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Abstract: It is important to accurately calculate flattening points when reconstructing ship hull
models, which require fast and high-precision computation. However, some search algorithms,
such as the bisection method, iterate near the optimal value too many times before converging in
high-precision computation. The paper proposes a fast high-precision bisection feedback search
(FHP-BFS) algorithm to solve the problem. In the FHP-BFS algorithm, the Newton–Raphson (NR)
method is adopted to accelerate the convergence speed by considering the iteration characteristics of
subintervals. Furthermore, a new feedback mechanism is proposed to control the feedback directions.
In addition, an acceleration algorithm, called the interval reformation method, is used to guide
the FHP-BFS algorithm for fast convergence. Finally, the flattening algorithm is improved by the
FHP-BFS algorithm. In the comparative experiments, the practical efficacy of the FHP-BFS algorithm
is first demonstrated, and then the optimal range of the threshold precision is determined. Next
the FHP-BFS algorithm is compared to the best existing algorithms. Finally, the performance of the
improved flattening algorithm is verified. The experiments demonstrate that the FHP-BFS algorithm
has optimal performance among the compared algorithms, and it has an improved computation
efficiency while maintaining robustness. The improved flattening algorithm reduces the computation
time, ensures smoothness and meets practical engineering requirements.

Keywords: FHP-BFS algorithm; flattening algorithm; inversion; high-precision threshold;
computation efficiency

1. Introduction
1.1. Modeling and Deformation of the Ship Hull

Ship hull reconstruction is a reverse engineering application that transforms a physical
model into a digital non-uniform rational B-spline (NURBS) model through computer-aided
design technology [1]. In applying ship-damaged stability information, the reconstructed
ship NURBS model can significantly improve computational accuracy and efficiency com-
pared with other algorithms [2]. For example, in the calculation of water plane elements of
a damaged ship hull, the triangular grid method can be used to calculate the surface inter-
section between the ship hull and the water plane, and the intersection line is achieved by
subdividing ship stations, which can hardly obtain high-precision solutions [3]. However,
the intersection line of the ship NURBS model can be directly obtained by the Newton–
Raphson (NR) iteration approach [4,5] or the recursive subdivision approach [6–9], which
can ensure high computational precision and efficiency. Moreover, the computation time of
the residual stability of damaged ships directly determines the remaining time for rescue,
and the computation precision affects the rescue measures. Therefore, a fast high-precision
ship NURBS model is of practical importance for real-time calculations.

Figure 1 shows the processes of defining the ship hull NURBS model [10]. The
interpolation operation is first executed to define basic curves, which describe the ship’s
characteristics and mainly refer to the centerline profile curve, bottom tangent curve, side
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tangent curve, midship section curve, etc. Second, the cross-sectional curves along the ship
length or waterline, which can be obtained through the offset or the waterline data [11,12],
are defined in each frame. Third, the space curves represent complicated parts, such as
the stern and stem. Fourth, the deck plane and superstructure are determined after the
fairing process. Finally, the model is obtained by the ship hull fairing operation [13,14].
In these processes, the interpolating error of NURBS curves can be reduced through a
deformation operation, which represents shape-preserving or geometrically constrained
reconstruction using the underlying information about the reconstructed shape. The
deformation operation includes flattening, bending, warping, and twisting. Flattening is
the most widely used operation for the deformation of ship NURBS models, and flattening
makes the bottoms or sides of the ship hull expressed as straight lines or planes [15].
However, if the flattening precision is insufficient, the calculation based on the reconstructed
models will have many errors, such as ship inlet volume errors and deviation errors of the
gravity center and buoyancy center. Therefore, the computational efficiency and precision
of the flattening operation are particularly significant for providing quick, high-precision
inversion solutions.
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1.2. Inversion Algorithms of NURBS Curves

The inversion algorithm of the NURBS curve is divided into the compound and direct
algorithms. The compound algorithms first calculate the rough solution by a method as
the initial value, and other methods calculate the exact value based on the initial value.
In contrast, the direct algorithms only use one method to obtain the exact value. The
minimum Euclidean distance between the target and test points is usually used as the
convergence criterion for calculating rough values. Ref. [16] first proposed an algorithm
to achieve rough values; it calculates the maximum and minimum values of the distance
by projecting values onto the boundary of the basic geometry, and the exclusion parts
are the points with higher distance values than the currently obtained minimum distance.
Subsequently, ref. [17] proposed an exclusion criterion based on a tangent cone. Ref. [18]
divided the NURBS curves or surfaces into Bezier sub curves or surface slices. A rough
solution was determined by examining the distribution between test points and control
points or control grids. Ref. [19] proposed an exclusion criterion based on the Voronoi
cell test. Refs. [20,21] proposed a circular or spherical clipping method to calculate the
minimum distance between points and clamped B-spline surfaces. Ref. [22] improved the
exclusion criterion of [20] by replacing shear circles with axis-aligned lines; subsequently,
ref. [23] proposed a culling method to remove redundant curves based on the approach
in [22]. However, the elimination rate is lower than that of [20,21]. Ref. [24] proposed
a curvature information method to calculate the minimum distance between points and
parametric curves or surfaces; nevertheless, the computation time is long due to considering
second-order derivatives.

Exact values are usually calculated by algorithms with high convergence speeds, such as
the NR method [15,25], the gradient descent method [26], the conjugate direction method [27]
and the direct method [28]. Among these methods, the NR method is the most commonly
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used due to its quadratic convergence rate; moreover, a certain reliable initial value should
be provided due to the local convergence. To optimize this problem, various strategies were
proposed by [26,29], such as the Levenberg–Marquardt and trust domain methods. Based on
these methods, the NR methods were applied to global strategy optimization in Riemannian
settings [30–33]. The NR methods with these global strategies are also called damped NR
methods, where the detailed parameter settings of the linear search problem are studied
in [26,34,35]. Among the various strategies, the linear search and value function is effective. A
direct method called the bisection feedback search (BFS) algorithm was proposed to obtain
the global optimum solution [28], which is based on the bisection method and incorporates
feedback processes to obtain the ability to jump out of local optima. Additionally, the interval
reformation (IR) method is proposed to provide a search direction for the BFS algorithm.
Hence, the IR-BFS algorithm has an excellent single-loop capability and converges faster when
the threshold precision is lower than 10−4.

1.3. Problems with the IR-BFS Inversion Algorithm

The target interval of inversion in the IR-BFS algorithm is quickly locked through
the IR method, which improves computation efficiency compared with other algorithms.
However, if the high-precision threshold is set, for example, to 10−8, the computation
speed begins to slow down; that is, the model experiences continuous iteration without
convergence in the neighborhood of the optimal solution, which consumes too much
computation time, and this problem is called “precision refinement” in the paper.

Figure 2 shows the inversion process of the flattening point ps based on the IR-BFS
algorithm. There are two convergence processes, “Process 1” and “Process 2”. A feedback
process occurs, that is, the transition from “Process 1” to “Process 2”. In addition, “Process
A” and “Process B” are the processes of “precision refinement”. In addition, the criteria,
which are set to |ue − us| ≤ 10−3, are used to judge whether the iteration enters the
“precision refinement” process. Figure 2 shows a “precision refinement” phenomenon in
each convergence process.

Taking “Process B” in Figure 2 as an example, when t = 0.011, the iteration enters
the feedback process; when t = 0.013, the iteration enters “Process B”; when t = 0.021,
the solution meets the convergence threshold, and the precision is 5.54× 10−9, which is
the global optimum. In the iteration process, the time consumption of “Process 2” is 0.01s,
while the time consumption of “Process B” is 0.008s, which is 80% of the time consumed by
“Process 2”. Therefore, much computation time is consumed in the “precision refinement”
process of the IR-BFS algorithm, although the algorithm can obtain the global optimal
solution with a high-precision threshold.

1.4. Research Objectives and Structure

This paper studies how to improve the computational efficiency of the inversion algo-
rithm while ensuring computational precision, which is used to improve the computational
speed of the flattening algorithm. The fast high-precision bisection feedback search (FHP-
BFS) algorithm, which is proposed to solve the problem of “precision refinement”, uses
global convergence and the fast single iteration ability of the BFS algorithm to obtain rough
values; then the NR method, which has the advantage of quadratic convergence speed, is
applied to obtain the exact solution. Moreover, an appropriate threshold precision value is
set for the rough value to provide a good initial value for the NR method; the optimal range
of the output threshold precision of the FHP-BFS algorithm is determined experimentally
to improve its scalability and to more easily apply it to practical operations. Finally, the fast
high-precision inversion process of the FHP-BFS algorithm is provided for the flattening
algorithm to solve the problem of long computation time. In addition, all the experiments
were performed on a Windows 10 laptop with 32 gigabytes of RAM and a Core I7 processor
using the Python programming language and the PyCharm IDE.
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Figure 2. Inversion process of parametric value u of flattening point ps based on the interval
reformation and bisection feedback search (IR-BFS) algorithm. (a) The parametric value u in inversion
process; (b) The distance error between pm and ps; (c) The distance error between um and us, where pm

denotes the curve point according to um; “Process 1” and “Process 2” are the processes of convergence;
“Process A” and “Process B” are the processes of “precision refinement”; us, ue and um denote the
values of the left endpoint, right endpoint, and the middle point of the iteration interval, respectively;
Em denotes the distance error; and Eu denotes the range of the iterating interval.

The main contributions of this paper are as follows: (i) The FHP-BFS algorithm is
proposed, and the algorithm has global convergence in NURBS curve inversion, which
increases the computation efficiency while ensuring the computation precision. The higher
the precision is, the greater the computational efficiency compared with other algorithms.
(ii) The optimal range of the threshold parameters of the FHP-BFS algorithm is determined,
which makes the algorithm easier to apply to practical engineering problems. (iii) The
flattening algorithm is improved to enhance the computation efficiency in high-precision
real-time modeling.

The subsequent sections are organized as follows. Section 2 introduces the mathe-
matical background of the relevant algorithms. Section 3 introduces the framework of the
proposed algorithms. Section 4 designs comparative experiments to verify the effectiveness
of the proposed algorithm. Sections 5 and 6 present the discussion and conclusion.

2. Mathematical Background
2.1. NURBS Curve

NURBS is a unique mathematical method used to define the geometry of industrial
products in the data exchange standard [36]. In the ship hull surface modeling task, the
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NURBS method creates more realistic and vivid modeling results [37]. Generally, the
expression of the parametric form of a pth-degree NURBS curve is as follows:

C(u) = ∑n
i=0 wi Pi Ni,p(u)

∑n
i=0 wi Ni,p(u)

(a ≤ u ≤ b), (1)

where {wi} denote the weights corresponding to control points; {Pi} denote the control points;
u denotes the parametric value and

{
Ni,p(u)

}
are the pth-degree B-spline basis functions

defined by the knot vector U [15]. The knot vector U can be defined by Equation (2):

U =

a, · · · , a
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Ni,0(u) =

{
1, i f ui ≤ u ≤ ui+1

0, else
Ni,p(u) =

u−ui
ui+p−ui

Ni,p−1(u) +
ui+p+1−u

ui+p+1−ui+1
Ni+1,p−1(u)

de f ined 0
0 = 0

, (3)

The definition of Equation (3) is the most efficient form for computer implementation.
In Figure 3, the NURBS curve is interpolated to the feature points of the Archimedes
curve, and the values of the basis function are calculated by Equation (3). The control
polygon in Figure 3 denotes a polygon formed by connecting the control points in order.
In reconstructing a ship hull, the waterplane or cross-section NURBS curves are typically
obtained by the interpolation algorithm.
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In addition, the rational basis function Ri,p(u) can be introduced and defined as follows:

Ri,p(u) =
Ni,p(u)wi

∑n
j=0 Nj,p(u)wj

(a ≤ u ≤ b), (4)

therefore, the NURBS curve of Equation (1) can also be defined by Equation (5):

C(u) =
n
∑

i=0
PiRi,p(u) (a ≤ u ≤ b). (5)
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2.2. IR-BFS Inversion Algorithm

The inversion of the NURBS curve is the process of calculating the parametric values
according to the inversion points. As shown in Figure 4, Ps and Pe are inversion points
randomly selected on the NURBS curve. The curve segment between them is defined
within the range of the knot vector U. The inversion process calculates the corresponding
knot values us and ue. In addition, the chain dotted line in Figure 4 represents the curvature
of the curve point, which is used to measure the bending degree of the curve.
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Figure 4. Process of selecting inversion points on the Archimedes non-uniform rational B-spline
(NURBS) curve, where the arrows indicate the direction in which the curve points change with the
order of knot values.

The IR-BFS algorithm was proposed by us to solve the low computational efficiency in
the inversion of NURBS curves [28]. Figure 5 shows the flow chart of the IR-BFS algorithm,
in which some operations, such as the bisection table, the inverting interval, the outputting
threshold, and the feedback operations, are described. Among them, the most important
are the two feedback operations, which guarantee the ability of the algorithm to jump
out of local optima. The feedback operations are the feedback to the current iteration
subinterval and the next subinterval. In the feedback to the current subinterval, the current
iteration interval and the parametric value need to be updated according to the inverting
interval criterion for calculating the next iteration. The bisection table needs to be reset in
the feedback to the next subinterval, and the iteration interval and parametric values need
to be updated according to the feedback criteria. The bisection table records the bisection
selection of each iteration of the current interval; the inverting interval operation inversely
selects the interval of the target record in the bisection table to update the current iteration
parameters; and the outputting thresholds, α and β, are crucial parameters that affect the
convergence speed and accuracy of the algorithm.

In addition, two major processes, the IR method and the BFS algorithm are designed
in series. The IR method is responsible for reducing the search range of the BFS algorithm,
and the BFS algorithm searches the target solution in ascending order in the subinterval
provided by the IR method. More detailed descriptions of the parameter settings can be
found in [28].
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Figure 5. Overall design of the interval reformation and bisection feedback search (IR-BFS) algorithm,
where w is a state parameter; f is the index of the target row in the bisection table; E is the distance
error and α and β denote the knot error threshold and the distance error threshold, respectively.

2.3. Flattening Algorithm of the NURBS Curve

The flattening algorithm can quickly produce straight line segments or plane regions
on NURBS curves or surfaces [39,40]. In reconstructing a ship hull, the deformations of
flattening operations are usually carried out on basic models. Figure 6 shows the flattening
algorithm based on the IR-BFS algorithm. The flattening algorithm first interpolates the
input data to NURBS curves. Next, the parametric values are obtained by the inversion
algorithm. Then, knot refinement is performed to obtain more control points in the interval
affected by the flattening parametric values. After that, the control points are projected
onto the flattening line based on the projection criterion and updated again. Finally, the
flattening operation is completed if the number of control points successfully projected on
the flattening line segment reaches at least p + 1. In addition, if the number of successfully
projected points is less than p + 1, the knot refinement operation is performed again, and
the number of inserted knots is increased by 1.
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interval reformation and bisection feedback search (IR-BFS) algorithm.

The flattening effect is analyzed by the curvature change in the NURBS curve before and
after the flattening operation. The curvature of the NURBS curve is defined by Equation (6):

K(u) =
|C′(u)× C′′ (u)|
|C′(u)|3

, (6)

where C′(u) and C′′ (u) denote the first and second derivatives of the curve with respect to
parameter u, respectively. If the curvature near the flattened points is gradually reduced
to 0, then the segment of the flattening curve becomes a straight line, indicating a good
flattening effect. Otherwise, it indicates that the effect is poor. Figure 7 shows the flattened
NURBS curves with flattening points ps and pe. By comparing the curve before flattening in
Figure 4, the curvature near the flattening parametric values of points ps and pe gradually
reduced to zero, indicating a good flattening effect.
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knot values.

3. Framework of the Proposed Methodology
3.1. Overall Design of the FHP-BFS Algorithm

Figure 8 shows the overall design of the FHP-BFS algorithm. Compared with the
IR-BFS algorithm in Figure 5, the NR method is integrated into the IR method and the
BFS algorithm. Simultaneously, the loop mechanism of the algorithm is changed, and the
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feedback mechanism and the convergence criteria for the NR algorithm are added to the
FHP-BFS algorithm.
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The loop mechanism of the FHP-BFS algorithm first reduces the iteration interval of
possible solutions. Then, the BFS algorithm is used to provide the ability to quickly locate
the range of the convergence results and realize the ability to jump out of local minimum
values. Finally, the NR method is used to refine the precision of the convergence result. The
solution that meets the threshold is achieved after several iterations and feedback loops.

The condition for using the NR algorithm in the FHP-BFS algorithm is judged by
the length of iteration interval Eu with threshold γ. When Eu < γ, the NR method with
the initial value of um is executed for convergence. Figure 2 shows that the “precision
refinement” process begins when Eu = 3.49× 10−3, and um is an excellent and stable initial
value for the NR method. Therefore, it is recommended that γ be set to 10−3. Furthermore,
through our practice experiments, the recommended threshold γ = 10−3 not only improves
the computational efficiency of the FHP-BFS algorithm but also ensures stability.

The feedback object should be first clarified for the feedback criterion of the NR method
in the FHP-BFS algorithm, that is, the feedback is provided to the current subinterval or
the next subinterval. In the iteration of the IR method, if the target solution is not in the
current iteration interval [us, ue], the bisection table is searched to judge whether the target
parameter um is in the recording interval. Assume that the record is [us, um, ue, w]; if w = 0
or w = 1, which means the interval [us, um] or [um, ue] was chosen when recording, then
the judgment of whether um is in the interval [um, ue] or [us, um] is performed. In addition,
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if w = 2, which means the interval had been fed back, then the record will be skipped.
If um is in the recording interval, then the index f in the bisection table is recorded, and
the feedback operation will be performed on the current subinterval. Conversely, if um
is not in the recording interval, which indicates that the um value is not in the current
subinterval, then the feedback operation will be performed on the next subinterval. Second,
the updating of the iteration interval and the operations of the bisection table of the IR
method in the feedback operation are as follows: The iteration interval is updated by the
recording interval index in the feedback to the current subinterval; then, the recording
interval is updated according to [us, um, ue, 2]. In addition, a deletion operation is performed
on the bisection table, that is, all subsequent records of the index f are deleted. However,
the iteration interval will be directly updated by the next subinterval in the feedback to the
next subinterval, and all records in the bisection table are deleted.

The iterative result um determines the principle of performing iteration operations or
feedback operations in the NR method. If um is in the current iteration interval, then the
probability that the convergence solution lies in the interval increases. In this case, the iteration
operation continues until the condition Em < β is satisfied to obtain the global optimum.
Conversely, if the iterative result um is not in the current iteration interval, which indicates
that the convergence solution is out of the interval, then the feedback operation is performed.

Finally, in the FHP-BFS algorithm, the different processing methods in the NR method
and the BFS algorithm should be noted. If the iteration result um of the NR method does not
satisfy the threshold β, it is necessary to determine whether the calculated result is in the
current interval before the iteration operation continues; moreover, the iteration parameter
is updated by um directly. The iteration operation of the BFS algorithm is performed directly,
and the iteration parameter is updated by the recording interval in the bisection table. In
addition, the current iteration interval [us, ue] of the NR method is unchanged, and the
iterative value um of the subsequent iterations is not recorded in the bisection table until um
is fed to the BFS algorithm or the iterative value um of the NR method converges. However,
the current iteration interval [us, ue] of the BFS algorithm changes according to the values
of the index, and the iteration interval is permanently recorded in the bisection table.

3.2. Flattening Algorithm Based on the FHP-BFS Algorithm

The purpose of applying the FHP-BFS algorithm to the flattening algorithm is mainly
to improve the computation speed. The processes of the flattening algorithm between
inversion and projection are distributed in series; hence, the whole computation speed can
be improved by enhancing the computation speed of the individual processes. Furthermore,
the progress of the precision in the inversion process will directly reduce the error of the
subsequent projection operation, indirectly affecting the updating accuracy of the control
points and knot vectors.

Algorithm 1 shows the pseudocode of the improved flattening algorithm based on
the FHP-BFS algorithm. The improved algorithm, which directly corresponds to the task
of ship hull reconstruction, uses the data of the offsets table of the ship hull as input
and then interpolates the data to half-width cross-section NURBS curves. In lines 4 and
5, the FHP-BFS algorithm inverses the flattening points; the inversion solutions ul , ur
are involved in the knot refinement operation in line 11, and then the control points are
updated according to the projection operation in line 12 based on the refined knot vectors.
Therefore, the processes of control point updating and the flattening effect are affected
by the improvement in the inversion based on the FHP-BFS algorithm. In addition, the
NURBS interpolation algorithm and the knot refinement algorithm are used separately
in lines 2 and 11. Detailed information on the two algorithms, such as the principle and
parameter settings, can be found in [15].
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Algorithm 1: Flattening algorithm based on the fast high-precision bisection feedback search
(FHP-BFS) algorithm.

Input: Q—list of offsets table; Ql , Qr—location points of flattening line segment ends;
p—degree of the interpolated NURBS curve.
Output: P, U— control point vector and knot vector of a flattened NURBS curve.
1: function FlatteningAlg(Q, Ql , Qr, p)
2: P, U = NURBSInterpolation(Q, p)//interpolation operation of list Q
3: //ul , ur are parametric values of the endpoint of the flattening line segment
4: ul = FHPBFS(P, U, Ql)//point inversion by the FHP-BFS algorithm
5: ur = FHPBFS(P, U, Qr)
6: //s is the number of points projected successfully
7: //n is the knot refinement number
8: n = p
9: while s ≤ p + 1 do
10: n = n + 1
11: U = KnotVecRe f ine(U, ul , ur, n)//knot refinement algorithm
12: Projection of the control point P located on the same side of the flattening line segment
13: update P, s
14: end while
15: return P, U
16: end function

4. Results

In this section, the effectiveness of the algorithms is verified by comparative experi-
ments. In the experiments, the cross-section data of a ship hull are selected as the original
data, and the flattening points are extracted as the inversion sample points. Table 1 shows
the half-width cross-section data of the ship hull of selected cross-sections. Figure 9 shows
the distribution of the interpolated cross-section NURBS curve, where the left-hand coordi-
nate system is taken as the coordinate system, and the origin of the coordinates is located at
the stern of the ship. From the origin of the coordinates, each cross-section is numbered in
the positive direction of the x-axis, called the “station”. The cross-section data of 32 stations
are used in this section.

Table 1. Sample points of the half-width cross-section of the ship station.

x (Station 4) x (Station 14) x (Station 32)
Index y z Index y z Index y z

1 0.000 0.731 1 0.000 0.000 1 0.000 0.932
2 0.082 0.750 2 4.490 0.000 2 0.115 1.000
3 0.179 0.821 3 5.000 0.035 3 0.267 1.241
4 0.303 1.000 4 6.000 0.313 . . . . . . . . .
5 0.426 1.287 5 6.322 0.500 10 0.000 4.306

. . . . . . . . . 6 6.541 0.710 11 0.000 7.306
23 6.191 6.953 7 6.732 1.000 12 0.164 7.371
24 6.359 7.610 8 6.850 1.319 . . . . . . . . .
25 6.531 8.630 9 6.900 1.719 14 2.000 8.877
26 6.638 9.520 10 6.900 15.00 15 2.505 9.284
27 6.638 15.00 - - - 16 2.505 15.00
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The method for extracting the flattening points from the sample data is as follows: for
the cross-section data at the same station, if the y or z coordinates of two adjacent points
have the same value and the z or y coordinates have different values, then the two adjacent
points are the end of a straight line segment. Figure 10 shows the interpolated NURBS
curves of station 4, station 14, and station 32. The data that can be used as sample flattening
points are the 26th and the 27th points of station 4 in Table 1, which correspond to p3 and
p4 in Figure 10a. The 1st and 2nd points of station 14 in Table 1 correspond to p10 and p11
in Figure 10b. The 15th and 16th points of station 32 in Table 1 correspond to p16 and p17 in
Figure 10c. In the comparative experiments, 100 flattening points are randomly selected as
the inversion sample points.

4.1. Comparison of Algorithms between FHP-BFS and IR-BFS

In the comparative experiments in this section, the parameter γ takes the recom-
mended value of 10−3, and the parameter α takes a value equal to parameter β.

4.1.1. Validation of the Practical Effectiveness of the FHP-BFS Algorithm

In this section, experiments are designed to compare the FHP-BFS algorithm and
the IR-BFS algorithm with conventional and high-precision threshold values, and the
computation time of the iteration process is recorded. The acceleration effect is verified by
analyzing the computation time of algorithms in the “precision refinement” process. The
selection criteria for the analysis point are as follows: First, 20 points with a single “precision
refinement” process are selected as reference points; then, the average computation time
of the reference points is calculated; finally, the reference point with a computation time
near the average computation time is chosen as an analysis point. According to the criteria,
p16 is taken as the analyzing point, and the β precision thresholds are set as 10−3 and
10−13. In addition, we used a sample with a single “precision refinement” process for
the analysis, and in practice, multiple iterations are often the superposition of numerous
single processes.

Figure 11 shows the inversion processes of the analyzing point p16 based on the
FHP-BFS algorithm and the IR-BFS algorithm, where “Process A” denotes the “precision
refinement” process. Figure 11a shows the inversion process with the conventional thresh-
old β = 10−3. The total computation time of the FHP-BFS algorithm is 1.24× 10−2s, and
the total computation time of the IR-BFS algorithm is 1.12× 10−2s. In this case, the time
consumed by the FHP-BFS algorithm is longer than that of the IR-BFS algorithm. Fig-
ure 11b shows the inversion process based on the high-precision threshold of 10−13. The
total computation times of the FHP-BFS algorithm and IR-BFS algorithm are 1.72× 10−2s
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and 3.27× 10−2s, respectively. In this case, the time consumed by the FHP-BFS algorithm
is less than that of the IR-BFS algorithm.
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In “Process A” of Figure 11a, the distribution of the time points of the FHP-BFS
algorithm becomes longer when t = 0.58× 10−2. Therefore, the NR method is used at
this point, and the precision of the threshold is reached in two iterations. Similarly, the
precision of the threshold in the IR-BFS algorithm is reached in five iterations. In Figure 11b,
“Process A” of the FHP-BFS algorithm begins when t = 0.57× 10−2, and the threshold is
satisfied in four iterations; moreover, “Process A” of the IR-BFS algorithm also starts when
t = 0.57× 10−2 but too many iterations are needed.
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(FHP-BFS) algorithm and interval reformation and bisection feedback search (IR-BFS) algorithm
with analyzing point p16 and at different precision thresholds β. (a) β is 10−3. (b) β is 10−13, where
“Process A” denotes the “precision refinement” processes.

In summary, the FHP-BFS algorithm performs best with a high-precision threshold.
However, the advantage of the low computation time is minor with the threshold of
conventional precision. Therefore, a suitable precision threshold should be set for the
FHP-BFS algorithm to maintain superiority.

4.1.2. Setting the Precision of the Threshold of the FHP-BFS Algorithm

This section determines the optimal precision threshold through comparative ex-
periments to maintain the superiority of the FHP-BFS algorithm. Figure 12 shows the
computation time of the inversion process at different precision thresholds based on the
FHP-BFS algorithm and the IR-BFS algorithm, which contains the curves of us, um and ue;
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the straight line segment in the tβ-plane of the coordinate system is the projection of the
curve of um.
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Figure 12. Inversion results of computation time t of parametric value u of sample point p16 based
on the fast high-precision bisection feedback search (FHP-BFS) algorithm and interval reformation
and bisection feedback search (IR-BFS) algorithm at different precision thresholds β.

The value of threshold β decreases from 10−3 to 10−13, and the computation time based
on the FHP-BFS algorithm is 1.24× 10−2s, 1.23× 10−2s, 1.24× 10−2s, 1.45× 10−2s,· · · ,
1.72× 10−2s and 1.72× 10−2s. The minimum value tmin and the maximum value tmax
are 1.23× 10−2s and 1.72× 10−2s, respectively, and the range of the computation time
tmax − tmin is 0.49× 10−2s. The values of the computation time based on the IR-BFS al-
gorithm are 1.21× 10−2s, 1.27× 10−2s, 1.41× 10−2s, 1.50× 10−2s,· · · , 3.08× 10−2s and
3.27× 10−2s. The minimum value tmin and the maximum value tmax are 1.21× 10−2s and
3.27× 10−2s, respectively, and the range of the computation time tmax− tmin is 2.06× 10−2s.
Hence, the distribution of values of the computation time in the FHP-BFS algorithm fluctu-
ates less and is relatively stable in the inversion process. In contrast, the distribution of the
computation time in the IR-BFS algorithm has approximate linear growth with large fluctu-
ations. Therefore, the computation time of the FHP-BFS algorithm has good robustness
and is not significantly affected by the precision of the threshold, while the computation
time of the IR-BFS algorithm is more affected by variations in the precision threshold.

In the inversion process of the sample point p16 in Figure 12, the computation time
of the FHP-BFS algorithm is longer than that of the IR-BFS algorithm when the threshold
β = 10−3, while the computation time of the FHP-BFS algorithm is less than that of the
IR-BFS algorithm when the threshold β ≤ 10−3. A comparative experiment is designed to
discuss the inversion threshold that makes the computation time of the FHP-BFS algorithm
better than that of the IR-BFS algorithm. To ensure the generality of the analysis results,
50 sample points are randomly selected in the experiment, and the precision of threshold β
is set as 10−i(i = 3, 4, 5, · · · , 12, 13). In addition, to discuss the improvement in the compu-
tation time of the FHP-BFS algorithm at different precision thresholds, the parameter of
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improved percentage of computation time Tpercent is proposed to measure the computation
efficiency of the FHP-BFS algorithm. The calculation formula is as follows:

Tpercent =
(tIR−BFS − tFHP−BFS)

tIR−BFS
× 100%, (7)

where tFHP−BFS and tIR−BFS are the computation times based on the FHP-BFS algorithm
and the IR-BFS algorithm, respectively. If Tpercent > 0, the computational efficiency of the
FHP-BFS algorithm is higher than that of the IR-BFS algorithm at a specific threshold. If
Tpercent < 0, the computational efficiency of the FHP-BFS algorithm is lower than that of
the IR-BFS algorithm. If Tpercent = 0, the computational efficiency of the IR-BFS algorithm
is nearly equal to that of the IR-BFS algorithm. Figure 13 shows the superposition of the
scatter distribution and the box plot of the computation efficiency Tpercent. Six outliers,
whose values are too large or too small, are deleted.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 18 of 29 
 

 

IR-BFS FHP-BFS
percent

IR-BFS

( - )
 = 100%

t t
T

t
, (7) 

where FHP-BFS
t  and IR-BFS

t  are the computation times based on the FHP-BFS algorithm 

and the IR-BFS algorithm, respectively. If 
percent

0T , the computational efficiency of the 

FHP-BFS algorithm is higher than that of the IR-BFS algorithm at a specific threshold. If 


percent

0T , the computational efficiency of the FHP-BFS algorithm is lower than that of the 

IR-BFS algorithm. If =
percent

0T , the computational efficiency of the IR-BFS algorithm is 

nearly equal to that of the IR-BFS algorithm. Figure 13 shows the superposition of the 

scatter distribution and the box plot of the computation efficiency percent
T . Six outliers, 

whose values are too large or too small, are deleted. 

Figure 13 shows that percent
T  tends to increase as the threshold   numerically de-

creases from −310  to −1310 , indicating that the computational efficiency of the FHP-BFS 

algorithm increases with the precision of the threshold. Taking the mean scatter value of 

percent
T  as the analysis target, if  − 410 , then 

percent
0T  indicates that the computation 

efficiency of the FHP-BFS algorithm is lower than that of the IR-BFS algorithm; if  −= 510

, then percent
T  is slightly greater than zero, while some scatter points with values less than 

zero exist, indicating that the computation efficiency of the FHP-BFS algorithm is nearly 

equal to that of the IR-BFS algorithm; and if  − 510 , then 
percent

0T , and the overall 

trend is increasing, indicating that the computation efficiency of the FHP-BFS algorithm 

is higher than that of the IR-BFS algorithm. In this situation, the smaller the value of 

threshold   is, the higher the computational efficiency of the FHP-BFS algorithm. There-

fore, the computational efficiency of the FHP-BFS algorithm is improved under the con-

dition of a high-precision threshold. Simultaneously, it is recommended that the range of 

the threshold is 
− 510  to maintain the superiority of the FHP-BFS algorithm. 

 
Figure 13. Superposition of the scattering distribution and box plot of Tpercent of the fast high-
precision bisection feedback search (FHP-BFS) algorithm at different thresholds β, where Tpercent

denotes the improved percentage of computation time.

Figure 13 shows that Tpercent tends to increase as the threshold β numerically decreases
from 10−3 to 10−13, indicating that the computational efficiency of the FHP-BFS algorithm
increases with the precision of the threshold. Taking the mean scatter value of Tpercent as
the analysis target, if β ≥ 10−4, then Tpercent < 0 indicates that the computation efficiency
of the FHP-BFS algorithm is lower than that of the IR-BFS algorithm; if β = 10−5, then
Tpercent is slightly greater than zero, while some scatter points with values less than zero
exist, indicating that the computation efficiency of the FHP-BFS algorithm is nearly equal
to that of the IR-BFS algorithm; and if β < 10−5, then Tpercent > 0, and the overall trend is
increasing, indicating that the computation efficiency of the FHP-BFS algorithm is higher
than that of the IR-BFS algorithm. In this situation, the smaller the value of threshold
β is, the higher the computational efficiency of the FHP-BFS algorithm. Therefore, the
computational efficiency of the FHP-BFS algorithm is improved under the condition of a
high-precision threshold. Simultaneously, it is recommended that the range of the threshold
is β ≤ 10−5 to maintain the superiority of the FHP-BFS algorithm.
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4.2. Comparison with Other Algorithms

Comparative experiments are designed with the best existing compound algorithms to
prove the effectiveness of the FHP-BFS algorithm in this section. The compared compound
algorithms are the algorithms of IR-BFS [28], Chen et al. [20], Selimovic [19] and Ma and
Hewitt [18], which are abbreviated as IR-BFS, Chen, Seli, and Ma, respectively, in this
section. Furthermore, the root-finding algorithms that perform well in the local interval are
also compared, which include the algorithms of [41–43], and they are abbreviated as Badr,
Sab, and Kim, respectively.

In the IR-BFS algorithm, the IR method is proposed to shrink the range of the target
interval, and the BFS algorithm is proposed to jump out of local optima. Chen subdivided
the NURBS curve into Bezier sub curves, and the rough solution was obtained when only
one optimal solution was contained in the interval; the exact solution was obtained by a
hybrid algorithm of the bisection method and the NR method. Seli proposed the internal
knot clipping method to eliminate intervals, and a rough solution is obtained when the
sufficient flatness of the subcurve is satisfied or when the range of the solution interval
is less than the given tolerance; the exact solution is calculated by the NR method. Ma
subdivided the NURBS curve into Bezier subintervals by finding a simple and convex
control polygon, and the rough solution was obtained by the iteration of subintervals
between the control polygon and the test point; the exact solution was calculated by the
NR method. Badr selects the optimal iteration value by the trisection and false position
methods. Sab proposed a three-way hybrid root-finding algorithm based on the previously
proposed two-way algorithm. The algorithm uses the methods of bisection, false position,
and NR to select the optimal iteration value. However, the problem of computing the global
optimal solution is still not considered. Kim combined the NR method and the bisection
algorithm to speed up the calculation and improve the local convergence ability of the
algorithm. However, the algorithm cannot jump out of the optimal local solution.

Since 50 sample points have been selected in Section 4.1.2 to analyze the optimal
precision range of the threshold for the FHP-BFS algorithm, to reflect the algorithm’s
generalization ability effectively, the other 50 sample points are selected as inversion points
in this section. The inversion precision threshold is set as 10−i(i = 3, 4, 5, · · · , 12, 13). The
test points or query points in the algorithms are the inversion sample points. The knot
refinement algorithm handles all operations for converting NURBS curves to Bezier curves.
The NR algorithm is considered not converged if the accuracy threshold is not satisfied
after 20 iterations. In the FHP-BFS algorithm, the threshold γ for the NR method is set to
10−3. The settings of the parameters of Chen in the hybrid algorithm based on the bisection
method and the NR method can be found in [44]. The tolerance of the solution interval
in the Seli algorithm is set to β for the sufficient flatness of the subcurves. The maximum
number of iterations of the Ma algorithm in dividing the NURBS curve into Bezier curves
is set to 20 to avoid unnecessary time consumption.

The root-finding algorithms easily fall into local optima if directly used to perform
inversion because they cannot find the global optimal value. Therefore, some processing
must be performed before these algorithms are used; that is, the previously proposed
IR-BFS algorithm was used to reduce the interval of parameters within 0.1 to minimize the
possibility of the root-finding algorithms falling into local optimal values in the samples.
The iteration of the root-finding algorithms terminates when the iterative times arrive at 20
to avoid consuming too much time in nonconvergent samples.

Figure 14 shows a 3D heatmap and 2D contour map of the computation time t of the
sample points calculated by the compound algorithms at different threshold precisions.
The 2D contour map in the bottom plane denotes the projection of the 3D heatmap, the
dotted line is the contour line, and the dashed line is the auxiliary line for observing the
computation time of different algorithms.
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Figure 14. 3D heatmap and 2D contour map of the computation time distribution of 50 sample points
based on different algorithms at different threshold precision values, where the color is the mapping
of the value of calculation time t.

The 3D heatmap shows that the FHP-BFS and IR-BFS algorithms have shorter compu-
tation times, and that Seli and Ma have the highest computation times. Through the 2D
contour map, the mapping colors of the IR-BFS and FHP-BFS algorithms are both dark pur-
ple when the values of threshold precision change from 10−3 to 10−5, which indicates that
the computation time of the IR-BFS algorithm is similar to that of the FHP-BFS algorithm in
this case; however, when the values of threshold precision change from 10−5 to 10−13, the
mapping color of the IR-BFS algorithm gradually becomes blue, while the mapping color
of the FHP-BFS algorithm remains purple and is almost unchanged, which indicates that
the computation time of the IR-BFS algorithm increases in this case and gradually exceeds
that of the FHP-BFS algorithm. Furthermore, the mapping colors of the Sab, Badr, and
Kim algorithms change significantly with the threshold precision. The colors are light blue
or green when the threshold precision varies from 10−3 to 10−6, indicating that relatively
little computation time is consumed. However, when the values of the threshold precision
change from 10−6 to 10−13, the colors gradually change to yellow or even orange, which
indicates that the computation time is significantly increased. The considerable variation in
computation time is because the root-finding algorithms cannot jump out of local optimal
values, and the number of samples that cannot converge gradually increases after the
accuracy threshold increases. Therefore, the FHP-BFS algorithm performs the best in the
experiment, and the root-finding algorithms have medium-level performance among the
compared algorithms.

The experimental results are analyzed in more depth to make more practical and
theoretical conclusions. The computation process of the compound algorithms is divided
into the processes of Prough and Pexact, which denote the process of computing the rough
solution and the exact solution, respectively. Moreover, the computation time of each
process is represented as t1 and t2, respectively. The total computation time is represented
as t; i.e., t = t1 + t2. In the FHP-BFS algorithm, t1 denotes the computation time consumed
by the IR-BFS algorithm with a precision threshold of β < 10−3, and t2 denotes the time
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consumed by the NR method. In the Chen algorithm, t2 denotes the computation time
consumed by the hybrid algorithm composed of the bisection algorithm and NR method.
In the algorithms of Ma and Seli, t2 denotes the computation time consumed by the
NR method. In addition, the root-finding and IR-BFS algorithms are not divided into
subprocesses because they do not need to compute rough solutions. Figure 15 shows the
2D heatmap of the computation times of processes based on the algorithms at different
threshold precisions in the inversion of sample points. The specific values corresponding
to each color are added to the figure and rounded to two decimal places to compare the
results more precisely. In addition, IR in Figure 15 denotes the IR-BFS algorithm.
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Figure 15. 2D heatmap of the computation times of the inversion of sample points calculated by the
algorithms at different threshold precision values, where IR denotes the fast high-precision bisection
feedback search (FHP-BFS) algorithm.

In Figure 15, when β = 10−3, the computation times, t1, are 2.13s, 7.57s, 13.66s and
20.94s in Prough according to the compound algorithms of FHP-BFS, Chen, Ma and Seli,
respectively, and the range of t1 is 18.81s, which is calculated by tmax − tmin. In addition, the
computation times, t2, are 0.31s, 0.83s, 0.89s and 1.02s in Pexact according to the compound
algorithms, and the range of t1 is 0.71s. Therefore, the FHP-BFS algorithm consumes the
least amount of time in both the Prough and Pexact processes, and the range of t1 is greater
than that of t2. When β = 10−4, the computation times, t1, are 2.22s, 7.96s, 14.23s and
21.65s in Prough, and the range of t1 is 19.43s. Additionally, the computation times, t2, are
0.61s, 0.99s, 1.04s and 1.12s in Pexact, and the range of t2 is 0.51s. Therefore, the FHP-BFS
consumes the least time in the two processes, and the range of t1 is greater than that of
t2. Similarly, it can be found that when β > 10−4, the distribution of computation time t1
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is consistent with this conclusion. Therefore, the FHP-BFS algorithm consumes the least
computation time compared to the other compound algorithms in both the Prough and Pexact
processes. In addition, the range of t1 is greater than that of t2, which indicates that the
differences in the computation time are significant in Prough, while the differences are minor
in Pexact.

Moreover, the performance of the computation time with the change in threshold
precision β should be noted. In the inversion of the FHP-BFS algorithm, the maximum
and minimum values of t are 3.46s and 2.44s, respectively; the range of t is 1.02s, where
the range of t1 is 0.11s and the range of t2 is 0.9s. In the inversion of Chen, Ma, and Seli,
the ranges of t are 1.62s, 2.26s and 2.89s, respectively. Furthermore, the ranges of t1 are
1.02s, 1.63s and 2.24s; the ranges of t2 are 0.6s, 0.62s and 0.64s. Through the comparison,
the FHP-BFS algorithm has the smallest range of t1, indicating that the algorithm has the
best robustness with the change in threshold precision β in Prough. Moreover, the ranges of
t2 among the compound algorithms are similar, and the range of t for the IR-BFS algorithm
is 3.86s, which indicates that the design of the NR method maintains better robustness in
Pexact.

In summary, the FHP-BFS algorithm, which consumes the least computation time
in both the Prough and Pexact processes, performs the best in computation efficiency and
robustness among the compound algorithms. Specifically, the FHP-BFS algorithm signifi-
cantly reduces the computation time in Prough and, to some extent, reduces the time in the
Pexact process.

4.3. Evaluation of the Flattening Algorithm

This section designs experiments to verify the precision performance of the improved
flattening algorithm. The flattening performance can be judged by the curvature change
near flattening points before and after the flattening operation. If the curvature near the
flattened points is gradually reduced to 0, the algorithm has a good flattening effect. The
cross-section curves at stations 4, 8, and 27 are taken as sample curves. In addition, the
threshold precisions are set as α = β = 10−8 and γ = 10−3. Figure 16 shows the curvature
of the sample curves before and after the flattening operation, where ps and pe denote the
two flattening points. Figure 17 shows porcupine plots of the curvature distribution of the
flattened ship cross-section curves. For the sake of making the curvature distribution clear,
the curvature value greater than 1.5m−1 is still represented by 1.5m−1 in the plot.

Figure 16a,c show the curvature of the NURBS curve of stations 4 and 27. The two
flattening points of each figure are distributed at the right end of the NURBS curve, and the
curvature after point ps is gradually reduced to 0. The curvature near the flattening point ps
increases after flattening, which not only enhances the bending degree of flattened curves
near point ps but also speeds up the rate at which the curves’ curvature drops to zero after
point ps. In Figure 17a,c, the flattened NURBS curve of the right half-width cross-section
of the ship hull corresponds to the curvature in Figure 16a,c), in which the curve between
points ps and pe is converted to a straight line, and the remaining part of the half-width
NURBS curve is still expressed as a curve. Therefore, the precision of inversion of flattening
points satisfies the preset threshold of 10−8, and the flattening algorithm performs well on
the NURBS curve of stations 4 and 27.

Figure 16b shows the curvature of the NURBS curve of station 8. The two flattening
points are distributed at the right end of the NURBS curve and the curvature after point
ps is gradually reduced to 0. Comparing the curvature change before and after flattening,
the curvature of the flattened curve decreases at point ps; the curvature after point ps has a
negative value and the extremum of curvature after point ps is smaller than before flattening,
where the negative sign only indicates the direction of curvature. Therefore, the curvature
decrease at the flattening point also reduces the curvature change after the flattening point
in the opposite direction, which eventually speeds up the curvature drops to 0 in the
flattening part. In Figure 17b, the flattened curve of the right half-width corresponds to
the curvature in Figure 16b, in which the flattened NURBS curve is successfully expressed
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as a straight line in the flattening part. Therefore, the inversion precision of the flattening
points satisfies the requirements, and the flattening algorithm performs well in this case.
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In summary, the flattening algorithm based on the FHP-BFS algorithm can gradually
change the curvature near the flattening point and exhibits a good flattening effect. The
improved flattening algorithm, which ensures that the inversion results of the flattening
points meet the high-precision threshold, can improve the computation efficiency and
maintain the smoothness of the flattened curves.

5. Discussion

In this paper, a fast inversion algorithm of the NURBS curve with a high precision-
threshold is proposed and applied to the NURBS curve-flattening algorithm to improve
the calculation speed. Then, through a series of comparative experiments, the algorithms
are verified.
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Section 4.1.1 compared the proposed FHP-BFS algorithm with the IR-BFS algorithm.
The IR-BFS algorithm was slightly faster in conventional precision situations, and the
FHP-BFS algorithm was more rapid in high-precision cases. By comparing the number of
iterations, the iterations needed for convergence of the FHP-BFS algorithm were much less
than those of the IR-BFS algorithm. This indicated that the FHP-BFS algorithm is more
robust in computation time and revealed the fundamental reason for the better performance
in high-precision computation. Thus, although the IR-BFS algorithm has the advantage of
fast single iterations, it must go through many iterations due to its low convergence speed;
under this condition, the inversion process eventually leads to a long total computation
time. In contrast, the NR process of the FHP-BFS algorithm converged quickly, although
it has the disadvantage of a long single iteration time. Therefore, the superiority of the
FHP-BFS algorithm over the IR-BFS algorithm is reflected well in the case of the long
computation time. Then, a suitable precision value of threshold 10−5 was determined
to maintain the priority of the FHP-BFS algorithm through comparative experiments in
Section 4.1.2.

Section 4.2 compared the FHP-BFS compound algorithms with the algorithms
of [18–20,28,41–43]. Algorithms [41–43] are local root-finding algorithms that perform
very average computation time. Algorithms [18–20] consumed too much time computing
the rough solution but showed a significant advantage in calculating the exact solution. The
IR-BFS algorithm calculates the rough solutions of the FHP-BFS algorithm, and the compar-
ison demonstrated that the proposed approach makes the algorithm more efficient in this
process. Ref. [18] and ref. [20] calculated rough solutions by dividing the NURBS curves
into subcurves with their proposed partitioning algorithms. The comparison demonstrated
that this approach consumes too much time due to the intersection and interpolation of
curves. Ref. [19] calculated rough solutions by dividing curves directly by the NURBS
interpolation algorithm, which lacks directness to the target solution and consumes too
much time. Therefore, the computation time required to obtain rough solutions signifi-
cantly differs among the compound algorithms. In addition, the exact solutions of the
algorithms FHP-BFS, refs. [18,19] are calculated by the NR method; Ref. [20] calculates the
exact solution with the hybrid algorithm composed of the bisection algorithm and the NR
method. Therefore, the computation time in obtaining exact solutions is similar among the
compound algorithms due to the same convergence rate of the NR method. In brief, the
FHP-BFS algorithm, which takes advantage of the IR-BFS algorithm and NR method to
compensate for their respective disadvantages, performs best in terms of robustness in the
two processes.

Section 4.3 verifies the smoothness of the flattened NURBS curve while ensuring the
computation time at high-precision thresholds. In the flattening algorithm, the processes of
inversion and projection distribute in series; hence, the overall computation efficiency of the
algorithm is directly improved by reducing the computation time in the inversion process.
Finally, the FHP-BFS algorithm speeds up the computation of the flattening algorithm.

In summary, the proposed FHP-BFS algorithm can improve the computation efficiency
at the proposed threshold precision, especially at high precision values. However, the algo-
rithm still needs further improvement. First, in the selection of the threshold γ, increasing
the threshold γ in many samples can further improve the calculation speed, but in a few
samples, the problem of increasing the computation time will also occur. To solve this
problem, we can set the optimal threshold precision γ for different inversion points through
the curve characteristic parameters. Second, in the interpolation process of the NURBS
curve-flattening algorithm, it is still necessary to consider the influence of the number of
control points of the flattened curve to avoid causing a more complicated form. Third, the
algorithm is only a high-precision and fast inversion research for NURBS curves, and it still
needs to be further applied to NURBS surfaces.
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6. Conclusions

This paper studies how to solve the “precision refinement” problem in NURBS curve
inversion based on ship hull station curves. A new compound algorithm is proposed to
calculate the exact solution using the faster convergence algorithm to solve the problem.
Then, the optimal values of the parameters in the algorithm are determined by experiments,
and many comparison experiments are performed with other algorithms. Finally, the
proposed algorithm is applied to the NURBS curve-flattening algorithm to improve the
computational efficiency. The main contributions are as follows:

(1) The FHP-BFS algorithm, a compound algorithm that improves computational
efficiency while guaranteeing computational accuracy, is proposed. In the algorithm, the
fast single iteration of the BFS algorithm ensures the quick inversion of rough solutions,
and the NR algorithm provides fast convergence to the exact solution. Then, the FHP-BFS
algorithm is compared with the best existing algorithms, and the high computational
efficiency of the FHP-BFS algorithm is demonstrated with high-precision thresholds.

(2) The optimal range of the threshold precision in the FHP-BFS algorithm is proposed.
The computation time of the inversion solutions is compared at different threshold preci-
sions. Then, the relationship between the improved percentage of computation time and
the threshold precisions is analyzed, and the optimal range of the threshold precision is
derived. Furthermore, the computation time consumption of the FHP-BFS algorithm is
compared at the optimal precision threshold, and the high efficiency is verified. In addition,
the proposed ranges of the precision thresholds can make the FHP-BFS algorithm easier to
use in other applications.

(3) The flattening algorithm of the NURBS curve is improved based on the FHP-BFS
algorithm. The precision of the improved flattening algorithm in the processes of projection
and control point updating is greatly enhanced by considering the factors of high precision
and low computation time in the inversion of flattening points. Moreover, the effect of
the improved flattening algorithm is verified by the change in the curvature of the curves
before and after flattening.

In subsequent research, the proposed algorithm will be applied to computation tasks
based on ship hull reconstruction, such as the calculation of ship damage stability, ship hull
strength, and ship hull viscous resistance. In addition, the FHP-BFS algorithm is general
and can be applied to more research areas. In the problem of finding the intersection lines
between spline surfaces, the proposed algorithm can be extended to the exaction operation
of intersection solutions obtained with errors based on the partition or tracing method.
In the preprocessing problem of point cloud data of ship hulls or data of ship automatic
identification systems, the proposed algorithms can be implemented to identify and clean
anomalies in the dataset through spatiotemporal information.
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Abbreviations

FHP-BFS Fast high-precision bisection feedback search
IR-BFS Interval reformation and bisection feedback search
NURBS Non-uniform rational B-spline
NR Newton-Raphson
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