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Abstract: Computational predictions of acoustic transmission loss (TL) in ocean environments depend
on the relevant environmental characteristics, such as the sound speed field, bathymetry, and seabed
properties. When databases are used to obtain estimates of these properties, the resulting predictions
of TL are uncertain, and this uncertainty can be quantified via the probability density function (PDF)
of TL. A machine learning technique for quickly estimating the PDF of TL using only a single, baseline
TL calculation is presented here. The technique shifts the computational burden from present-time
Monte-Carlo (MC) TL simulations in the environment of interest to ahead-of-time training of a neural
network using equivalent MC TL simulations in hundreds of ocean environments. An environmental
uncertainty approach which draws information from global databases is also described and is used to
create hundreds of thousands of TL-field examples across 300 unique ocean environments at ranges
up to 100 km for source frequencies between 50 and 600 Hz. A subset of the total dataset is used
to train and compare neural networks with various architectures and TL-PDF-generation methods.
Finally, the remaining dataset examples are used to compare the machine-learning technique’s
accuracy and computational effort to that of prior TL-uncertainty-estimation techniques.

Keywords: transmission loss; environmental uncertainty; underwater acoustics; machine learning;
neural networks; supervised learning

1. Introduction

Many computational tools exist to predict how sound will propagate in an ocean
environment given the environment’s properties. These tools commonly provide answers
by fully or approximately solving the Helmholtz equation with the relevant environmen-
tal properties being included via material parameters and boundary conditions. Many
applications use computational solvers to predict how sound did propagate, could prop-
agate, or will propagate from a known acoustic source to another location in an ocean
environment—often where a receiver such as a hydrophone is located. Uncertainty in
the ocean property values used by the solvers may arise from imperfect or incomplete
measurements, limited accuracy or resolution in available databases, or the uncertainty
accompanying an estimate obtained via inversion. In this last case, there is a rich collection
of work on Bayesian techniques for ocean environmental inversion which infer a joint
probability distribution function (PDF) for a set of ocean environment properties using
recorded acoustic signals [1–5]. In applications where robustness against environmental
uncertainty is desired, knowledge of the range of possible values for acoustic amplitude or
phase is more beneficial than a single acoustic-field prediction with limited or unknown
reliability. Acoustic-field amplitude expressed as transmission loss (TL) [6] is often of
interest in ocean acoustic applications and is the primary focus here.

The Monte Carlo (MC) method provides a reliable means for quantifying TL uncer-
tainty in uncertain ocean environments [7]. The MC method proceeds by sampling many
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uncertain environmental realizations, computing the TL field in each one, and combining all
of the computed results to statistically describe the possible variations in TL. Although the
MC method can be used whenever or however the environmental uncertainty is specified,
its main drawback is its computational expense. A TL computation must be performed
for each of the thousands of uncertain environmental realizations that may be needed to
adequately quantify TL uncertainty.

There are several other methods for transferring environmental uncertainty to TL un-
certainty which offer varying trade-offs between computational effort, overall accuracy, and
adaptability. In particular, real-time applications which frequently require TL-uncertainty
knowledge must give preference to prediction speed over accuracy. The uncertainty band,
or uBand [8,9], method estimates the uncertainty bounds on frequency-averaged TL predic-
tions by re-scaling the range-averaging window applied on a single center-frequency TL
solution. The re-scaling factor relates the uncertain property’s variations to an equivalent
increase or decrease in the number of propagating modes. The field shifting method [10,11]
estimates the PDF of TL produced by N independent, uncertain environmental parameters
using only N + 1 TL solutions by finding an optimum equivalent spatial shift from the
baseline TL field solution for each new TL field solution. Another method uses truncated
polynomial chaos expansions [12,13] to produce an approximate compact representation of
the stochastic acoustic field. The number of terms necessary for the approximation depends
on the complexities of the environmental model and environmental uncertainties, and its
coefficients can be estimated with a set of MC acoustic field solutions.

While each of these methods may require less computational effort than MC at the
expense of accuracy, there is a limit to their adaptability. The computational effort and
implementation effort of these methods increase with the number of uncertain environ-
mental parameters considered. Thus, the use of modern ocean environmental descriptions
presents a growing challenge for these methods as descriptions become more detailed with
greater measurement density, higher resolution oceanic databases, better modeling of ocean
acoustic phenomena, and improved precision of environmental inversions. Although in-
creases in the available resolution of estimated ocean properties such as bathymetry, sound
speed, and seabed properties within an environment should allow for more precise predic-
tions of TL, the corresponding effect on the reliability of these new TL predictions is less
clear. Unfortunately, this suggests that the task of quantifying TL prediction uncertainty
in increasingly detailed ocean environments remains important, even as it is rendered
more difficult by the increased detail and complexity in the statistical specification of these
environments.

Like the MC method, the ad hoc Area Statistics (AS) method [14] is adaptable enough
to quantify TL uncertainty in environments parameterized at the modern-database level of
detail. The AS method estimates the PDF of TL at a given receiver location using only a
single baseline TL solution, regardless of the number of uncertain environmental parame-
ters. Similar to the uBand and field shifting methods, AS uses information from a baseline
TL prediction in a spatial region surrounding the receiver location. The variations in the
predicted TL values surrounding the point of interest (POI) are assumed to represent the
variations in the TL value that would be seen at the POI due to environmental uncertainty.
Thus, the AS method gathers predicted TL values inside a local range-depth box of some
size surrounding the POI into a histogram to estimate of the PDF of TL at the POI—a
procedure which is very fast. Results from this method showed good agreement with MC
PDFs of TL for full-calendar-year variations in ocean environments with reflective bottoms.
However, this method struggles for source-receiver ranges less than about 10 km and in
ocean environments with an absorbing seabed. Unfortunately, the AS method can only
be adjusted by changing the box size, shape, or sample weighting to account for varying
sources or degrees of environmental uncertainty, and such adjustments have not yet been
successful in doing so.

Machine learning has become increasingly popular for acoustic and underwater acous-
tic applications [15,16] by providing alternative methods which primarily benefit from
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either: (1) the ability to include more complex model dependencies when their inclusion
in conventional methods would otherwise not be practical or tractable; or (2) much faster
computational speeds than conventional methods. The research effort reported here follows
along these lines by using machine learning to obtain an alternative TL PDF estimation
method that can: (1) be implemented regardless of the level of detail describing the envi-
ronment; and (2) make predictions much faster than MC, enabling possible real-time use.

The machine learning method described here uses a trained neural network (NN) to
quickly predict the PDF of TL using only a single baseline TL solution. The adaptability
of this method is underpinned by supervised machine learning; many example PDFs of
TL are produced with the MC method in many different ocean environments at many
different source frequencies and depths to create a compound dataset that is partitioned
to train and validate the NN. Therefore, the predictions of a successfully trained NN are
reliable for new environments if similar environments and the same sources and degrees
of environmental uncertainty were represented in the training dataset. A new dataset
can simply be created to train another NN for deployment whenever the scope of an
application changes to include different types of environments, different descriptions of
the environmental properties or uncertainties, or different acoustic source property ranges.
The prediction speed advantage of the NN method comes from splitting its computational
burden into two uneven steps. First, the overwhelming majority of the necessary total
computational effort is completed ahead of time in the creation of a dataset of examples
and the training of the NN. After this preparation, the effort in using the trained NN only
consists of gathering inputs and computing the TL PDF predictions—a computation orders
of magnitude faster than equivalently accurate Monte Carlo computations. A diagram
which shows the prediction process for such a trained NN is provided in Figure 1.
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Figure 1. Elements of the proposed machine learning technique for estimating the probability density
function (PDF) of transmission loss (TL). A simple, feedforward neural network (NN) diagram is
shown between the model’s inputs on the left and outputs on the right. The inputs are values from
a single baseline TL solution surrounding the point of interest (POI), and the output is a predicted
estimate of the Monte Carlo (MC) PDF of TL at that POI resulting from environmental uncertainty.

Herein, the NN method is implemented and compared to the AS and MC methods
which are also capable of quantifying TL uncertainty due to environmental uncertainty
in detailed ocean environments described by many uncertain parameters. To create the
necessary dataset of realistic examples in detailed environments, an ocean environmen-
tal uncertainty approach which leverages open-source databases was developed and is
presented in Section 2.1.1. The NN approach to predicting PDFs of TL is developed and
presented in Section 2.2. The predictive performance of the NN method is assessed and
compared to other methods in Section 3. Finally, the findings of the study are discussed in
Section 4.
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2. Materials and Methods
2.1. Materials
2.1.1. Ocean Environmental Uncertainty Approach

In order to train and validate the NN method, it was first necessary to develop an
approach for generating realistic cases of uncertain ocean acoustic propagation. This
approach begins by defining a case’s environment by its when—the relevant date and time—
and its where—the acoustic source latitude and longitude, the source-to-receiver-bearing
angle, and the maximum source-receiver range. The baseline environmental properties
are the best estimate of the true environmental properties at that time and location, as
determined from available databases. The case’s when and where are also combined with
choices of parameters controlling the degree of uncertainty to produce, with these same
databases, an ensemble of uncertain environmental realizations with varying environmental
properties. Herein, these properties consist of the bathymetry, range-dependent sound
speed field, and seabed properties. The details concerning the implementation of this
approach and the databases used in this study can be found in Appendix A.

The impact of the case’s environmental uncertainty is then assessed using this
ensemble for MC simulations of the acoustic field amplitude. Here, an ensemble of
2000 uncertain environmental realizations was generated, and the RAMGEO parabolic
equation solver [17–19] was used to compute the TL field in each one given the same
source depth and source frequency. The computational resolution used in range and depth
was 1 and 1/5 of the reference wavelength based on past recommendations in [20] (Ch. 6)
and [21], and 8 Padé terms were used for the rational approximation of the square-root
operator. Each of the environment’s sound speed profiles were cubically interpolated
in depth, extended to the sea bottom, and linearly interpolated in range to create a new
sound speed grid which was input into the RAMGEO solver. For some environments with
very absorptive sea bottoms, the sediment properties input into the RAMGEO solver were
altered to produce a more computationally efficient half space approximation because no
sound reached the basement layer. One TL field solution corresponding to an example
baseline environment is shown in Figure 2.
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Figure 2. Sample TL-field. In this environment, the acoustic source is located at a range of 0 km and a
depth of 72.3 m. The acoustic source frequency is 528.5 Hz. The sound speed profile corresponding
to the water column properties at the source location is shown in the left panel. The environment’s
bathymetry is shown as the dashed red line. The sediment type for this environment is clay, and the
sediment thickness for this environment is 350.2 m. The six red points shown in the environment
near 1000 m in depth are the example locations for the PDFs of TL shown in Figure 3.
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Figure 3. MC PDFs of TL for example receiver locations indicated in Figure 2. The example receiver
locations corresponding to the MC PDFs of TL labeled (a–f) are located at ranges of 8.0, 23.3, 38.6,
53.8, 69.0, and 84.3 km and at depths near 1 km.

At any location within the environment, the 2000 TL values at that location were
combined into a 100-bin histogram with bin edges spanning 40 to 140 dB at 1 dB spacing.
The first and last histogram bins also contained counts for any TL value less than 41 dB
or greater than 139 dB respectively. The bin counts were normalized to create a discrete
PDF with 100 bins, which is referred to herein as the MC PDF of TL. For any random
environmental realization, if a receiver location was within the realization’s seabed, the
corresponding value of TL for this location for this random realization was ignored in the
construction of the histogram. The MC PDFs of TL at various receiver locations across the
example environment of Figure 2 are shown in Figure 3.

2.1.2. Training and Testing Dataset Setup

A dataset of many and varied examples was desired to train and validate the NN
method’s predictive performance. Each example corresponds to a computed MC PDF of
TL (the example’s target output) and all of the environmental and geometric information
needed for that computation (used to generate the example’s collection of potential input
values—as described below in Section 2.2.1). In order to greatly reduce the computational
cost of producing the total example dataset, multiple examples were considered for each
case by selecting many locations (ranges and depths) within that case’s environment.

A case consists of three components:

1. The baseline environment with properties (bathymetry, water column sound speed,
seabed properties, etc.) estimated for its geographic location at a nominal date
and time;

2. An ensemble of 2000 randomly sampled uncertain environmental realizations with
variations in these estimated properties that are consistent with their uncertainties;

3. The acoustic source depth and frequency.

The examples in the example dataset should be representative of those likely to be
encountered in the desired application. For this analysis, no specific operational task was
assumed. Therefore, cases were randomly chosen to represent a variety of environmental
circumstances, and example receiver locations were uniformly spread throughout each
case environment’s range and water column.

Each potential case is produced by randomly selecting: a source location on the globe
between 50◦ S and 65◦ N, limited by the shared coverage of the databases used, a random
azimuth, and a random baseline time between 1 January 2019 and 31 December 2019. Next,
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the case’s baseline environmental properties were obtained from the relevant databases
from the source location along the chosen azimuth. The nominal maximum range for each
case is 100 km, but a maximum range as short as 30 km was used instead if it prevented a
case’s environment from having a water column depth of 10 m or less at any range. If a
potential case was too shallow or the desired properties were not available in the relevant
databases, a new potential case was produced; randomly sampled uncertain environmental
realizations were handled similarly. The case’s source frequency and source depth were
uniform-randomly sampled from 50 to 600 Hz and from 50 to 200 m until the source depth
was at least 100 m shallower than the baseline environment’s water column depth at the
source. All cases were produced with the environmental uncertainty approach described
in Section 2.1.1.

Ten-thousand potential cases were produced randomly with this scheme. From these,
300 were chosen to form a set which is representative of observed sediment types and
bathymetries, while still covering the globe. The distributions of mean water column depth,
sediment type, and geographic location for all 10,000 potential cases and for the 300 selected
cases are shown in Figure 4. Additionally, plots of the TL field solutions obtained with the
baseline environmental properties and source properties of each case are provided in the
Supplementary Materials.
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Figure 4. Summary of cases used to create the training and testing datasets. (a) The distributions of
mean baseline environment depth for all 10,000 and the 300 selected cases. (b) The distributions of
environment sediment type for all 10,000 and the 300 selected cases. The sediment types are—1: cobble
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or gravel or pebble, 2: muddy sandy gravel, 3: medium sand or sand, 4: fine sand or silty sand,
5: muddy sand, 6: gravelly mud or sandy silt, 7: medium silt or sand-silt-clay, 8: sandy mud or silt,
9: fine silt or clayey silt, 10: sandy clay, 11: silty clay, and 12: clay. Without careful selection of the
final 300 cases, around 90% of the cases would have the clay sediment type. (c) Source locations for
all 10,000 and the 300 selected cases.

The 300 selected cases were randomly shuffled and split into three groups. The
examples produced from each case were combined in each group to form three datasets:
(1) a training dataset (cases 1 to 100); (2) testing dataset 1 (cases 101 to 200); and (3) testing
dataset 2 (cases 201 to 300). For each case within the training dataset, up to 25 example
receiver locations were chosen every 500 m (from a random starting range) with even
vertical spacing within the water column and on the computational output grid. For each
case within a testing dataset, this example resolution was increased to up to 50 example
receiver locations every 250 m. Some near-source examples with locations corresponding
to very wide propagation angles were ignored because of the limitation of the TL-field
computational solver. These sets of examples were used to analyze and compare the
performance of different NN configurations and other methods of TL PDF prediction.

2.2. Methods

Neural networks are a popular machine learning approach which can explicitly map
known inputs to desired outputs through a series of linear and non-linear parametric
operations. The parameters, known as NN weights, are optimized to accurately predict
example outputs given example inputs in a procedure known as training. A trained NN
can make predictions on new examples for the purpose of some application.

With the approach outlined here, NNs are constructed to use as inputs only informa-
tion from: the baseline environmental and source properties, the baseline TL field solution,
and the desired receiver location. The NN output is a prediction of the PDF of TL at that re-
ceiver location. These NNs are trained using examples where the relevant inputs are known
and the example outputs, MC PDFs of TL, have been computed. Because the example
outputs are known and are continuous-valued, this is a supervised learning and regression
task in the context of machine learning. In the next sections, further details of these NNs’
inputs, outputs, and training are presented. A diagram displaying the connections between
these key aspects of the NNs is provided in Figure 5.
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example, the NN first gathers its inputs (as described in Section 2.2.1). Those inputs are passed to
the input layer of the neural network. The NN shown in this figure is a fully connected feedforward
NN. The final values of the NN computation appear in the output layer. Depending on the choice of
output type (as discussed in Section 2.2.2), a final computation is performed to produce the predicted
PDF of TL. The generic architecture (number of hidden layers, nodes, etc.) of the NN pictured here is
not representative of the NNs trained in this study (as detailed in Section 2.2.3).

2.2.1. Neural Network Inputs

Given an acoustic source in an uncertain ocean environment, the MC PDF of TL can be
obtained at any receiver location using the procedure described in Section 2.1.1. For an NN
to make a prediction of such an example’s PDF, it must be given information pertaining to
the example. In this analysis, the example information fits into two categories: (1) source-
receiver-environment information; and (2) local baseline TL information. By so restricting
the NN inputs, the total in situ computational cost of estimating the PDF of TL at a location
is orders of magnitude smaller than that of the MC method, which requires thousands of
additional TL solutions.

The source-receiver-environment (setup) information contains all of the information
necessary to obtain the baseline TL solution. In this analysis, the source-receiver range and
receiver depth were the only setup inputs used by the NN. The inclusion of additional
setup information did not lead to significant NN performance improvement. This is likely
due to the fact that the baseline TL field solution, which is provided in part as an input to
the NN, is highly dependent on this information. However, future inclusion of more setup
inputs should not greatly increase the NN prediction time if the values of these inputs can
be obtained quickly for each example.

The most important information given to the NN as an input is the baseline TL-field
values near the POI. For each example, these local baseline TL values were interpolated
onto a range-depth grid centered on the POI. The grid height, width, vertical spacing,
horizontal spacing, and spacing unit—given in terms of meters or acoustic wavelengths—
were considered problem-specific hyperparameters. In this analysis, many NNs were
trained with various local TL grids, and their predictive performances were considered and
compared. Regardless of the grid size, each relative grid location corresponds to a single
input node of the NN’s input layer, so every TL and non-TL input are scalar valued. Input
feature normalization is performed to reduce any differences in scale between the TL and
non-TL inputs.

If an example’s grid locations extended beyond the computational domain, the TL
values inside of the domain were reflected across the corresponding boundary, an arbitrary
choice. Of the testing examples and local grids considered in this analysis, less than 0.07%
and between roughly 1% and 13% had a local grid which reached beyond the computational
domain in range or depth, respectively. Grid points below the water column received no
special attention as the RAMGEO TL field solutions extended into the bottom layers.

2.2.2. Neural Network Outputs and Cost Function

The desired output of the NN is an approximate PDF of TL. Two types of NN outputs
were considered for producing a PDF from a NN prediction. Additionally, an error metric
used to assess performance and as a training cost function is discussed below.

The first NN output type employed a parametric form for the predicted PDF of TL
with parameters provided by the NN’s output layer. Here, the predicted TL distribution’s
cumulative density function was analytically evaluated in order to obtain discrete values
for each of the histogram bins for comparison to the MC PDF of TL. In this analysis, a
three-parameter log normal (LN3) distribution was used as the parametric PDF form. A
LN3-distributed random variable X has a PDF f (x):

X ∼ f (x; µ, σ, c) =
1

(x− c)σ
√

2π
exp

(
− (ln(x− c)− µ)2

2σ2

)
(1)
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where ln(x− c) is normally distributed with a mean and standard deviation specified by
µ and σ.

This parametric form was chosen over other forms to balance goodness of fit, com-
puted as the maximum likelihood of MC generated TL values, with the corresponding
burden in implementation and training. Clearly, there are environmental circumstances
where there are better distributions than the LN3 to describe TL PDFs, such as TL PDFs
arising from a few short-range, slightly varying propagation paths and TL PDFs produced
by the random interference of many long-range propagation paths. However, the NN with
a parametric output type needs a single, simple form which can approximate the wide
array of MC PDFs of TL. Additionally, the LN3 distribution can be specified simply by the
choice of its first three moments, which is valuable because: (1) the mean TL fields are likely
similar to the baseline TL fields used for NN inputs, (2) the TL-variance fields may have
consistent features relating to source-receiver range, and (3) the TL PDFs are unsurprisingly
skewed since TL is a decibel quantity. Interestingly, these and other considerations make
the LN3 distribution preferable to the Pearson Type IV distribution. Even though the
Pearson Type IV distribution did provide better fits on average of the MC PDFs of TL, it
has undefined moments for certain parameter choices, so its implementation with the NN
requires adding constraints to the NN predictions that slow training down considerably.
As the LN3 output type was implemented here, the three output node values corresponded
to the values of the first three moments of the predicted parametric PDF, rather than the
parameters of (1). The predicted values for the second moments were ensured positive by
using their absolute values, and the magnitude of these predicted values were bounded to
maintain single precision numerical stability. Finally, a clear disadvantage of the use of this
parametric distribution is its inability to fit multimodal distributions, such as the MC PDF
of TL shown in Figure 3c. An example MC PDF of TL, its best fit LN3 PDF, and this best fit
LN3 PDF’s corresponding bin representation are all shown in Figure 6.
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Figure 6. Example MC PDF of TL (solid black line) plotted with its best fit three-parameter log normal
(LN3) PDF (solid blue line) and as a histogram (dashed red line). The L1 error between the MC PDF
of TL and its best fit LN3 PDF is visualized as the shaded region and is 0.105 in this example.

With the second NN output type, the NN’s output layer directly provided values for
each histogram bin. These raw NN predicted bin values were assembled into a discrete
PDF by taking their absolute value and rescaling them to have unit bin-sum.
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The error metric used to assess the performance for a predicted PDF of TL is the L1
error, or the integrated absolute difference between the predicted PDF of TL f̂ and the MC
PDF of TL f .

L1

(
f , f̂
)
=
∫ ∞

−∞

∣∣∣ f (x)− f̂ (x)
∣∣∣ dx (2)

This error metric represents the area difference between the two PDFs, and is bounded
between 0 and 2, which represent a perfect match and no overlap between the two PDFs,
respectively. In the context of the NN outputs described above, the L1 error can be computed
as the sum of the absolute differences of the histogram bin values. An example of the
L1 error between a MC PDF of TL and its best-fit LN3 PDF is shown in Figure 6 and
is 0.105. This L1 error is the lowest a NN with a LN3 output type could achieve when
attempting to predict this MC PDF of TL. However, this example’s lower-bound L1 error
is much smaller than the average testing L1 error of the NNs in this study, indicating the
approximation introduced by using the LN3 parametric form should not limit the trained
NN’s predictive accuracy.

2.2.3. Neural Network Architecture and Training

In the method proposed here, training the NN means finding a set of NN weights
(the training parameters) which minimize the L1 errors of predicted PDFs of TL across a
set of training examples with inputs and outputs described in the previous subsections.
TensorFlow 2.3 [22] was used to train the NNs in this study. It computes the gradient of each
prediction’s L1 error with respect to each training parameter via automatic differentiation.
These gradients were used to minimize the mean prediction error using the AMSgrad
algorithm [23], stochastic mini-batch gradient descent [24], and Weightnorm [25].

There are no restrictions on NN architecture in a generic implementation of the NN
method for predicting TL PDFs. In this study, a simple architecture was selected to demon-
strate the success of the method while allowing for the possibility of easy reproduction
of this work. The NNs implemented here had a number of fully connected, equally sized
hidden layers connecting the input layer to the output layer. The hidden layers shared the
same choice of non-linear activation function from the following options: (1) the rectified
linear unit (ReLU) [26]; (2) the exponential linear unit (ELU) [27]; and (3) the Swish [28]
activation function with a constant parameter value of one. A linear activation function was
used in the output layer, with the value at each output node taking part in the computation
of the predicted PDF and cost function, as discussed above.

Although advanced NN architectures could include convolutional layers [29] to better
represent the spatial structure of the local TL grid input feature, the authors did not observe
improvements with their inclusion. This is likely due to the inconsistency in absolute grid
spacing of the wavelength-unit grids across examples and the sparseness (relative to the
wavelength) of the meter-unit grids for the higher-source-frequency examples. Additionally,
many techniques have been developed to improve the training of deep NNs by bettering
their trainability, such as using skip connections [30] or interlayer normalization [25,31],
or by limiting their risk of overfitting through regularization, such as dropout [32]. In this
effort, the use of Weightnorm and early stopping (of training) was sufficient. The risk of
overfitting and the need for a great number of hidden layers are limited by the noisy quality
of the MC PDFs of TL and their incomplete relationship with the local baseline TL values
used as NN inputs. Finally, the NNs implemented here received no direct information
about the problem’s underlying wave propagation physics. Perhaps the limiting of the
NN’s inputs to almost exclusively include the local baseline TL field accomplishes this
to some degree, but one would expect that the inclusion of convolutional layers could
more directly represent the spatial derivatives of the field that arise in the equation(s)
governing acoustics. Recent work in explicitly informing NNs of the problem’s governing
physics provide an even more direct approach via Physics-Informed Neural Networks
(PINNs) [33], but implementing this technique in the TL PDF prediction problem would
present challenges.
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Hyperparameter optimization, or NN tuning, was performed to find a suitable config-
uration of hyperparameters—parameters held constant throughout the training procedure—
which minimized the L1 cross-validation (CV) error averaged over four CV splits. There
were seven hyperparameters concerning the architecture of the neural network and its
training and five hyperparameters concerning the size and spacing of the local TL grid
input to the NN. Additional details concerning the hyperparameter optimization effort can
be found in Appendix B.

3. Results

First, many NNs with different output types and configurations were trained and
cross-validated on the training dataset, which consists of 491,498 examples across 100 cases.
As detailed in Appendix B, 10 h of tuning were performed for the two output types under
consideration (histogram and LN3), but only three to four hours were needed to obtain
most of the tuning benefits. For each output type, four ‘best’ CV NNs were trained using
the ‘best’ hyperparameter configuration—the configuration which produced the lowest
mean L1 CV error. For both output types, these ‘best’ CV NNs were trained for less than
10 min on average. The final histogram NN and the final LN3 NN tested in the following
results provide predictions which average the predictions of those four ‘best’ CV NNs,
respectively. They were tested and compared to each other on the previously unseen testing
dataset 1.

Next, to provide fair comparisons, the performance of the NNs, the AS method, and
the MC method were evaluated on testing dataset 2—a dataset on which no method had
previously been tested. The computations which produced the following results, including
the training and testing of the NNs and the generation of MC PDFs of TL, were performed
on the University of Michigan’s Great Lakes HPC cluster (3.0 GHz Intel Zeon Gold 6154).

3.1. Comparing Two Neural Network PDF Output Types

After tuning, the final histogram and LN3 NNs were evaluated on testing dataset 1
which consists of 1,900,603 examples across 100 cases. A visualization of a subset of the L1
errors for these predictions is provided in Figure 7, which shows the L1 errors for predictions
made by the histogram NN at the example receiver locations in case 101—the first case in
testing dataset 1. A similar breakdown of performance for each case within both testing
datasets is provided for both final NNs and the AS method in the Supplementary Materials.

It can be seen in Figure 7 that the histogram NN testing errors for this case were
greatest at short ranges (<2.5 km). This trend held across all of the testing cases for both the
histogram and LN3 NNs. Example A in Figure 6 lends some insight into these inaccurate
short-range NN predictions. In this example, the histogram NN overestimates the variance
of the MC PDF of TL. This overestimation is not due to an incompatibility between the NN
construction and the form of this MC PDF of TL. The histogram NN which produced this
example has no constraint on the shape of its predicted PDF. In the case of a NN constrained
with the LN3 output type, the NN could still make an accurate prediction of this MC PDF
of TL, possibly resulting in an L1 error as small as 0.046. Instead, it may simply be the case
that the NNs perform worse on these near-range, less-variable MC PDFs of TL because
smaller errors in the predicted mean of these PDFs produce greater L1 errors when there is
a smaller variance of the MC PDF of TL. Therefore, the NN training must balance the risky
option of correctly predicting a low-variance PDF, which may be very accurate (L1 < 0.05)
or very inaccurate (L1 ≈ 2), with the safer option of inaccurately predicting a high-variance
PDF, which allows for at least some overlap (L1 ≈ 1.25 in example A) given the greater
margin-of-error for the predicted mean TL value. This explanation was also supported
by AS sharing the same systematic underperformance on these near-range examples, as
illustrated in the Supplementary Materials.



J. Mar. Sci. Eng. 2022, 10, 1548 12 of 24

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 12 of 26 
 

 

3. Results 
First, many NNs with different output types and configurations were trained and 

cross-validated on the training dataset, which consists of 491,498 examples across 100 
cases. As detailed in Appendix B, 10 h of tuning were performed for the two output types 
under consideration (histogram and LN3), but only three to four hours were needed to 
obtain most of the tuning benefits. For each output type, four ‘best’ CV NNs were trained 
using the ‘best’ hyperparameter configuration—the configuration which produced the 
lowest mean 𝐿  CV error. For both output types, these ‘best’ CV NNs were trained for 
less than 10 min on average. The final histogram NN and the final LN3 NN tested in the 
following results provide predictions which average the predictions of those four ‘best’ 
CV NNs, respectively. They were tested and compared to each other on the previously 
unseen testing dataset 1. 

Next, to provide fair comparisons, the performance of the NNs, the AS method, and 
the MC method were evaluated on testing dataset 2—a dataset on which no method had 
previously been tested. The computations which produced the following results, 
including the training and testing of the NNs and the generation of MC PDFs of TL, were 
performed on the University of Michigan’s Great Lakes HPC cluster (3.0 GHz Intel Zeon 
Gold 6154). 

3.1. Comparing Two Neural Network PDF Output Types 
After tuning, the final histogram and LN3 NNs were evaluated on testing dataset 1 

which consists of 1,900,603 examples across 100 cases. A visualization of a subset of the 𝐿  errors for these predictions is provided in Figure 7, which shows the 𝐿  errors for 
predictions made by the histogram NN at the example receiver locations in case 101—the 
first case in testing dataset 1. A similar breakdown of performance for each case within 
both testing datasets is provided for both final NNs and the AS method in the 
Supplementary Materials. 

 
Figure 7. Final histogram NN performance for a sample test case. (a) The 𝐿  errors of the final 
histogram NN’s predictions on the examples in case 101 (a testing case) at each example’s receiver 
location. Results from the three labeled receiver locations are shown in (b). The NN’s predicted PDF 
of TL (dashed red line) is compared to the MC PDF of TL (solid black line) at three receiver locations 

Figure 7. Final histogram NN performance for a sample test case. (a) The L1 errors of the final
histogram NN’s predictions on the examples in case 101 (a testing case) at each example’s receiver
location. Results from the three labeled receiver locations are shown in (b). The NN’s predicted PDF
of TL (dashed red line) is compared to the MC PDF of TL (solid black line) at three receiver locations
and the L1 error is visualized as the shaded area for each. The L1 errors for examples A, B, and C are
1.246, 0.507, and 0.117 respectively.

When considering all examples in the testing datasets, there was a fraction of examples
with most of their MC TL samples falling in the last histogram bin (TL ≥ 139 dB) which
was conditioned on the choices of the histogram binning definition and the distribution of
example receiver ranges. For example, testing dataset 1 contained 55,608 examples (about
3%) with 95% or more MC TL samples contained in the last histogram bin. These high-TL
or quiet example PDFs were relatively easy to predict for the NN, so they were excluded
in the further analysis of the testing results to avoid overstating the performance of any
predictive method.

The distributions of the L1 errors across the examples in testing dataset 1 are provided
in Figure 8 for both the histogram and LN3 NNs. The mean testing errors for the histogram
and LN3 NNs were 0.3485 and 0.3496 respectively. For reference, the mean L1 difference:
(1) between these same MC PDFs of TL and uniform-randomly generated TL PDFs was
estimated to be 1.49; (2) between random pairings of the MC TL PDFs within their cases
was estimated to be 1.43; and (3) between the ‘one-sample PDF of TL’ generated from only
each example’s baseline TL value was 1.82—i.e., an average of 9% of the probability mass of
each MC PDF TL was contained in the same histogram bin as the baseline TL value. Given
an error criterion for a given application, a testing success rate can also be computed to
determine which might be more successful for that application. For example, if the L1 error
criterion being considered is 0.5 (visualized as the vertical dashed line in Figure 8), then the
histogram and LN3 NNs made successful predictions on 80.13% and 80.17% of the testing
examples, respectively. In this example, both NNs performed similarly according to either
metric, suggesting the handling of the NN output is not the factor limiting NN accuracy.
However, the histogram output type is easier to implement and more numerically stable
during training.
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with most of their differences occurring at L1 errors less than 0.5 (vertical dashed line).

3.2. Comparing the Neural Network Method with Previous Methods

The final histogram and LN3 NNs were evaluated on testing dataset 2 which consists
of 1,884,932 examples across 100 cases. Because the AS method was formulated with
example environments generated with a different environmental model and uncertainty
approach, the training dataset was used to find an approximate ‘best’ AS box size to use for
comparison in this analysis. The best AS box size on the training dataset was 450 m in depth
and 5 km in range (centered on the POI), producing a mean L1 error on the training dataset
of 0.3896. This box size is used to evaluate the performance of AS on testing dataset 2.

The distributions of the L1 errors of the predictions from both final NNs and the AS
method on testing dataset 2 are shown in Figure 9. The mean L1 error on these testing
examples is 0.367, 0.372, and 0.405 for the histogram NN, the LN3 NN, and AS method
respectively. For an L1 error criterion of 0.5, the success rate for each method was 77.2%,
76.5%, and 71.8%. In general, both NNs produce more accurate predictions across the
examples in this testing dataset than AS. The differences in the preparation and prediction
times between the NN and AS methods are discussed below.

To better compare these methods to the MC method, another 2000 uncertain envi-
ronmental realizations were randomly sampled for each testing case in this dataset and
were used to create an alternative MC PDF of TL for each testing example. The difference
between an example’s alternative MC PDF of TL produced from all 2000 alternative MC
TL samples and the example’s original MC PDFs of TL can be interpreted as a measure of
MC convergence. Alternative MC PDFs of TL produced from fewer MC TL samples were
considered ‘computationally cheap’ MC PDFs of TL due to their proportional decrease
in estimation time and general increase in difference with the original MC PDFs of TL.
Alternative MC PDFs of TL were produced at four levels—100 trials, 200 trials, 500 trials,
and 2000 trials—for each testing example in testing dataset 2. These alternative MC PDFs
of TL were compared to the original MC PDFs of TL via their L1 difference.

The cumulative distributions of the L1 errors or L1 differences for the final NNs,
AS method, and the MC method at four levels are shown in Figure 10. Compared to
the distributions of L1 errors of the NNs and AS method, the L1 differences of the MC
method across the testing examples remain nearly constant, especially at large trial numbers.
Therefore, a method which produces a distribution of higher L1 errors has a lower effective
speed-up over the full-resolution MC method, considering that a reduction in MC trials
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per example that produces a similar set of L1 differences would also produce a speed-up
over the full-resolution MC method. Comparing lower percentile L1 errors (<50%), the
performances of the NNs and the AS method fall between the performances of the MC
method with 200 and with 500 trials. Comparing higher percentile L1 errors (>50%), the
performances of the NNs and the AS method become comparable to the MC method with
even fewer trials, but these L1 errors are generally higher for the AS method than the NNs.
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The average time it took for each method to make the predictions of the examples’
TL PDFs for the cases in testing dataset 2 is compared to the mean of the L1 errors or
L1 differences across all of these predictions in Figure 11. The alternative MC PDFs of
TL were the most similar to the original MC PDFs of TL. However, the AS method was
roughly 1.5 orders of magnitude faster and the NN method was roughly 2.5 to 3 orders of
magnitude faster than the comparable ‘cheap’ MC PDF of TL predictions. The prediction-
speed advantage of these methods became even greater with decreasing numbers of
example receiver locations per case environment, since the prediction times: remain nearly
constant for the MC method, scale linearly for the AS method, and scale non-linearly for
the NN method with vectorized predictions. Reducing the number of examples by 90%
and 99% decreased the mean NN prediction times by roughly 71% and 78%, respectively.
These prediction times are reported in reference to serial computation. In practice, quicker
per-case predictions are possible from parallel TL-field computations for MC trials, parallel
AS PDF generation across example locations, and parallel NN evaluations across NNs or
example locations.
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The mean prediction time is the average of the 100 testing case prediction times—the time it took to
predict the PDF of TL for every example in that case after the baseline TL computation was available.

There is no preparation time for the MC method or AS method, given that the AS
box size does not need to be optimized or changed as was needed in this analysis. The
preparation time for the NN is approximately equal to the sum of the total prediction time
for the MC method on the 100 cases in the training dataset, about 2000 h, and the NN tuning
and training time—around 3 to 10 h in this analysis. Here, the NN tuning and training was
the relatively fast part of NN preparation, taking only 0.5% of the total preparation time.

4. Discussion

The goal of this research was to produce a fast and flexible method for transferring
ocean environmental uncertainty to acoustic transmission loss (TL) uncertainty. The super-
vised machine learning technique presented here provides a method substantially faster
than the ‘gold standard’ Monte Carlo (MC) method, while maintaining applicability to
environments described by many uncertain parameters, at the expense of preparation effort
and prediction accuracy. With this technique, a neural network (NN) is trained to predict
the probability density function (PDF) of TL from a known acoustic source to a receiver
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location in an uncertain ocean environment using only the TL solution computed with the
baseline environmental properties.

The speed of this NN method’s predictions, which may be suitable for real-time
applications, is derived from the inexpensive forward computation of a trained NN and the
restriction of the NN’s inputs to already available information. The NN method is adaptable
because a trained NN can be used to predict TL uncertainty in a previously unseen ocean
environment with a very detailed description of its properties and uncertainties as long
as its training dataset contains relevant examples. However, the generation of a training
dataset and the training of the NN comprise an added, up-front cost of the NN method.
Additionally, the accuracy of a trained NN is limited by its incomplete set of inputs and its
finite size, training effort, and training example density. In this work, the NN method was
implemented, and these trade-offs were evaluated.

First, an environmental uncertainty approach was developed to address the need to
generate an ensemble of realizations of possible ocean environments by using available
databases and a parametric approach to their uncertainty. From 600,000 such ocean en-
vironmental realizations, MC PDFs of TL at nearly 4.3 million locations were assembled
into a dataset that was used for NN training and testing. Second, a supervised learning
approach was developed to generate and train the NN itself and find suitable values for
seven NN hyperparameters, which governed the NN architecture and training, and five in-
put hyperparameters, which defined the relative grid of local TL values given to the NN as
inputs. The results provided herein show that a NN trained in ocean environments around
the globe, throughout the year, and with various source properties can make predictions in
previously unseen environments which agree with the MC PDF of TL within an L1 error of
0.5 or less with a 76 to 80% success rate.

Details concerning the implementation of the NN method were presented. The hy-
perparmeters considered in this analysis were outlined, and a method for choosing their
values was developed, utilized, and analyzed. The hyperparameters values obtained and
used here were shared as they might be useful for future implementations. Two types of
methods for producing PDF predictions as NN outputs were implemented and compared.
With one type, the NN output corresponded to the moments of a three-parameter log
normal distribution (LN3). With the other type, the NN outputs corresponded directly
to histogram bin values. An equal amount of hyperparameter optimization and training
effort was given to produce a NN with each output type. While the performances of these
NNs evaluated on the first testing dataset were similar, the histogram output type had the
slight edge in prediction accuracy and speed, was easier to implement, and provided better
numerical stability during NN training.

Once trained, the NN method was roughly 4 to 5 orders of magnitude faster than the
full-resolution, traditional MC method that provided the ‘ground truth’ PDFs of TL for
this analysis. The L1 error was used to quantify the difference between the NN predictions
and the MC PDFs of TL. The distributions of these L1 errors on the testing datasets were
presented. Given an application-specific L1 error criterion, the predictive success rate of
the NN method can be weighed along with its computational speed-up to determine if NN
predictions of TL PDFs can support that application.

Another TL PDF prediction method that is faster than the MC method, Area Statistics
(AS), was evaluated on the second testing dataset. The NN method was generally more
accurate than AS on this testing dataset and made predictions at least as fast as AS. Although
AS may not require any ahead-of-time preparation, the NN method does require prior
computation in the creation of a training dataset and the training of the NN. However, a
trained NN requires no further preparation if its training dataset is representative of the
types of ocean environments and acoustic source properties expected to be encountered
in operation. Additionally, the AS method did require preparation in this analysis due to
the significant difference between the underlying environmental models and uncertainty
approaches used here and in its original development.
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Both the NN and AS methods generally produced their worst predictions at the short-
est ranges (<2.5 km) of each environment when optimized to perform well over examples
drawn uniformly in range out to 100 km. On one hand, these short-range examples with
low-variance MC PDFs of TL are more difficult to predict accurately given the L1 error
metric’s harsh penalization of even correctly shaped, low-variance PDF predictions that
are offset just a few dB from perfectly matching the MC PDF of TL. On the other hand,
these examples are also more physically tractable than the longer-range examples, since
the shorter ranges tend to have fewer, simpler propagation paths less influenced by the
uncertain environmental properties. Further investigation could determine if these classes,
as well as additional classes which can produce multimodal TL PDFs for example, each
require slight alterations to the technique of the NN method. Additionally, the preparation
times reported for the NN method display the disparity between the expensive effort of
producing the training dataset and the relatively cheap effort needed to train the NN. This
imbalance suggests another possible avenue for improving NN predictive accuracy with
the training of multiple NNs specialized for particular scenarios—only barely increasing
the preparation cost and having almost no effect on the real-time prediction speed of the
NN method.

Fundamentally, the NN method provides a quicker alternative to approximate the
numerical MC procedure for computing predicted TL uncertainty. Even if a trained NN
had a mean prediction L1 error of zero, its predictions would still only be as accurate as
the equivalent MC PDFs of TL; the NN method inherits the limitations of the underlying
MC procedure. To fully assess the validity of these methods would require extensive
real-world testing and measurements. The difficulty in obtaining a large enough set of
measurements that is somehow equivalent to a given amount of environmental uncertainty
(such as at nearby locations over a period of time to represent some amount of sound speed
uncertainty) likely inhibits the creation of a large-scale real-world dataset of ‘cases’ that
could be used to verify the overall approach or even to train a NN. However, a NN trained
and deployed could be verified against individual-point ground truth measurements. For
example, a global-generic NN could make 1000 TL PDF predictions all over the globe at
specified sample times and a measurement could be made at each location at each sample
time. If 50% of the measurements fell within the 25th and 75th percentiles of their respective
NN PDF of TL, 30% of the measurements fell below the 30th percentiles, etc., that would
be a very successful validation. Likewise, such an effort could be undertaken to refine
a system’s assumption of its inherent environmental uncertainty if a consistent over- or
underestimate of TL uncertainty is observed.

In conclusion, with improved ocean environmental knowledge comes the need for a
fast and adaptable means for predicting TL uncertainty arising from ocean environmental
uncertainty. As available descriptions of ocean environmental properties become more
precise and more accurate, applications might hope to receive these benefits in one form
as reduced TL uncertainty. However, the reduced TL uncertainty may provide little
to no benefit unless it is actually quantified. Additionally, the increased precision in
the descriptions of environmental properties (such as denser estimates of range-, depth-
, or time-dependent properties) can make the MC method even more expensive and
render other approximate methods unviable. Therefore, real-time applications which
rely on TL estimates need methods which are both fast and adjustable in order to benefit
from the reduced TL uncertainty provided by improved oceanographic modeling and
surveying. The training of NNs to quickly predict the PDFs of TL provides an approach
which compares favorably to alternative acoustic-uncertainty prediction methods due to its
lower in situ computational cost, better TL PDF prediction accuracy, and/or adaptability to
ocean environments specified by modern databases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jmse10101548/s1, File S1: Baseline TL for all 300 cases; File S2:
Neural Network vs. Area Statistics performance for 200 testing cases.
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Appendix A

Appendix A.1. Bathymetry Uncertainty

Bathymetric data for each environment is read from SRTM15+ [34], a global bathymetry
and elevation database and model with a spatial sampling of 15 arc seconds in longitude
and in latitude. The values on this dense grid are inferred from ship sounding measure-
ments of the bathymetry, satellite measurements of the sea surface, and physical modelling.
The baseline bathymetry is obtained by bi-linearly interpolating the water column depth
every 1 km along the environment’s range.

To model the uncertainty in an environment’s bathymetry, each value in the database
is assumed to have a normal random error that is correlated with the errors of nearby
grid points. The standard deviation of the error for any grid point is assumed to depend
on its corresponding water column depth value. The correlation of the errors between
any two grid points is modeled as a Gaussian function of the distance between the two
grid points with unit-height and a standard deviation, deemed the bathymetry correlation
length, which has distance units.

Model parameter values for the standard deviation of the correlated database errors
and measurement errors were obtained to maximize the likelihood of 15,283 water column
depth observations from 768 areas corresponding to ‘Rolling Deck to Repository multi-
beam SONAR’ surveys from NOAA [35]. The resulting maximum likelihood estimated
bathymetry error model is shown in Figure A1, and the database error model was used for
the bathymetry uncertainty in all environments. These parameter values were obtained for
a piecewise, non-decreasing linear model of the standard deviations of the errors. The esti-
mates for these parameters were stable when neglecting the 0.5% greatest errors between
the database and measurements. The inferred bathymetry correlation length is 16.7 km.
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standard deviation of the error of the bathymetry database’s predicted value at a grid point given the
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of water column depth given the measured value (dashed red line). (b) The model for the correlation
between the errors in predicted values at two grid points given the distance between the two grid
points. The inferred bathymetry correlation length is 16.7 km.

Appendix A.2. Sound Speed Uncertainty

The variability in TL due to sound speed variability can be assessed by considering
many possible instances of an environment’s water column properties, as estimated by
ocean models [36,37]. Here, sound speed data for each environment was read from the
HYCOM Global Ocean Forecasting System (GOFS) 3.1 [38], an ocean model which provides
estimated sea water temperature and salinity profiles on a 0.08◦ longitude × 0.04◦ latitude
grid from 80◦ South to 90◦ North. The profiles may contain values at 40 standard depths and
are available at three-hour time increments. Given the global location and a corresponding
time and date, seawater property profiles are read onto a 2D grid that covers and surrounds
the environment of interest. Water column sound speed values are computed using the
UNESCO equation [39,40] and are bi-linearly interpolated along the environment’s range
to produce an estimated sound speed field for the range-depth extent of the environment.

The uncertainty in sound speed for each environment was assessed by considering
an ensemble of different HYCOM estimated sound speed fields, one for each random
environmental realization. Each sound speed field corresponds to a different time defined
by: time of day, day of year, and year. Therefore, the choice of how sound-speed-field
times are randomly sampled for uncertain environmental realizations determines the
degree of uncertainty in the sound speed field, with larger time spreads leading to larger
sound-speed-field uncertainties.

The process for randomly selecting relevant sound speed fields from the HYCOM
database required two steps. First, the intended or baseline time of day and day of year
was given a random offset, sampled from a zero-mean normal distribution with a standard
deviation having units of time. For the current analysis, this standard deviation (in general
a free parameter) was chosen to be σ =336 h, or two weeks. Historical HYCOM sound
speed fields from the baseline time of the year in previous years were also considered,
but with geometrically decreasing likelihood. Thus, the second step required selecting
the sound speed field’s year of occurrence as the year of the baseline time with a random
non-positive integer offset n, sampled from a finite geometric distribution. The probability
P(n) of offsetting n years into the past is given as:

P(n) =
p(1− p)n

1− (1− p)1+N , n = 0, 1, 2, · · · , N (A1)
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where p = 0.5, which implies that a sample from n+1 years ago is one half as likely a sample
from n years ago. Here, the maximum number of past years considered is N = 10. These
two steps lead to a relevant but randomly selected time for sampling sound-speed profile
information. The sampling then occurred by selecting the HYCOM sound speed profile(s)
closest to this randomized time for the region of interest. If there were no water temperature
or salinity data in the HYCOM database at that time closest to the randomized time, another
randomized time was produced and used to extract an alternative sound speed field. For
example, there were 63 missing times between January 1, 2019 and December 31, 2019 in
the HYCOM data pulled for this study.

With this sample-time-spreading parametric approach to inherent sound speed field
uncertainty, different values for the parameters (σ, p, N) may be chosen with specific
applications in mind. The NN’s predictions of PDFs of TL will reflect the resultant degree
of TL uncertainty present in its training dataset.

Appendix A.3. Bottom Property Uncertainty

The seabed for each environment is approximated with a two-layer fluid model
comprised of an upper finite-thickness sediment layer, and a lower semi-infinite acoustic
basement layer having solid rock properties. The sediment type and thickness for each
geographical location were extracted from global databases. For computational purposes,
the basement layer extended 900 m below the sediment layer at which point the attenuation
was abruptly increased to 10 dB per wavelength to attenuate artificial reflections [19].

The Bottom Sediment Type (BST) Database Version 2.0 [41] was used to estimate the
sediment type for each environment of interest. The possible sediment classifications are
the 23 High Frequency Environmental Acoustics (HFEVA) model [42] categories. Each
HFEVA category corresponds to a nominal bulk grain size (expressed in the logarith-
mic unit φ), sediment density, compression-wave sound speed, and compression-wave
attenuation [42] (Sec. IV, Table 2). As a simple means of correcting for the empirically
observed attenuation of sandy sediment types (grain size 0.5 to 5.5 φ) at low frequencies
(<1 kHz), the listed attenuation values were used to compute the attenuation at 1 kHz,
which was then decreased to the target frequency using a power law with an exponent of
1.8 [43] (Equation (1)). The nominal grain size for each uncertain environmental realization
was given a zero-mean normal random offset and was used to linearly interpolate the
realization’s sediment acoustic properties. In this analysis, the standard deviation of this
grain-size offset was chosen to be 0.2 φ.

A range-independent sediment thickness was estimated for each environment using
the GlobSed database [44]. Although the sediment thickness of an environment might also
be modeled as a random variable, no model was available for the error in the estimated
sediment thickness provided in this database, and the quantification of the database er-
ror using independent measurements was beyond the scope of this project. Thus, each
environment’s sediment thickness is held constant between the baseline and uncertain
environmental realizations.

For each uncertain environmental realization, the acoustic basement’s acoustic proper-
ties were computed as a random weighted average between the properties for limestone
and basalt bottom types [20] (Table 1.3). For the baseline environment, the exact average of
these properties was always used.

Appendix B

This section gives details on the hyperparameter optimization, or NN tuning, that was
performed in order to determine a suitable configuration for the twelve hyperparameters
of interest. Seven hyperparameters concerned the architecture of the neural network and
its training and five hyperparameters concerned the size and spacing of the NN’s primary
input—the local TL grid. The ranges of values considered and the values corresponding to
the best configuration found during the tuning performed for each NN output type in this
analysis are summarized in Table A1.
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Table A1. List of investigated hyperparameters, the ranges of values explored, and the values
corresponding to the best attempted configuration for each output type.

Hyperparameter
(Integer) Minimum Maximum Best Histogram Best LN3

Hidden layers 1 10 5 4
Nodes/hidden layer 23 29 27 29

Mini-batch size 23 27 26 26

Hyperparameter
(Continuous) Minimum Maximum Best Histogram Best LN3

Learning rate: hist. 10−4.5 10−2.0 10−3.7 N/A
Learning rate: LN3 10−5.0 10−3.5 N/A 10−4.5

AMSgrad : β1 1− (1/10)0.95 1− (1/10)2.5 1− (1/10)2.3 1− (1/10)1.0

AMSgrad : β2 1− (1/10)1.0 1− (1/10)4.0 1− (1/10)3.1 1− (1/10)1.1

Hyperparameter
(Categorical) Choices Best Histogram Best LN3

Activation function ReLU ELU Swish Swish Swish
Grid points in range 5 11 15 11 11
Grid points in depth 5 11 17 17 17
Spatial units in range 1 2 1 1
Spatial units in depth 0.5 1 1 1

Spatial unit 15 m 1 wavelength 15 m 15 m

For each hyperparameter configuration considered, four NNs were randomly initial-
ized, trained on random subsets of the training dataset, and cross-validated by monitoring
their performance on the remaining training examples. Early stopping of the training oc-
curred if this cross-validation performance stopped improving in order to avoid overfitting.
In order to efficiently find a suitable configuration, the probabilistic selection criteria of
Bayesian Optimization [45] was implemented via the scikit-optimize library [46] alongside
the resource disbursement methodology of the Successive Halving algorithm (SHA) [47].
This tuning scheme permitted quick evaluation of many configurations and thorough
investigation of promising ones until a fixed total allowed time had been reached.

The tuning procedure introduced and detailed above was performed twice—once for
a histogram output type and once for a LN3 output type. The training dataset contained
491,498 examples across 100 cases. The four cross-validation splits were created by ran-
domly selecting 90 cases to train on and keeping the remaining 10 cases for to evaluate
a mean L1 cross-validation (CV) error on. The tuning aimed to minimize the average of
these four mean L1 CV errors, termed the CV-score for brevity. Every NN was trained
for two minutes or until its CV error converged (did not improve after 90 s) or diverged
(training became unstable leading to numerical failures). Some well-performing NNs were
selected by the optimizer to receive additional training time.

The current best CV-score found within a given amount of tuning time for both output
types is shown in Figure A2. The total effort allowed for tuning was about ten hours for
each output type, but most of the improvement came within the first three to four hours.
The amount of time needed to obtain a suitable NN could be greatly reduced by using a
smaller training dataset, by reducing the number of hyperparameters—such as by fixing
the local TL grid, or by parallelizing the process to allow for simultaneous training or
hyperparameter investigation. The best CV-score for the histogram output type was
obtained after 8 h of tuning, and the four CV NNs had an average training time of about
10 min and mean L1 CV error of 0.3749. The best CV-score for the LN3 output type was
obtained in 3 h of tuning, and the four CV NNs had an average training time of about 8 min
and mean L1 CV error of 0.3742. Using the histogram output type provided more stable
training than using the LN3 output type, having 0/236 compared to 33/240 attempted NN
trainings diverge during the respective tunings. The hyperparameter values corresponding
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to the best attempted configuration are available in Table A1. Interestingly, the same
local TL grid was indicated for both output types and contained 187 points created by
taking 11 points in range taken every 15 m and 17 points in depth taken every 15 m. The
preference for a relatively large, source-frequency-independent input grid suggests that
the local waveguide-scale TL statistics are more informative of the TL uncertainty than
the immediate spatial sensitivity of the TL field given both: (1) the even-distribution of
example receiver locations throughout the environments; and (2) the present sources and
degrees of uncertainty.
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Figure A2. Neural network improvement of cross-validation (CV) performance with tuning effort.
The best current CV-scores at any time during the tuning for the histogram output type (solid black
line) and the LN3 output type (dotted red line). The first configuration for the LN3 output type NN
provided a CV-score of 0.83; this point is omitted from the plot for clarity.

After tuning, four NNs trained with the best configuration for each output type were
available. Given an example and its MC PDF of TL, the L1 error of the average of these
four NN predictions will be no worse than the average of the four L1 errors for each
prediction. The mean L1 errors across the training dataset for the tuned histogram and
LN3 NNs decrease from averages of 0.3148 and 0.3330 to 0.3048 and 0.3253 when using the
average of the NN predictions. Although making predictions takes four times as long, this
improvement in performance may be worth the cost. Therefore, the final histogram NN
and final LN3 NN analyzed in Section 3 are the models whose predictions are the average
of the four trained CV NNs which correspond to the best attempted configuration for each
respective output type.
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