Probabilistic Tsunami Hazard Assessment
(PTHA) can provide a more comprehensive understanding by quantifying the probability
and it has been widely used in coastal areas all over the world [11–16]. There are also
some studies which applied PTHA to some target coasts in the South China Sea through
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Monte Carlo [15,17]. Studies have been conducted which concentrated on some specific
important coastal cities. However, there is still lack of a dataset covering the wider region
in and around the South China Sea. Zhang and Niu proposed an efficient approach to carry
out PTHA and applied it to the coast of Hainan Island [18]. The method is based on the
linear assumption of tsunami waves in deep water and makes it possible to calculate a
large number of scenarios and generate a dataset. A dataset covering the affected area can
provide an overall picture of the hazard distribution, while it can be a boundary condition
for further risk assessment in a local region [19].

The aim of this study is to establish a tsunami hazard dataset with a spatial resolution
of 0.1◦ covering the affected area of the earthquakes in the Manila Trench, and to clarify
the feature of spatial distribution of the tsunami hazard. In Section 2, the assessment
model and basic data are introduced. In Section 3, parameters of earthquakes around
the Manila Trench are statistically analyzed. The sampling, simulation and statistics of
potential tsunami scenarios are briefly described and discussed. The occurrence probability
of the corresponding potential earthquake scenarios is analyzed. Then, based on the
occurrence probability of each earthquake scenario and the intensity of the subsequent
tsunami simulated, the quantitative probability of tsunami wave height at each location is
calculated and, finally, the spatial distribution of the tsunami hazard is shown in Section 4.

2. Probabilistic Tsunami Hazard Assessment Model

Probabilistic Tsunami Hazard Assessment (PTHA) is developed from the concept of
Probabilistic Seismic Hazard Assessment (PSHA) and has been widely used since the early
1970s [20]. The model used in this study has been improved and is based on the previous
model of Zhang and Niu [18]. The maximum tsunami height at a target position during
one potential earthquake scenario is collected. Integrating the occurrence probability of the
scenario, the exceedance probability for a certain tsunami height is statistically estimated.
The process of probabilistic tsunami hazard assessment is shown in Figure 1.
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Figure 1. Process of probabilistic tsunami hazard assessment.

At a target point (TP), the exceedance possibility that the tsunami wave height H
exceeds a certain critical value of tsunami height hc, in the case that one earthquake
happens, can be given as:

p(H ≥ hc|TP) =
N

∑
i=1

pi·p(H ≥ hc|Ei; TP) (1)

where pi is the occurrence probability of the i-th potential earthquake scenario
Ei. p(H ≥ hc |E i; TP) is the possibility of tsunami height at the target point (TP) in the
earthquake scenario Ei, which equals 1 when H ≥ hc and otherwise equals 0.

Considering the fact that the number of historical records on earthquakes is relatively
large, it is assumed that the probability density of earthquake parameters can be estimated
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from the public earthquake catalog. Further assuming that the source parameters are inde-
pendent, the occurrence probability of a specific earthquake scenario pi can be calculated
from the product of the probability density of the main source parameters. The main source
parameters considered are moment magnitude Mw, focal depth D, epicenter and focal
mechanism (including fault strike angle φ, dip angle δ and slip angle λ). The range and
probability density of each parameter are given from the statistics of historical seismic data.

Because earthquakes can be considered as periodic crustal movements in long-term
sequences, the number of earthquakes occurring in a fixed interval of time can be modeled
as a Poisson process. The possibility that tsunami height H exceeds hc within a time interval
T is given as:

P(H ≥ hc; TP, T) = 1− exp[−νM·p(H ≥ hc|TP)·T] (2)

where νM is the annual occurrence rate of earthquakes with moment magnitude greater
than M which is the low limitation for tsunami generation.

According to Equation (2), the corresponding return period Tr is given as:

Tr =
1

νM·p(H ≥ hc|TP)
(3)

3. Seismic Characteristics of the Manila Trench and Potential Tsunami Simulation
3.1. Study Area and Potential Earthquake Scenarios

This study focuses on the tsunami hazard from the Manila Trench region, and the
area within 99.0◦ E–129.0◦ E and 5.0◦ N–29.0◦ N is selected as the study area, as shown
in Figure 2. Bathymetric data are obtained from ETOPO1 and the data of shoreline are
obtained from GSHHGD (Global Self-consistent, Hierarchical, High-resolution Geography
Database). To show the spatial distribution of the tsunami hazard, the spatial resolution of
target points in the area is set to be 0.1◦.
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Earthquakes which happened in the range 117◦ E–123◦ E and 12◦ N–22◦ N are statisti-
cally analyzed to estimate the occurrence possibility of each earthquake scenario. Available
earthquake catalogs include USGS (U. S. Geological Survey), GCMT (Global Centroid-
Moment-Tensor) [21,22], ISC (International Seismological Centre) [23,24], etc. The earth-
quake catalogs GCMT and USGS are used in this study. USGS has a longer time range,
starting from 1900, which includes more than 5000 earthquakes in our concerned area.
According to USGS, from January 1900 to December 2017, the annual occurrence rate of
earthquakes with a moment magnitude greater than 7 within the Manila Trench area is
given as 0.162. Earthquakes in GCMT were recorded from 1976. This catalog has a shorter
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time range but includes more source information such as strike angle, dip angle and slip
angle, which are needed for tsunami hazard assessment. According to the GCMT database,
from January 1977 to December 2017, a total of 493 earthquakes with moment magnitude 5
or above occurred in the Manila Trench. Earthquake distribution (GCMT; 5.0 ≤Mw ≤ 8.0;
1977–2017) is shown in Figure 2.

In this study, we temporarily focus on the influence of moment magnitude (Mw), focal
depth (D) and epicenter (Epi). Based on previous studies, it is regarded that earthquakes
greater than 7.0 can induce notable tsunami; therefore, we only simulate earthquakes with
Mw ≥ 7. Hsu et al. suggested that earthquakes may occur in the Manila Trench with an Mw
up to 9.2, so the maximum earthquake moment magnitude Mu is set to be 9.2 [5]. Twenty-
three magnitude scenarios are considered with an interval of 0.1. The occurrence probability
of each magnitude range is estimated using the Gutenberg–Richter (G-R) relationship [25]
and the coefficients in the G-R relationship are fitted using historical data from 1900 to
2017 recorded in USGS. Longer cataloging may result in a relatively reliable estimation.
Considering that the initial disturbance of the surface is too small and can be neglected
when the focal depth is larger than 100 km, the range of focal depth is set from 10 km to
100 km with an interval of 10 km. For the epicenter, we assume that the epicenter can appear
anywhere but with a different probability in the region of the Manila Trench (117◦ E–123◦ E,
12◦ N–22◦ N). In total, 6000 possible epicenter cases are computed with a spatial interval
of 0.1◦. The occurrence probability of each focal depth and epicenter case is estimated
by using statistics from the historical data in GCMT. Other source parameters that affect
tsunami generation are treated as fixed values. Considering the most dangerous conditions,
the slip angle is set to be 90◦ and the dip angle is set to be 30◦. The strike angle is set to be
consistent with the direction of the trench following Zhang and Niu [18]. The length and
width of the fault are estimated using the scaling relationship given by Blaser et al. [26],
which is linked with the magnitude. The combination of all source parameters results in
a large number of possible earthquake scenarios, totaling 23 × 6000 × 10 × 1 = 1,380,000
in the present study. The occurrence probability of each scenario is given in the next
section (Section 3.2). For a specific scenario, the generation and propagation of tsunami are
deterministic processes, which can be simulated using hydrodynamic models. However,
such a large number of scenario simulations is computationally time consuming. It requires
an efficient alternative method of simulating the tsunami process, which is introduced in
Section 3.3.

3.2. Occurrence Probability of Each Earthquake Scenario

The occurrence probability of each scenario is equal to the product of the probability
of each source parameter, as shown in Equation (4).

pi = pi,epi·pi,Mw ·pi,D (4)

Here, the randomness of source parameters, including magnitude, epicenter and focal
depth, is considered, and the probability density distributions of those parameters are
shown in Figure 3. pi,Mw is the probability of moment magnitude Mw, which is shown in
Figure 3b. As the number of earthquakes within a certain magnitude range follows the G-R
relationship [25], the probability density of moment magnitude Mw is given as

f (Mw) =

{
β exp[−β(Mw−M0)]

1−exp[−β(Mu−M0)]
M0 ≤ Mw ≤ Mu

0 else
(5)

where Mu is the upper boundary of moment magnitude and M0 is the lower boundary
selected considering that earthquakes with moment magnitude smaller than M0 are unlikely
to generate notable tsunami. M0 = 7.0 and Mu = 9.2 are adopted in this study. β = bln10, and
b is the coefficient in the G-R relationship, which is obtained from the statistical analysis
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of historical data. Based on our previous study, the parameters are adopted as a = 7.6332,
b = 0.9229, and β = 2.1251. Then, pi,Mw can be calculated through

pi,Mw =
∫ Mw+δM

Mw−δM
f (Mw)dMw (6)
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The solid line in Figure 3b is the probability density of magnitude and the orange bar
denotes the probability of magnitude within the range 8 − 0.05 to 8 + 0.05. pi,epi is the
probability of the epicenter within a spatial range of 0.1◦ × 0.1◦, as shown in Figure 3a. pi,D
is the probability of focal depth, which is the statistical frequency of historical earthquakes
within 100 km, as shown in Figure 3c.

3.3. Simulation of Tsunami Triggered by Each Earthquake Scenario

The generation and propagation of tsunami can be numerically simulated, and an
efficient alternative method is proposed for simulating a large number of scenarios. The
generation of tsunami is treated as an instantaneous process associated with the sudden
deformation of the seafloor in an earthquake event. The initial sea surface displacement
can be estimated using the widely used Okada model [27], under the conditions of given
focal depth D, fault strike angle φ, dip angle δ, slip angle λ, fault length, width and slip
amount. The length, width and slip amount of the fault are estimated from moment
magnitude [26,28]. It should be noted that non-uniform slip of the crustal faults will
occur randomly in actual earthquake scenarios, and the simple uniform slip model that
is widely used in tsunami simulation is only an approximation. Although the method
used in this study can be applied to the problem of non-uniform slip, due to the limited
time and computing resources, the influence of non-uniform slip distribution has not been
considered in the present study. After the initial sea surface displacement is known, the
propagation of a tsunami wave can be simulated by a number of ocean dynamic models,
such as COMCOT [29], TUMANI [30] and FVCOM [31]. This study uses FVCOM, but the
propagation of tsunami is not directly simulated from the initial sea surface displacement.
A number of cases with unit water displacement at the time of occurrence is pre-computed
as a unit source database to reconstruct the propagation of tsunami. Based on the linearity
of tsunami waves in deep water, the tsunami wave at a target point corresponding to
a specific earthquake event can be approximated by the linear superposition of waves
from unit sources. The initial water surface displacement in a unit source case is set to
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be 2D Gaussian-shaped distribution. In total, 7853 unit sources are placed in the range of
116.5◦ E~123.5◦ E and 11◦ N~23◦ N with an interval of 0.1◦, to cover the area of initial sea
surface displacement in all earthquake scenarios.

To simulate the time series of tsunami waves in a specific earthquake event, the initial
sea level displacement is firstly estimated using Okada’s model and then approximated as
a superposition of unit sources multiplied by scaling factors. After the scaling factor of each
unit source is determined, the tsunami waves at a target point can be superposed using
the time series of waves from unit sources. By doing it this way, we greatly reduce the
computing cost required for the simulation of more than one million scenarios, and improve
the efficiency of hazard assessment. The effectiveness and accuracy of this method have
been verified by comparing the previous simulation results of a tsunami corresponding to a
special earthquake event in the South China Sea [18]. Based on this method, the maximum
wave height of each tsunami scenario at each target point is collected and statistically
analyzed. It should be pointed out that the present method is not suitable for very shallow
water depths. The results can be used as boundary conditions for assessing the detailed
runup and inundation of local areas.

4. Distribution Characteristics of Tsunami Hazard

The present study aims to show the spatial distribution of the tsunami hazard over
the affected area of an earthquake around the Manila Trench. Considering that the efficient
method is inaccurate in shallow water, we selected target points in the South China Sea
with a water depth under 20 m and calculated the exceedance probability of different
critical wave height hc, and its corresponding return period. Figure 4 shows the spatial
distribution of the return period when hc = 1 m, 2 m, 3 m and 5 m. Figure 5 shows the
spatial distribution of wave height when the return period is equal to 100a, 200a, 500a and
1000a. As the critical wave height hc increases, its return period increases. The overall
tsunami hazard in the study area is not so high, and, generally, the southern area has less
tsunami hazard than the northern area.
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It can be seen that the tsunami hazard in the study area from the Manila Trench has
a certain spatial difference. There are regions that may suffer 1 m-high tsunami with a
return period of less than 200 years, denoted by the red color in Figure 4a. Those regions
may suffer 2 m-high tsunami with a return period of less than 500 years, as denoted by the
orange color in Figure 4b. Only small parts of those regions may suffer higher tsunami
with a longer return period.

Let us focus on the area where the return period is less than 200 years for 1 m-high
tsunami, and we can divide the area into five regions, as specified in Figure 4a. Region I
is the continental shelf to the southeast coast of the Chinese mainland. The rapid climb
of terrain leads to higher tsunami waves and wave energy accumulation in this area. In
addition, the southeast coast of China is roughly perpendicular to the strike direction in the
north part of the Manila Trench. When an earthquake with a large magnitude occurs in the
north part of the Manila Trench, most energy from tsunami waves will travel perpendicular
to the strike direction, resulting in relatively high tsunami wave height in this area. Figure 6
is the spatial distribution of wave height corresponding to a return period of 200 years in
Region I. This can also be seen in Figure 6, where the accumulation of wave energy in and
around the lee side of Dongsha Islands is clear. This can be explained by the theoretical
analysis on the refraction and diffraction of waves over an island [32,33]. Region II is the
source area along the Manila Trench. Most areas in Region II may suffer a tsunami wave
in the return period of 200 years. The tsunami hazard is relatively high along the western
coast of Luzon Island and the northwest coast of Palawan Island. Region III is Taiwan
Island. It can be seen that the south part of the west coast and the whole east coast are
exposed to large tsunami hazard. Region IV is the Hainan Island and Region V is the east
coast of the China–Indochina Peninsula. Although these two parts are relatively far from
the Manila Trench, due to the shoaling of tsunami waves there is still a high-hazard area
along the coast.
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5. Conclusions

This study conducted a probabilistic tsunami hazard assessment for potential earth-
quakes occurring around the Manila Trench, which is considered as the main source of
tsunami hazard in the South China Sea. To achieve an assessment considering the random-
ness of the earthquake epicenter, focal depth and magnitude, tsunami in 1,380,000 potential
earthquake scenarios have been simulated using an efficient method based on a pre-
simulated unit source database. Benefiting from the efficiency of the assessment method, it
is possible to assess many target points. Finally, the spatial distribution of tsunami hazard
in the affected area of earthquakes around the Manila Trench has been obtained for the first
time. Target points are evenly distributed in the sea area with a spatial resolution of 0.1◦,
covering most of the South China Sea. This dataset can provide boundary conditions for
tsunami runup and inundation analysis on a small scale.

The spatial distribution clearly shows the high hazard area where more attention
needs to be paid in tsunami prevention and mitigation. Generally, the overall tsunami
hazard from the Manila Trench is not high. Tsunami wave height in most areas is less than
1 m under the return period of 200 years. However, there are still some areas with high
tsunami hazard, including the southeast coast of the Chinese mainland, the western coast
of Luzon Island, the northwest coast of Palawan Island, the south part of the west coast
and the whole east coast of Taiwan Island, the east coast of Hainan Island and the east coast
of China–Indochina Peninsula.
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