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Abstract: In this paper, we analyzed the results of experimental data processing in the study of
regularities of propagation and transformation of low-frequency harmonic signals at the boundary
of the “sea—land—sea” system. Harmonic signals at a carrier frequency of 33 Hz were generated
by a low-frequency hydroacoustic radiator in Vityaz Bay. Then, they passed along the shelf of
decreasing depth, transformed into seismoacoustic signals of the upper layer of the Earth’s crust and
the bedrocks of Shultz Cape and excited hydroacoustic signals at the corresponding frequency in
the shelf waters in the open part of the Sea of Japan. When processing the experiment results, we
obtained the vertical distributions of the pressure field, caused by an acoustic low-frequency signal
passing through the upper layer of the Earth’s crust. We presented the distributions of hydroacoustic
and seismoacoustic energies. The obtained experimental data were compared with the simulations
by the model, developed strictly according to the experiment scheme and the geological structure of
the area. In the discussion of the obtained results, we explained a probable mechanism of acoustic
energy propagation and the nature of the vertical distributions of the pressure field formation.

Keywords: low-frequency hydroacoustic radiator; laser strainmeter; acoustic tomography; seismoa-
coustic; hydrophone system

1. Introduction

Acoustic tomography methods were originally developed for monitoring deep ocean
areas and studying their dynamic characteristics [1]. Conventionally, acoustic tomography
methods can be divided into two kinds: active and passive methods.

In [2], a classical implementation of acoustic tomography active methods is presented,
with the hardware part that includes seven autonomous receiving-transmitting systems
operating at a frequency of 50 kHz and located at depths of up to 100 m. In addition to
the receiver and transmitter, each station is equipped with pressure sensors that control
the depth of immersion and allow measuring tide parameters. GPS receivers, installed
at each station, are used to synchronize the measurements. Near each point, acoustic
Doppler current profilers (ADCPs) are installed on the bottom to measure currents and
environmental parameters in the study area and also CTD sondes that measure salinity,
temperature, and pressure. The data are transmitted to the shore via a radio channel.

As noted above, in addition to acoustic tomography active methods, there are also
passive ones. For example, the works [3,4] describe a method of passive acoustic tomog-
raphy, where passing ships are used as radiation sources. This system consists of freely
drifting radio buoys with suspended hydrophones. The positions of ships are controlled
by the automatic identification system (AIS), and the positions of the buoys are monitored
by GPS receivers. Thus, the delay time of the sound signal, associated with hydrophysical
processes, is calculated. The paper presents the results of experiments, conducted off the
coast of New London, Connecticut, in Long Island Sound in August 2015. Various signals
of natural origin, such as seismic signals, can be used as sources of radiation.

J. Mar. Sci. Eng. 2022, 10, 1550. https:/ /doi.org/10.3390/jmse10101550

https:/ /www.mdpi.com/journal /jmse


https://doi.org/10.3390/jmse10101550
https://doi.org/10.3390/jmse10101550
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0001-7462-9459
https://orcid.org/0000-0002-2806-3834
https://orcid.org/0000-0001-5103-8138
https://orcid.org/0000-0001-9828-5929
https://doi.org/10.3390/jmse10101550
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse10101550?type=check_update&version=1

J. Mar. Sci. Eng. 2022, 10, 1550

20f11

In both passive and active methods of acoustic tomography, various receiving systems
and complexes are used. In the original method, an ocean glider [5] is the carrier of receiv-
ing systems. Currently, gliders are widely used to collect hydrophysical parameters of the
environment such as temperature and salinity, which in turn are useful for acoustic tomog-
raphy. If an acoustic receiver is placed on a glider, it can become a part of a tomographic
system that provides additional information on time of acoustic rays’ propagation. How-
ever, there are problems associated with use of gliders as acoustic receivers, for example,
uncertainty in the submerged position, which can lead to uncertainty in the received data.

Recently, in connection with development of shelf zones water areas, solutions to the
problem of monitoring various parameters of shallow sea have become interesting. In
contrast to deep ocean, in the shelf zone, the seabed strongly influences the characteristics
of the acoustic field, which makes it necessary to know the parameters of the seabed.
Therefore, reconstruction of shallow sea bottom parameters to address such problems can
be of separate interest and can be used to identify geological structures of the shelf area.
The indisputable advantage of tomographic methods is the possibility of studying the
entire space of a water area of many kilometers and remote reconstruction of the seabed
parameters. In all these experiments, the receiving systems were located on the bottom or,
as a maximum, were frozen into ice.

The works [6,7] present another method of acoustic tomography of shallow water
areas, including those covered with ice, which is aimed at studying not only the main
parameters of water environment, but also the structure and composition of the upper
layer of the sea Earth’s crust in the studied water areas. Radiating hydroacoustic systems
operating at frequencies of 22, 33, and 245 Hz are located in the water at various distances
from the receiving systems, including a towed option, and the receiving systems are lo-
cated on the shore. In these works, laser strainmeters with unique amplitude—frequency
characteristics are used as receiving systems [8,9]. Low-frequency hydroacoustic radia-
tors [10,11], which were used in experiments, generated signals of various complexities,
including harmonic and phase-manipulated signals. Phase-manipulated signals were used
to solve tomographic problems, and harmonic signals were used to study the regularities
of propagation and transformation of hydroacoustic signals in shallow sea and at the
boundaries of the “atmosphere—hydrosphere—lithosphere” system. Based on the results
of each experiment, we designed models of the seabed structure at the experimental site
and, on the base of these models, carried out studies of the recorded seismic waves’ time
characteristics.

To successfully solve the tomographic problems of shallow sea, we need to know,
first of all, regularities of propagation and transformation of low-frequency hydroacoustic
signals on a shelf of varying depth, with a complex seabed structure. For this purpose,
experimental studies were carried out with low-frequency hydroacoustic radiators as trans-
mitting systems and hydroacoustic complexes and coastal laser strainmeters as receiving
systems for hydroacoustic signals and transformed seismoacoustic signals [12,13]. These
experiments were carried out according to the same scheme: radiation was given out in
water on the shelf of decreasing depth, transmitted hydroacoustic signals were received
in selected points of the shelf at different depths, and transformed seismoacoustic signals
were received by a coastal laser strainmeter.

The paper [14] describes an experiment with completely different schemes: seis-
moacoustic signals were generated by a low-frequency seismoacoustic radiator onshore,
their registration was performed by a laser strainmeter, and a reception of transformed
hydroacoustic signals was performed in water by receiving hydroacoustic systems.

From the above, we can formulate several important issues related to the conduct of
the experiment, described in this paper, i.e., generation of low-frequency hydroacoustic
signals in a practically closed reservoir; transformation of hydroacoustic signals into seis-
moacoustic, with their further propagation over various land layers; transformation of
seismoacoustic signals into hydroacoustic signals, with their further propagation over the
shelf of increasing depth.
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2. Experiment Description

In the experiment presented in the paper, a low-frequency hydroacoustic radiator of
electrodynamic type was used as a transmitting source, generating a “forward-scattering”
tone signal [10]. The maximum overpressure at a resonant frequency of 33 Hz, created by
the radiator on the acoustic axis at a distance of 1 m, reached 2.2 kPa.

To receive hydroacoustic signals in water, we used an autonomous submersible con-
tainer, consisting of an 8104 hydrophone by Briiel and Kjeer, brought outside through
a sealed connection, a NEXUS 2692 charge amplifier by the same manufacturer, and a
hard disk recording system. The hydrophone had a sensitivity of 56 uV/Pa and could
receive signals in the frequency range from 0.1 Hz to 120 kHz. The charge amplifier had
built-in low-pass and high-pass filters and could amplify from —20 to +80 dB, with a sensor
capacitance of 1 nF. During the experiment, we used a filter, built into the amplifier, with
cutoff frequencies of 10 and 100 Hz, which allowed us to receive a 33 Hz tone signal and
avoid unwanted noise in the low-frequency range. The frame, where the hydrophone was
fixed, was covered with a mesh, which helped avoid noise of hydrodynamic characteristics.
Using an analog-to-digital converter, the data from the charge amplifier were recorded by
a portable computer. An accumulator bank was used in a container as a power source,
ensuring autonomy of all devices up to 9 h.

Registration of seismoacoustic signals, generated by the radiator, was carried out using
a coastal laser strainmeter, built on the basis of an unequal-arm Michelson interferometer.
The length of the strainmeter arm was 52.5 m. A frequency-stabilized laser with a wave-
length of 630 nm was used as a radiation source. Theoretically, the laser strainmeter can
measure a displacement with an accuracy of (A;/2) x 10~%, where A, is the wavelength of
the frequency-stabilized laser. At a displacement measurement accuracy of 0.01 nm, the
sensitivity of the 52.5 m laser strainmeter was equal to (AL/L) = (0.01 nm/52.5 m) [9].

Figure 1 shows a scheme map of the experiment.

Vityaz Bay ) ' N

Radiator @

Shultz Cape 4 Viadivostok s

~

oPr1

Laser strainmeter

oPr2

Shultz Cape

Peter the Great Gulf (Sea of Japan)

Figure 1. Scheme map of the experiment. The “radiator” was the transmitting point; P1—-P5 were
measurement points.

Transmitting signals was carried out in Vityaz Bay of the Peter the Great Gulf. The
radiator was submerged to the depth of 18 m, while the depth of sea at the radiation
point was 25 m. Hydroacoustic signals were transformed into seismoacoustic signals
and were recorded by the coastal laser strainmeter. After passing through Shultz Cape,
seismoacoustic signals continued to propagate along the wedge-shaped shelf and partially
transformed back into hydroacoustic signals, which were measured in several points
(P1-P4) on the side of the open part of the Sea of Japan.
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Radiation of tone signals with a frequency of 33 Hz was carried out in the continuous
mode. In the measurement points, we measured sound velocities over the entire depth
using a hydrological sonde. Then, the autonomous submersible hydroacoustic container
equipped with a hydrophone measured, at intervals of 2 m from the surface to the bottom,
the pressure field created by hydroacoustic signals, which was formed by seismoacoustic
signals that passed through Shultz Cape.

After the experiment and the analysis of the obtained experimental data, we carried
out the mathematical modeling of the process of acoustic signal propagation along the
route “water-the upper layer of the Earth’s crust-water”. The model parameters fully
corresponded to the experimental conditions. After that, we compared the obtained
experimental data and simulation results.

3. Description and Parameters of the Model

To estimate the distribution of the pressure field, generated by acoustic signals as they
propagated in a layered elastic medium and in an overlying fluid medium, we performed
modeling, using an axisymmetric code of spectral elements in the time domain. The
modeling tool was the spectral element method, which is a high-order finite element
method, developed for local- and global-scale seismic waves’ propagation [15]. Acoustic
signal propagation on the shelf with a decreasing depth was modeled using the SEM
software package with the SPECFEM2D open source [16,17].

SPECFEM2D integrates a simplified form of the wave by Equations (1)-(3), using
high-degree Lagrange interpolation polynomials. In spatially inhomogeneous region of
fluid, the wave equation for the pressure P(x,t) has the following form:

1. VP
P v

where k(x) is the adiabatic fluid bulk modulus.
In linearly elastic bodies, the strain tensor &(x,t) is calculated from the displacement
vector u as:

e = %(vﬂ’ +vu]h). @)

—

—
The stress tensor ¢ ( x, t) can be expressed in terms of the strain tensor, according to

Hooke's law:
- =
c

oc=¢c:¢ 3)

where colon denotes the double tensor contraction operation. The elastic properties of
the medium are described by the fourth-order elasticity tensor c(x). SPECFEM2D inte-
grates a simplified form of these equations, using a high-degree polynomial Lagrange
approximation.

The simulation parameters are shown in Figure 2. The surface of the fluid medium
was set at z = 0. The radiation source was set by the Ricker function with a central frequency
of 33 Hz and was located in the point with coordinates (r,z) = (0, —18 m). The calculation
area had a width of 3100 m and a depth of 500 m below the sea surface. All boundaries,
except for the upper one, were defined by perfectly matched layers (PMLs) [18]. In order to
obtain accurate results of wave propagation simulations using SPECFEM?2D, it is necessary
to specify a mesh with an element size equal to the smallest wavelength. In this case, the
element size was taken to be ~30 m. The model mesh was created using the open-source
software Gmsh [19] and consisted of 3145 spectral elements. The physical parameters of
the shelf geological structure are listed in Table 1.
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Figure 2. Simulation parameters.

Table 1. Parameters of geological layers used in the model.

Layer cp Cs Specific Gravity
I-Late Pleistocene Holocene 1740 m/s 1044 m/s 15¢g/ sm3
II-Gelasian Middle Pleistocene 1880 m/s 1128 m/s 17¢g/ sm’
III-Granites 3790 m/s 2274 m/s 24¢g/ sm?

4. Processing of the Experimental Data Comparison with the Simulation by the Model

As we mentioned above, hydroacoustic signal measurements in each point were
carried out at intervals of 2 m. According to the obtained values of the overpressure,
measured at each horizon, we plotted the curves of the vertical distribution of the pressure
field vs. depth. With the same depths and intervals, according to the model, the same
distributions were calculated for all measurement points. The construction results are
shown in Figure 3.
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Figure 3. Vertical distributions of the pressure field, measured and calculated by the model at points:
(a) P1; (b) P2; (c) P3; (d) P4.

The graphs built on the simulation data were practically identical. The maximum of the
pressure field was located near the bottom, which was expected, since it was assumed that
the acoustic signal that passed through the cape would subsequently propagate through
the upper layer of sedimentary rocks (Figure 2(I)), create the maximum pressure near the
bottom, and decay exponentially towards the surface. However, the curves constructed
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from the experimental data were starkly different from the model. In Figure 3a, the main
maximum of the pressure field was at the depth of about 15 m. In the measurement point
P2 at a distance of 1200 m from the radiator (Figure 3b), we can observe the maximum
at the same depth, but with a much larger amplitude. In points P3 and P4, located at the
distances of 1800 and 2150 m from the radiator, the situation changed dramatically. In
Figure 3d, the distribution of the pressure field was not uniform in depth and the maximum
was located near the bottom, while at point P4 (Figure 3c), the maximum of the pressure
field was located near the surface. An interesting feature in all cases was the “channeling”
of the pressure field in 10 m thick layers.

5. Analysis of Energy Parameters of Oscillations in Solid and Fluid Media

By distributions of the pressure field and the signal, recorded by the laser strainmeter, we
calculated the specific hydroacoustic and seismoacoustic energies for each measurement point.
The energy density of a hydroacoustic field in a fluid medium can be calculated using

the following expression:
h

Eu(h) = 5 [ P(0?an, @)

(=)

where p is the water density, c is the sound velocity in water, & is the depth in the measure-
ment point, and P(h) is the pressure distribution function over depth.

The expression for calculating the energy density of elastic oscillations in a solid
medium can be written as:

T pw?u? exp(—4rm/A)

Er(h) = .0/ 2cos(6)? 9, ©)

where u is the displacement amplitude at a frequency of 33 Hz, recorded by the laser
strainmeter, A is the Rayleigh wavelength (c = 3790 m/s), p is the density of the upper layer
of the Earth’s crust (2400 kg/m?), 6 is the angle between the measuring axis of the laser
strainmeter and the direction to the radiator (4.5 deg), and w is the cyclic frequency for
f=33Hz.

All calculation results are listed in Table 2. Figure 4 shows a mutual comparison of the
obtained results in a graphical form.

Figure 4b shows that the change in hydroacoustic energy occurred in a non-trivial way,
the maxima form at the distances of 1200 and 2150 m from the radiator. The energy distri-
bution according to the model, on the contrary, had a classical exponential characteristic,
with the exception of a small maximum at the distance of 1800 m from the radiator, which
is most likely associated with appearance of the third layer in the geological structure of
the shelf (Figure 2(II)). Absolutely unclear is the nature of the change in seismoacoustic
energy, which is possibly associated with the unstable operation of the radiator, but this
does not explain the presence of the hydroacoustic energy maxima at the minimum of
seismoacoustic energy.

Table 2. Seismoacoustic and hydroacoustic energy densities.

. Distance from . Seismoacoustic Hydroacoustic Hydroacoustic
Point Depth . Displacement . .
No (m) the Radiator Amplitude (m) Energy Energy Density by Energy Density by
’ (m) P Density (J/m3) Experiment (J/m3) the Model (J/m?3)
P1 19 930 434 x 1077 8.94 x 1077 6.79 x 10711 344 x 1078
P2 35 1200 1.95 x 1077 1.85 x 1077 5.30 x 10710 3.27 x 10710
P3 43 1800 2.88 x 1077 3.94 x 1077 9.63 x 1011 2.35 x 1077

P4 41 2150 444 x 1077 9.36 x 1072 1.00 x 10?2 9.29 x 10710
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Figure 4. (a) Comparison of the energy densities of oscillations recorded by the laser strainmeter and
the energy densities of the experimentally measured hydroacoustic signals; (b) comparison of energy
density values of elastic oscillations: energy density of the experimentally measured hydroacoustic
signals and energy densities calculated according to the model.
We calculated ratios of hydroacoustic and seismoacoustic energies from point to point.
The energies at the first point were considered as units, and ratios were further calculated
by dividing the energy at a point by the energy at the next one. The calculation results are
listed in Table 3, and they are presented in a graphical form in Figure 5.
Table 3. Ratios of seismoacoustic and hydroacoustic energy densities, calculated from point to point.
Type of Energy Density P1/P1 P1/P2 P2/P3 P3/P4
Hydroacoustic energy density change 1 0.12816157 5.500415282 0.096223776
Seismoacoustic energy density change 1 4925619835 0.460543009 0.421091997
—e—Seismoacoustic energy density —e—Hydroacoustic energy density (Experiment)
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Figure 5. Changes in hydroacoustic and seismoacoustic energy densities from point to point.

Basing on the graphs of energy variations, we can instantly say that they were inter-
connected and inversely proportional to each other. This means that with an increase in
seismoacoustic energy, less energy entered the fluid half-space, and vice versa. The smaller
the energy change in the solid half-space, the more the energy entering the fluid medium.

6. Discussion of the Obtained Results

From the above, we can make some assumptions on the mechanism of the pressure
field distributions formation, presented in Figure 3. The first assumption is related to the



J. Mar. Sci. Eng. 2022, 10, 1550

8of 11

presence of hydrophysical processes, such as internal waves, during the experiment. This
assumption is hardly probable, since at each point, we measured the hydrological sonde
sound velocity and the temperature over depth. Figure 6 shows the vertical distributions
of the sound velocity and the temperature for two points.

Sound Velocity, m/s Temperature, C
1450 1460 1470 1480 1490 1500 1510 2 4 6 8 10 12 14 16
2 L 1 1 — 2 1 1 1 1 A ]
6 - 6 -
10 4 10 4
14 14
£ 18 | g 18
2 £ 22 -
oy &
Q 26 - Q 26
30 - 30
34 34
38 38 1
a2 - 4
—pP2 —p3 —P2 —Pm
(a) (b)

Figure 6. Vertical distributions of the sound velocity (a) and the temperature (b) at measurement
points P2 and P3.

According to the distributions presented in Figure 6, small negative gradients of
the sound velocity and the temperature were formed in the 18-22 m thick upper layer.
Then, there was a 10-12 m thick transition layer, after which there was also a small
negative gradient.

The assumption of existence of some internal or surface channels of acoustic energy
propagation is also inconsistent, since the wavelength of the harmonic signal that we
used was commensurable with the depth at the measurement points, and, therefore, the
transition layer, in this case, did not matter much.

Based on the above, we can make an assumption about the mechanism of acoustic
signal transmission from one shelf area to another through the solid half-space. Let us
examine the mechanism of transformation of acoustic energy from the radiator into the
upper layer of the Earth’s crust. As shown by the results of our previous experiments [12,13],
90% of acoustic energy goes into the bottom immediately. The rest of the energy gradually
transforms with the decrease in depth and completely goes into the bottom when the
critical depth is reached. Therefore, we can assume that at the first two measurement points,
the distribution of the pressure field was formed by the energy that went into the bottom
directly at the critical depth and passed directly through the solid half-space (Schulz Cape).
The main part of the energy, which went into the bottom, immediately propagated deeper
in the granite base (Figure 2(IlI)) and began to come to the surface with an appearance
of sedimentary rocks in the geological structure (Figure 2(LII)). At points P3 and P4, the
pressure field was formed as a result of interaction of straight energy passing “through”
and the energy exiting into the fluid half-space, which made the structure of the pressure
field distribution over depth inhomogeneous.

Let us examine the distributions of the pressure fields at points P1 and P2 (Figure 3a,b).
We were interested in the pressure change from the surface to the bottom at stations P1 and
P2. As we noted above, at these stations, the maximum pressure was at the depth of 15 m.
In addition, we should note that, when compared with the simulated data, the pressure
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increased near the surface at both stations. This growth can be associated, as in [13], with
the existence of an undamped Rayleigh-type wave at the “water-bottom” boundary. If the
amplitude of a damped Rayleigh wave decreased exponentially from the bottom to the
water surface, then amplitude of an undamped wave did not decrease from the bottom
to the surface. The superposition of these amplitudes provided such a behavior of the
total pressure at the frequency of 33 Hz from the depths of 5-8 m to the surface. More
interesting is the fact that at these stations the maximum pressure was at the depth of
15 m. According to the model, presented in Figure 2, the main component of the rocks of
Schultz Cape is bedrocks with a velocity of longitudinal waves of about 3790 m/s [13]. The
layer thicknesses to the left and to the right of Schultz Cape are small at shallow depths.
Taking into account the hydroacoustic wave length, this layer cannot significantly affect the
behavior of hydroacoustic waves at the “water-bottom” boundary. Bedrocks provide the
main influence. Taking this fact into account, we can calculate the critical depth, at which
hydroacoustic energy, propagating along the wedge-shaped shelf of decreasing depth, is
almost completely transformed into seismoacoustic energy. According to [13], the critical
depth was calculated as follows:
c

H= A2 ©

where c is the sound velocity in water, n is the refraction index equal to the ratio of the sound
velocity in water to the sound velocity in the seabed, and f is 33 Hz. For the parameters
described above, this critical depth was approximately equal to 12.4 m, which was slightly
less than 15 m. For the critical depth of 15 m, the sound velocity in the seabed should be
approximately equal to 2300 m/s. This is quite possible, taking into account the layered
and heterogeneous structure of the upper layer of the Earth’s crust at the experimental
site. Therefore, we can assume that the critical depth, at which all hydroacoustic energy
is transformed into seismoacoustic energy, can be from 12.4 to 15 m. We suppose that the
concentrations of energy at the first two points were associated with the critical depth, at
which the transformed seismoacoustic energy converted back into hydroacoustic energy,
and this critical depth was 15 m. We can even consider the seabed area from the water
edge near the coast to the second receiving point as an antenna, radiating hydroacoustic
energy, the main lobe of which is at the critical depth of 15 m. At the first receiving station,
the total hydroacoustic energy was lower by almost an order of magnitude than at the
second receiving station. This may be not only due to the possibly unstable operation of
the radiator, but also due to the “inefficient” operation of the radiating seismoacoustic
antenna with the “bottom-water” boundary starting from the depth of 17 m to the water
edge. The tilt of this radiating seismoacoustic antenna was about 60°. At the third and
fourth receiving stations, the picture is much more complicated. Here, body waves, which
immediately went into the bottom in the radiation area, begin to play an important role. In
the points of reception, these waves, when entering the water, should be “superimposed”
on damped and undamped hydroacoustic Rayleigh-type waves. This interaction of waves
gives such pressure distributions. In this case, the maximum pressure can be at any depth
from the surface of the water to the bottom.

We can estimate the stability of the radiator operation by the seismoacoustic energy,
received by the laser strainmeter. In this case, we should take into account that during the
experiment, both radiating and receiving systems (laser strainmeter) were stationary. This
instability can only be associated with the presence of surface waves during the experiment.
In the presence of wind waves, the radiator moved either to or away from the bottom. This
led to the change in the ratio of energy, which went into the bottom in the form of body
waves, to the hydroacoustic energy, which transformed into seismoacoustic energy in the
form of surface waves. At such small distances from the place of the radiator operation to
the laser strainmeter, the latter recorded only surface waves.
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7. Conclusions

Thus, we can conclude that the formation of vertical distributions of the pressure field
directly depends on the shape and geological structure of the shelf area, and experiments
with use of low-frequency harmonic signals allow us to obtain comprehensive information
on transmission mechanisms and propagation paths of acoustic energy when a signal
passes through a solid half-space bounded by water environment. This type of experiment
can later be used to create an acoustic tomography method that will make it possible to
study the geological structure of the shelf areas of the World Ocean, including those in
hard-to-reach areas covered with ice.

Besides, under certain conditions, we can generate very powerful seismoacoustic
signals of varying complexity, for example phase-manipulated signals, using hydroacous-
tic low-frequency radiators that generate powerful signals of varying complexity. These
studies are important not only for solving a number of tomographic problems, but also for
developing new methods of navigation and communication. In the future, such experi-
ments are extremely necessary at large distances to solve the problems of constructing a
model of the hydroacoustic field of the shelf area as the depth increases, depending on the
structure and composition of the sea Earth’s crust.
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