
Citation: Zhu, K.; Shi, G.; Liu, J.; Shi,

J. Fast High-Precision Bisection

Feedback Search Algorithm and Its

Application in Flattening the NURBS

Curve. J. Mar. Sci. Eng. 2022, 10, 1851.

https://doi.org/10.3390/

jmse10121851

Academic Editors: Zaojian Zou and

Weilin Luo

Received: 29 October 2022

Accepted: 28 November 2022

Published: 1 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Fast High-Precision Bisection Feedback Search Algorithm and
Its Application in Flattening the NURBS Curve
Kaige Zhu 1,2, Guoyou Shi 1,2,*, Jiao Liu 1,2 and Jiahui Shi 1,2

1 Navigation College, Dalian Maritime University, Dalian 116026, China
2 Key Laboratory of Navigation Safety Guarantee of Liaoning Province, Dalian 116026, China
* Correspondence: sgydmu@dlmu.edu.cn

Abstract: It is important to accurately calculate flattening points when reconstructing ship hull
models, which require fast and high-precision computation. However, some search algorithms,
such as the bisection method, iterate near the optimal value too many times before converging in
high-precision computation. The paper proposes a fast high-precision bisection feedback search
(FHP-BFS) algorithm to solve the problem. In the FHP-BFS algorithm, the Newton–Raphson (NR)
method is adopted to accelerate the convergence speed by considering the iteration characteristics of
subintervals. Furthermore, a new feedback mechanism is proposed to control the feedback directions.
In addition, an acceleration algorithm, called the interval reformation method, is used to guide
the FHP-BFS algorithm for fast convergence. Finally, the flattening algorithm is improved by the
FHP-BFS algorithm. In the comparative experiments, the practical efficacy of the FHP-BFS algorithm
is first demonstrated, and then the optimal range of the threshold precision is determined. Next
the FHP-BFS algorithm is compared to the best existing algorithms. Finally, the performance of the
improved flattening algorithm is verified. The experiments demonstrate that the FHP-BFS algorithm
has optimal performance among the compared algorithms, and it has an improved computation
efficiency while maintaining robustness. The improved flattening algorithm reduces the computation
time, ensures smoothness and meets practical engineering requirements.

Keywords: FHP-BFS algorithm; flattening algorithm; inversion; high-precision threshold;
computation efficiency

1. Introduction
1.1. Modeling and Deformation of the Ship Hull

Ship hull reconstruction is a reverse engineering application that transforms a physical
model into a digital non-uniform rational B-spline (NURBS) model through computer-aided
design technology [1]. In applying ship-damaged stability information, the reconstructed
ship NURBS model can significantly improve computational accuracy and efficiency com-
pared with other algorithms [2]. For example, in the calculation of water plane elements of
a damaged ship hull, the triangular grid method can be used to calculate the surface inter-
section between the ship hull and the water plane, and the intersection line is achieved by
subdividing ship stations, which can hardly obtain high-precision solutions [3]. However,
the intersection line of the ship NURBS model can be directly obtained by the Newton–
Raphson (NR) iteration approach [4,5] or the recursive subdivision approach [6–9], which
can ensure high computational precision and efficiency. Moreover, the computation time of
the residual stability of damaged ships directly determines the remaining time for rescue,
and the computation precision affects the rescue measures. Therefore, a fast high-precision
ship NURBS model is of practical importance for real-time calculations.

Figure 1 shows the processes of defining the ship hull NURBS model [10]. The
interpolation operation is first executed to define basic curves, which describe the ship’s
characteristics and mainly refer to the centerline profile curve, bottom tangent curve, side

J. Mar. Sci. Eng. 2022, 10, 1851. https://doi.org/10.3390/jmse10121851 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse10121851
https://doi.org/10.3390/jmse10121851
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://doi.org/10.3390/jmse10121851
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse10121851?type=check_update&version=1


J. Mar. Sci. Eng. 2022, 10, 1851 2 of 26

tangent curve, midship section curve, etc. Second, the cross-sectional curves along the ship
length or waterline, which can be obtained through the offset or the waterline data [11,12],
are defined in each frame. Third, the space curves represent complicated parts, such as
the stern and stem. Fourth, the deck plane and superstructure are determined after the
fairing process. Finally, the model is obtained by the ship hull fairing operation [13,14].
In these processes, the interpolating error of NURBS curves can be reduced through a
deformation operation, which represents shape-preserving or geometrically constrained
reconstruction using the underlying information about the reconstructed shape. The
deformation operation includes flattening, bending, warping, and twisting. Flattening is
the most widely used operation for the deformation of ship NURBS models, and flattening
makes the bottoms or sides of the ship hull expressed as straight lines or planes [15].
However, if the flattening precision is insufficient, the calculation based on the reconstructed
models will have many errors, such as ship inlet volume errors and deviation errors of the
gravity center and buoyancy center. Therefore, the computational efficiency and precision
of the flattening operation are particularly significant for providing quick, high-precision
inversion solutions.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 2 of 29 
 

 

Figure 1 shows the processes of defining the ship hull NURBS model [10]. The inter-

polation operation is first executed to define basic curves, which describe the ship’s char-

acteristics and mainly refer to the centerline profile curve, bottom tangent curve, side tan-

gent curve, midship section curve, etc. Second, the cross-sectional curves along the ship 

length or waterline, which can be obtained through the offset or the waterline data [11,12], 

are defined in each frame. Third, the space curves represent complicated parts, such as 

the stern and stem. Fourth, the deck plane and superstructure are determined after the 

fairing process. Finally, the model is obtained by the ship hull fairing operation [13,14]. In 

these processes, the interpolating error of NURBS curves can be reduced through a defor-

mation operation, which represents shape-preserving or geometrically constrained recon-

struction using the underlying information about the reconstructed shape. The defor-

mation operation includes flattening, bending, warping, and twisting. Flattening is the 

most widely used operation for the deformation of ship NURBS models, and flattening 

makes the bottoms or sides of the ship hull expressed as straight lines or planes [15]. How-

ever, if the flattening precision is insufficient, the calculation based on the reconstructed 

models will have many errors, such as ship inlet volume errors and deviation errors of the 

gravity center and buoyancy center. Therefore, the computational efficiency and precision 

of the flattening operation are particularly significant for providing quick, high-precision 

inversion solutions. 

Getting ship 
hull data

Basic curve 
definition and 

fairing

Waterline 
definition and 

fairing

Space curve 
definition and 

fairing

Deck line and 
superstructure 

definition
Ship hull fairing

 

Figure 1. Processes of defining the ship hull NURBS model. 

1.2. Inversion Algorithms of NURBS Curves 

The inversion algorithm of the NURBS curve is divided into the compound and di-

rect algorithms. The compound algorithms first calculate the rough solution by a method 

as the initial value, and other methods calculate the exact value based on the initial value. 

In contrast, the direct algorithms only use one method to obtain the exact value. The min-

imum Euclidean distance between the target and test points is usually used as the conver-

gence criterion for calculating rough values. Ref. [16] first proposed an algorithm to 

achieve rough values; it calculates the maximum and minimum values of the distance by 

projecting values onto the boundary of the basic geometry, and the exclusion parts are the 

points with higher distance values than the currently obtained minimum distance. Subse-

quently, ref. [17] proposed an exclusion criterion based on a tangent cone. Ref. [18] di-

vided the NURBS curves or surfaces into Bezier sub curves or surface slices. A rough so-

lution was determined by examining the distribution between test points and control 

points or control grids. Ref. [19] proposed an exclusion criterion based on the Voronoi cell 

test. Refs. [20,21] proposed a circular or spherical clipping method to calculate the mini-

mum distance between points and clamped B-spline surfaces. Ref. [22] improved the ex-

clusion criterion of [20] by replacing shear circles with axis-aligned lines; subsequently, 

ref. [23] proposed a culling method to remove redundant curves based on the approach 

in [22]. However, the elimination rate is lower than that of [20,21]. Ref. [24] proposed a 

curvature information method to calculate the minimum distance between points and 

Figure 1. Processes of defining the ship hull NURBS model.

1.2. Inversion Algorithms of NURBS Curves

The inversion algorithm of the NURBS curve is divided into the compound and direct
algorithms. The compound algorithms first calculate the rough solution by a method as
the initial value, and other methods calculate the exact value based on the initial value.
In contrast, the direct algorithms only use one method to obtain the exact value. The
minimum Euclidean distance between the target and test points is usually used as the
convergence criterion for calculating rough values. Ref. [16] first proposed an algorithm
to achieve rough values; it calculates the maximum and minimum values of the distance
by projecting values onto the boundary of the basic geometry, and the exclusion parts
are the points with higher distance values than the currently obtained minimum distance.
Subsequently, ref. [17] proposed an exclusion criterion based on a tangent cone. Ref. [18]
divided the NURBS curves or surfaces into Bezier sub curves or surface slices. A rough
solution was determined by examining the distribution between test points and control
points or control grids. Ref. [19] proposed an exclusion criterion based on the Voronoi
cell test. Refs. [20,21] proposed a circular or spherical clipping method to calculate the
minimum distance between points and clamped B-spline surfaces. Ref. [22] improved the
exclusion criterion of [20] by replacing shear circles with axis-aligned lines; subsequently,
ref. [23] proposed a culling method to remove redundant curves based on the approach
in [22]. However, the elimination rate is lower than that of [20,21]. Ref. [24] proposed
a curvature information method to calculate the minimum distance between points and
parametric curves or surfaces; nevertheless, the computation time is long due to considering
second-order derivatives.

Exact values are usually calculated by algorithms with high convergence speeds, such as
the NR method [15,25], the gradient descent method [26], the conjugate direction method [27]
and the direct method [28]. Among these methods, the NR method is the most commonly



J. Mar. Sci. Eng. 2022, 10, 1851 3 of 26

used due to its quadratic convergence rate; moreover, a certain reliable initial value should
be provided due to the local convergence. To optimize this problem, various strategies were
proposed by [26,29], such as the Levenberg–Marquardt and trust domain methods. Based on
these methods, the NR methods were applied to global strategy optimization in Riemannian
settings [30–33]. The NR methods with these global strategies are also called damped NR
methods, where the detailed parameter settings of the linear search problem are studied
in [26,34,35]. Among the various strategies, the linear search and value function is effective. A
direct method called the bisection feedback search (BFS) algorithm was proposed to obtain
the global optimum solution [28], which is based on the bisection method and incorporates
feedback processes to obtain the ability to jump out of local optima. Additionally, the interval
reformation (IR) method is proposed to provide a search direction for the BFS algorithm.
Hence, the IR-BFS algorithm has an excellent single-loop capability and converges faster when
the threshold precision is lower than 10−4.

1.3. Problems with the IR-BFS Inversion Algorithm

The target interval of inversion in the IR-BFS algorithm is quickly locked through
the IR method, which improves computation efficiency compared with other algorithms.
However, if the high-precision threshold is set, for example, to 10−8, the computation
speed begins to slow down; that is, the model experiences continuous iteration without
convergence in the neighborhood of the optimal solution, which consumes too much
computation time, and this problem is called “precision refinement” in the paper.

Figure 2 shows the inversion process of the flattening point ps based on the IR-BFS
algorithm. There are two convergence processes, “Process 1” and “Process 2”. A feedback
process occurs, that is, the transition from “Process 1” to “Process 2”. In addition, “Process
A” and “Process B” are the processes of “precision refinement”. In addition, the criteria,
which are set to |ue − us| ≤ 10−3, are used to judge whether the iteration enters the
“precision refinement” process. Figure 2 shows a “precision refinement” phenomenon in
each convergence process.

Taking “Process B” in Figure 2 as an example, when t = 0.011, the iteration enters
the feedback process; when t = 0.013, the iteration enters “Process B”; when t = 0.021,
the solution meets the convergence threshold, and the precision is 5.54× 10−9, which is
the global optimum. In the iteration process, the time consumption of “Process 2” is 0.01s,
while the time consumption of “Process B” is 0.008s, which is 80% of the time consumed by
“Process 2”. Therefore, much computation time is consumed in the “precision refinement”
process of the IR-BFS algorithm, although the algorithm can obtain the global optimal
solution with a high-precision threshold.

1.4. Research Objectives and Structure

This paper studies how to improve the computational efficiency of the inversion algo-
rithm while ensuring computational precision, which is used to improve the computational
speed of the flattening algorithm. The fast high-precision bisection feedback search (FHP-
BFS) algorithm, which is proposed to solve the problem of “precision refinement”, uses
global convergence and the fast single iteration ability of the BFS algorithm to obtain rough
values; then the NR method, which has the advantage of quadratic convergence speed, is
applied to obtain the exact solution. Moreover, an appropriate threshold precision value is
set for the rough value to provide a good initial value for the NR method; the optimal range
of the output threshold precision of the FHP-BFS algorithm is determined experimentally
to improve its scalability and to more easily apply it to practical operations. Finally, the fast
high-precision inversion process of the FHP-BFS algorithm is provided for the flattening
algorithm to solve the problem of long computation time. In addition, all the experiments
were performed on a Windows 10 laptop with 32 gigabytes of RAM and a Core I7 processor
using the Python programming language and the PyCharm IDE.



J. Mar. Sci. Eng. 2022, 10, 1851 4 of 26J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 4 of 29 
 

 

 

Figure 2. Inversion process of parametric value u  of flattening point s
p  based on the interval 

reformation and bisection feedback search (IR-BFS) algorithm. (a) The parametric value u  in in-

version process; (b) The distance error between 
m

p  and 
s

p ; (c) The distance error between 
m

u  

and 
s

u , where 
m

p  denotes the curve point according to 
m

u ; “Process 1” and “Process 2” are the 

processes of convergence; “Process A” and “Process B” are the processes of “precision refinement”; 

s
u , e

u  and m
u  denote the values of the left endpoint, right endpoint, and the middle point of the 

iteration interval, respectively; m
E  denotes the distance error; and u

E  denotes the range of the 

iterating interval. 

1.4. Research Objectives and Structure 

This paper studies how to improve the computational efficiency of the inversion al-

gorithm while ensuring computational precision, which is used to improve the computa-

tional speed of the flattening algorithm. The fast high-precision bisection feedback search 

(FHP-BFS) algorithm, which is proposed to solve the problem of “precision refinement”, 

uses global convergence and the fast single iteration ability of the BFS algorithm to obtain 

rough values; then the NR method, which has the advantage of quadratic convergence 

speed, is applied to obtain the exact solution. Moreover, an appropriate threshold preci-

sion value is set for the rough value to provide a good initial value for the NR method; 

the optimal range of the output threshold precision of the FHP-BFS algorithm is deter-

mined experimentally to improve its scalability and to more easily apply it to practical 

operations. Finally, the fast high-precision inversion process of the FHP-BFS algorithm is 

provided for the flattening algorithm to solve the problem of long computation time. In 

addition, all the experiments were performed on a Windows 10 laptop with 32 gigabytes 

0 0.005 0.011 0.013 0.021

0.4

0.5

0.6   um   ue   us 

Process A
Process B

(a)

Process 1 Process 2

0 0.005 0.01 0.015 0.02

0

0.5

1

1.5

2 95.45 10mE −= 

  Em 

1 21.95 10mE −= 

Process A

Process B

(b)

0 0.005 0.01 0.015 0.02

0

0.05

0.1

1 33.49 10uE −=  2 92.08 10uE −= 

   Eu 

t (s)

Process A Process B

(c)

Figure 2. Inversion process of parametric value u of flattening point ps based on the interval
reformation and bisection feedback search (IR-BFS) algorithm. (a) The parametric value u in inversion
process; (b) The distance error between pm and ps; (c) The distance error between um and us, where pm

denotes the curve point according to um; “Process 1” and “Process 2” are the processes of convergence;
“Process A” and “Process B” are the processes of “precision refinement”; us, ue and um denote the
values of the left endpoint, right endpoint, and the middle point of the iteration interval, respectively;
Em denotes the distance error; and Eu denotes the range of the iterating interval.

The main contributions of this paper are as follows: (i) The FHP-BFS algorithm is
proposed, and the algorithm has global convergence in NURBS curve inversion, which
increases the computation efficiency while ensuring the computation precision. The higher
the precision is, the greater the computational efficiency compared with other algorithms.
(ii) The optimal range of the threshold parameters of the FHP-BFS algorithm is determined,
which makes the algorithm easier to apply to practical engineering problems. (iii) The
flattening algorithm is improved to enhance the computation efficiency in high-precision
real-time modeling.

The subsequent sections are organized as follows. Section 2 introduces the mathe-
matical background of the relevant algorithms. Section 3 introduces the framework of the
proposed algorithms. Section 4 designs comparative experiments to verify the effectiveness
of the proposed algorithm. Sections 5 and 6 present the discussion and conclusion.

2. Mathematical Background
2.1. NURBS Curve

NURBS is a unique mathematical method used to define the geometry of industrial
products in the data exchange standard [36]. In the ship hull surface modeling task, the



J. Mar. Sci. Eng. 2022, 10, 1851 5 of 26

NURBS method creates more realistic and vivid modeling results [37]. Generally, the
expression of the parametric form of a pth-degree NURBS curve is as follows:

C(u) = ∑n
i=0 wi Pi Ni,p(u)

∑n
i=0 wi Ni,p(u)

(a ≤ u ≤ b), (1)

where {wi} denote the weights corresponding to control points; {Pi} denote the control points;
u denotes the parametric value and

{
Ni,p(u)

}
are the pth-degree B-spline basis functions

defined by the knot vector U [15]. The knot vector U can be defined by Equation (2):

U =

a, · · · , a

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 5 of 27 
 

 

of RAM and a Core I7 processor using the Python programming language and the Py-
Charm IDE. 

The main contributions of this paper are as follows: (i) The FHP-BFS algorithm is 
proposed, and the algorithm has global convergence in NURBS curve inversion, which 
increases the computation efficiency while ensuring the computation precision. The 
higher the precision is, the greater the computational efficiency compared with other al-
gorithms. (ii) The optimal range of the threshold parameters of the FHP-BFS algorithm is 
determined, which makes the algorithm easier to apply to practical engineering problems. 
(iii) The flattening algorithm is improved to enhance the computation efficiency in high-
precision real-time modeling. 

The subsequent sections are organized as follows. Section 2 introduces the mathe-
matical background of the relevant algorithms. Section 3 introduces the framework of the 
proposed algorithms. Section 4 designs comparative experiments to verify the effective-
ness of the proposed algorithm. Section 5 and Section 6 present the discussion and con-
clusion. 

2. Mathematical Background 
2.1. NURBS Curve 

NURBS is a unique mathematical method used to define the geometry of industrial 
products in the data exchange standard [36]. In the ship hull surface modeling task, the 
NURBS method creates more realistic and vivid modeling results [37]. Generally, the ex-
pression of the parametric form of a pth-degree NURBS curve is as follows: 

=

=

= ≤ ≤


,0

,0

( )
( ) ( )

( )

n
i i i pi

n
i i pi

w P N u
C u a u b

w N u
, (1)

where { }iw  denote the weights corresponding to control points; { }iP  denote the control 

points; u  denotes the parametric value and { }, ( )i pN u  are the pth-degree B-spline basis 

functions defined by the knot vector U  [15]. The knot vector U  can be defined by Equa-
tion (2): 

+ − −
+ +

  =  
  
   1 1

1 1

, , , , , , , ,p m p
p p

U a a u u b b , (2) 

and the recursion formula for , ( )i pN u  is defined by Equation (3) [38]: 

+

+ +
− + −

+ + + +

  ≤ ≤
= 


 − −
 = +

− −

 =


，

，
1

,0

1
, , 1 1, 1

1 1

1
( )

0    

( ) ( ) ( )

0 0
0

i i
i

i pi
i p i p i p

i p i i p i

if u u u
N u

else
u uu u

N u N u N u
u u u u

defined

, 

(3) 

The definition of Equation (3) is the most efficient form for computer implementation. 
In Figure 3, the NURBS curve is interpolated to the feature points of the Archimedes curve, 
and the values of the basis function are calculated by Equation (3). The control polygon in 
Figure 3 denotes a polygon formed by connecting the control points in order. In recon-
structing a ship hull, the waterplane or cross-section NURBS curves are typically obtained 
by the interpolation algorithm. 

p+1

, up+1, · · · , um−p−1, b, · · · , b

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 5 of 27 
 

 

of RAM and a Core I7 processor using the Python programming language and the Py-
Charm IDE. 

The main contributions of this paper are as follows: (i) The FHP-BFS algorithm is 
proposed, and the algorithm has global convergence in NURBS curve inversion, which 
increases the computation efficiency while ensuring the computation precision. The 
higher the precision is, the greater the computational efficiency compared with other al-
gorithms. (ii) The optimal range of the threshold parameters of the FHP-BFS algorithm is 
determined, which makes the algorithm easier to apply to practical engineering problems. 
(iii) The flattening algorithm is improved to enhance the computation efficiency in high-
precision real-time modeling. 

The subsequent sections are organized as follows. Section 2 introduces the mathe-
matical background of the relevant algorithms. Section 3 introduces the framework of the 
proposed algorithms. Section 4 designs comparative experiments to verify the effective-
ness of the proposed algorithm. Section 5 and Section 6 present the discussion and con-
clusion. 

2. Mathematical Background 
2.1. NURBS Curve 

NURBS is a unique mathematical method used to define the geometry of industrial 
products in the data exchange standard [36]. In the ship hull surface modeling task, the 
NURBS method creates more realistic and vivid modeling results [37]. Generally, the ex-
pression of the parametric form of a pth-degree NURBS curve is as follows: 

=

=

= ≤ ≤


,0

,0

( )
( ) ( )

( )

n
i i i pi

n
i i pi

w P N u
C u a u b

w N u
, (1)

where { }iw  denote the weights corresponding to control points; { }iP  denote the control 

points; u  denotes the parametric value and { }, ( )i pN u  are the pth-degree B-spline basis 

functions defined by the knot vector U  [15]. The knot vector U  can be defined by Equa-
tion (2): 

+ − −
+ +

  =  
  
   1 1

1 1

, , , , , , , ,p m p
p p

U a a u u b b , (2) 

and the recursion formula for , ( )i pN u  is defined by Equation (3) [38]: 

+

+ +
− + −

+ + + +

  ≤ ≤
= 


 − −
 = +

− −

 =


，

，
1

,0

1
, , 1 1, 1

1 1

1
( )

0    

( ) ( ) ( )

0 0
0

i i
i

i pi
i p i p i p

i p i i p i

if u u u
N u

else
u uu u

N u N u N u
u u u u

defined

, 

(3) 

The definition of Equation (3) is the most efficient form for computer implementation. 
In Figure 3, the NURBS curve is interpolated to the feature points of the Archimedes curve, 
and the values of the basis function are calculated by Equation (3). The control polygon in 
Figure 3 denotes a polygon formed by connecting the control points in order. In recon-
structing a ship hull, the waterplane or cross-section NURBS curves are typically obtained 
by the interpolation algorithm. 

p+1

, (2)

and the recursion formula for Ni,p(u) is defined by Equation (3) [38]:
Ni,0(u) =

{
1, i f ui ≤ u ≤ ui+1

0, else
Ni,p(u) =

u−ui
ui+p−ui

Ni,p−1(u) +
ui+p+1−u

ui+p+1−ui+1
Ni+1,p−1(u)

de f ined 0
0 = 0

, (3)

The definition of Equation (3) is the most efficient form for computer implementation.
In Figure 3, the NURBS curve is interpolated to the feature points of the Archimedes
curve, and the values of the basis function are calculated by Equation (3). The control
polygon in Figure 3 denotes a polygon formed by connecting the control points in order.
In reconstructing a ship hull, the waterplane or cross-section NURBS curves are typically
obtained by the interpolation algorithm.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 6 of 29 
 

 

 

Figure 3. Non-uniform rational B-spline (NURBS) curve interpolated by Archimedes feature points, 

where the arrows indicate the direction in which the curve points change with the order of knot 

values. 

In addition, the rational basis function ,
( )

i p
R u  can be introduced and defined as fol-

lows:

 

=

=  



,

,

,0

( )
( ) ( )

( )

i p i

i p n

j p jj

N u w
R u a u b

N u w
, (4) 

therefore, the NURBS curve of Equation (1) can also be defined by Equation (5): 

=

=   ,
0

( ) ( ) ( )
n

i i p
i

C u PR u a u b . (5) 

2.2. IR-BFS Inversion Algorithm 

The inversion of the NURBS curve is the process of calculating the parametric values 

according to the inversion points. As shown in Figure 4, s
P  and e

P  are inversion points 

randomly selected on the NURBS curve. The curve segment between them is defined 

within the range of the knot vector U . The inversion process calculates the corresponding 

knot values s
u  and e

u . In addition, the chain dotted line in Figure 4 represents the cur-

vature of the curve point, which is used to measure the bending degree of the curve. 

 

Figure 4. Process of selecting inversion points on the Archimedes non-uniform rational B-spline 

(NURBS) curve, where the arrows indicate the direction in which the curve points change with the 

order of knot values. 

Figure 3. Non-uniform rational B-spline (NURBS) curve interpolated by Archimedes feature points,
where the arrows indicate the direction in which the curve points change with the order of knot values.

In addition, the rational basis function Ri,p(u) can be introduced and defined as follows:

Ri,p(u) =
Ni,p(u)wi

∑n
j=0 Nj,p(u)wj

(a ≤ u ≤ b), (4)

therefore, the NURBS curve of Equation (1) can also be defined by Equation (5):

C(u) =
n
∑

i=0
PiRi,p(u) (a ≤ u ≤ b). (5)



J. Mar. Sci. Eng. 2022, 10, 1851 6 of 26

2.2. IR-BFS Inversion Algorithm

The inversion of the NURBS curve is the process of calculating the parametric values
according to the inversion points. As shown in Figure 4, Ps and Pe are inversion points
randomly selected on the NURBS curve. The curve segment between them is defined
within the range of the knot vector U. The inversion process calculates the corresponding
knot values us and ue. In addition, the chain dotted line in Figure 4 represents the curvature
of the curve point, which is used to measure the bending degree of the curve.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 6 of 29 
 

 

 

Figure 3. Non-uniform rational B-spline (NURBS) curve interpolated by Archimedes feature points, 

where the arrows indicate the direction in which the curve points change with the order of knot 

values. 

In addition, the rational basis function ,
( )

i p
R u  can be introduced and defined as fol-

lows:

 

=

=  



,

,

,0

( )
( ) ( )

( )

i p i

i p n

j p jj

N u w
R u a u b

N u w
, (4) 

therefore, the NURBS curve of Equation (1) can also be defined by Equation (5): 

=

=   ,
0

( ) ( ) ( )
n

i i p
i

C u PR u a u b . (5) 

2.2. IR-BFS Inversion Algorithm 

The inversion of the NURBS curve is the process of calculating the parametric values 

according to the inversion points. As shown in Figure 4, s
P  and e

P  are inversion points 

randomly selected on the NURBS curve. The curve segment between them is defined 

within the range of the knot vector U . The inversion process calculates the corresponding 

knot values s
u  and e

u . In addition, the chain dotted line in Figure 4 represents the cur-

vature of the curve point, which is used to measure the bending degree of the curve. 

 

Figure 4. Process of selecting inversion points on the Archimedes non-uniform rational B-spline 

(NURBS) curve, where the arrows indicate the direction in which the curve points change with the 

order of knot values. 

Figure 4. Process of selecting inversion points on the Archimedes non-uniform rational B-spline
(NURBS) curve, where the arrows indicate the direction in which the curve points change with the
order of knot values.

The IR-BFS algorithm was proposed by us to solve the low computational efficiency in
the inversion of NURBS curves [28]. Figure 5 shows the flow chart of the IR-BFS algorithm,
in which some operations, such as the bisection table, the inverting interval, the outputting
threshold, and the feedback operations, are described. Among them, the most important
are the two feedback operations, which guarantee the ability of the algorithm to jump
out of local optima. The feedback operations are the feedback to the current iteration
subinterval and the next subinterval. In the feedback to the current subinterval, the current
iteration interval and the parametric value need to be updated according to the inverting
interval criterion for calculating the next iteration. The bisection table needs to be reset in
the feedback to the next subinterval, and the iteration interval and parametric values need
to be updated according to the feedback criteria. The bisection table records the bisection
selection of each iteration of the current interval; the inverting interval operation inversely
selects the interval of the target record in the bisection table to update the current iteration
parameters; and the outputting thresholds, α and β, are crucial parameters that affect the
convergence speed and accuracy of the algorithm.

In addition, two major processes, the IR method and the BFS algorithm are designed
in series. The IR method is responsible for reducing the search range of the BFS algorithm,
and the BFS algorithm searches the target solution in ascending order in the subinterval
provided by the IR method. More detailed descriptions of the parameter settings can be
found in [28].



J. Mar. Sci. Eng. 2022, 10, 1851 7 of 26

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 7 of 29 
 

 

The IR-BFS algorithm was proposed by us to solve the low computational efficiency 

in the inversion of NURBS curves [28]. Figure 5 shows the flow chart of the IR-BFS algo-

rithm, in which some operations, such as the bisection table, the inverting interval, the 

outputting threshold, and the feedback operations, are described. Among them, the most 

important are the two feedback operations, which guarantee the ability of the algorithm 

to jump out of local optima. The feedback operations are the feedback to the current iter-

ation subinterval and the next subinterval. In the feedback to the current subinterval, the 

current iteration interval and the parametric value need to be updated according to the 

inverting interval criterion for calculating the next iteration. The bisection table needs to 

be reset in the feedback to the next subinterval, and the iteration interval and parametric 

values need to be updated according to the feedback criteria. The bisection table records 

the bisection selection of each iteration of the current interval; the inverting interval oper-

ation inversely selects the interval of the target record in the bisection table to update the 

current iteration parameters; and the outputting thresholds,   and  , are crucial pa-

rameters that affect the convergence speed and accuracy of the algorithm. 

 

Figure 5. Overall design of the interval reformation and bisection feedback search (IR-BFS) algo-

rithm, where w  is a state parameter; f  is the index of the target row in the bisection table; E  is 
Figure 5. Overall design of the interval reformation and bisection feedback search (IR-BFS) algorithm,
where w is a state parameter; f is the index of the target row in the bisection table; E is the distance
error and α and β denote the knot error threshold and the distance error threshold, respectively.

2.3. Flattening Algorithm of the NURBS Curve

The flattening algorithm can quickly produce straight line segments or plane regions
on NURBS curves or surfaces [39,40]. In reconstructing a ship hull, the deformations of
flattening operations are usually carried out on basic models. Figure 6 shows the flattening
algorithm based on the IR-BFS algorithm. The flattening algorithm first interpolates the
input data to NURBS curves. Next, the parametric values are obtained by the inversion
algorithm. Then, knot refinement is performed to obtain more control points in the interval
affected by the flattening parametric values. After that, the control points are projected
onto the flattening line based on the projection criterion and updated again. Finally, the
flattening operation is completed if the number of control points successfully projected on
the flattening line segment reaches at least p + 1. In addition, if the number of successfully
projected points is less than p + 1, the knot refinement operation is performed again, and
the number of inserted knots is increased by 1.



J. Mar. Sci. Eng. 2022, 10, 1851 8 of 26

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 8 of 29 
 

 

the distance error and   and   denote the knot error threshold and the distance error threshold, 

respectively. 

In addition, two major processes, the IR method and the BFS algorithm are designed 

in series. The IR method is responsible for reducing the search range of the BFS algorithm, 

and the BFS algorithm searches the target solution in ascending order in the subinterval 

provided by the IR method. More detailed descriptions of the parameter settings can be 

found in [28]. 

2.3. Flattening Algorithm of the NURBS Curve 

The flattening algorithm can quickly produce straight line segments or plane regions 

on NURBS curves or surfaces [39,40]. In reconstructing a ship hull, the deformations of 

flattening operations are usually carried out on basic models. Figure 6 shows the flatten-

ing algorithm based on the IR-BFS algorithm. The flattening algorithm first interpolates 

the input data to NURBS curves. Next, the parametric values are obtained by the inversion 

algorithm. Then, knot refinement is performed to obtain more control points in the inter-

val affected by the flattening parametric values. After that, the control points are projected 

onto the flattening line based on the projection criterion and updated again. Finally, the 

flattening operation is completed if the number of control points successfully projected on 

the flattening line segment reaches at least +1p . In addition, if the number of successfully 

projected points is less than +1p , the knot refinement operation is performed again, and 

the number of inserted knots is increased by 1. 

 

Figure 6. Flattening algorithm of the non-uniform rational B-spline (NURBS) curve based on the 

interval reformation and bisection feedback search (IR-BFS) algorithm. 

The flattening effect is analyzed by the curvature change in the NURBS curve before 

and after the flattening operation. The curvature of the NURBS curve is defined by Equa-

tion (6): 

 
=


3

( ) ( )
( )

( )

C u C u
K u

C u
, (6) 

where ( )C u  and ( )C u  denote the first and second derivatives of the curve with respect 

to parameter u , respectively. If the curvature near the flattened points is gradually re-

duced to 0, then the segment of the flattening curve becomes a straight line, indicating a 

good flattening effect. Otherwise, it indicates that the effect is poor. Figure 7 shows the 

flattened NURBS curves with flattening points s
p  and e

p . By comparing the curve be-

fore flattening in Figure 4, the curvature near the flattening parametric values of points 

s
p  and e

p  gradually reduced to zero, indicating a good flattening effect. 

Figure 6. Flattening algorithm of the non-uniform rational B-spline (NURBS) curve based on the
interval reformation and bisection feedback search (IR-BFS) algorithm.

The flattening effect is analyzed by the curvature change in the NURBS curve before and
after the flattening operation. The curvature of the NURBS curve is defined by Equation (6):

K(u) =
|C′(u)× C′′ (u)|
|C′(u)|3

, (6)

where C′(u) and C′′ (u) denote the first and second derivatives of the curve with respect to
parameter u, respectively. If the curvature near the flattened points is gradually reduced
to 0, then the segment of the flattening curve becomes a straight line, indicating a good
flattening effect. Otherwise, it indicates that the effect is poor. Figure 7 shows the flattened
NURBS curves with flattening points ps and pe. By comparing the curve before flattening in
Figure 4, the curvature near the flattening parametric values of points ps and pe gradually
reduced to zero, indicating a good flattening effect.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 9 of 29 
 

 

 

Figure 7. Flattened Archimedes non-uniform rational B-spline (NURBS) curve with flattening points 

s
p  and e

p , where the arrows indicate the direction in which the curve points change with the order 

of knot values. 

3. Framework of the Proposed Methodology 

3.1. Overall Design of the FHP-BFS Algorithm 

Figure 8 shows the overall design of the FHP-BFS algorithm. Compared with the IR-

BFS algorithm in Figure 5, the NR method is integrated into the IR method and the BFS 

algorithm. Simultaneously, the loop mechanism of the algorithm is changed, and the feed-

back mechanism and the convergence criteria for the NR algorithm are added to the FHP-

BFS algorithm. 

The loop mechanism of the FHP-BFS algorithm first reduces the iteration interval of 

possible solutions. Then, the BFS algorithm is used to provide the ability to quickly locate 

the range of the convergence results and realize the ability to jump out of local minimum 

values. Finally, the NR method is used to refine the precision of the convergence result. 

The solution that meets the threshold is achieved after several iterations and feedback 

loops. 

The condition for using the NR algorithm in the FHP-BFS algorithm is judged by the 

length of iteration interval u
E  with threshold  . When 

u
E , the NR method with the 

initial value of m
u  is executed for convergence. Figure 2 shows that the “precision refine-

ment” process begins when 
−=  33.49 10

u
E , and m

u  is an excellent and stable initial 

value for the NR method. Therefore, it is recommended that   be set to −310 . Further-

more, through our practice experiments, the recommended threshold 
−3=10  not only 

improves the computational efficiency of the FHP-BFS algorithm but also ensures stabil-

ity. 

The feedback object should be first clarified for the feedback criterion of the NR 

method in the FHP-BFS algorithm, that is, the feedback is provided to the current subin-

terval or the next subinterval. In the iteration of the IR method, if the target solution is not 

in the current iteration interval   ,
s e

u u , the bisection table is searched to judge whether 

the target parameter m
u  is in the recording interval. Assume that the record is 

  , , ,
s m e

u u u w ; if = 0w  or =1w , which means the interval   ,
s m

u u  or   ,
m e

u u  was 

chosen when recording, then the judgment of whether m
u  is in the interval   ,

m e
u u  or 

  ,
s m

u u  is performed. In addition, if = 2w , which means the interval had been fed back, 

then the record will be skipped. If m
u  is in the recording interval, then the index f  in 

the bisection table is recorded, and the feedback operation will be performed on the 

Figure 7. Flattened Archimedes non-uniform rational B-spline (NURBS) curve with flattening points
ps and pe, where the arrows indicate the direction in which the curve points change with the order of
knot values.

3. Framework of the Proposed Methodology
3.1. Overall Design of the FHP-BFS Algorithm

Figure 8 shows the overall design of the FHP-BFS algorithm. Compared with the
IR-BFS algorithm in Figure 5, the NR method is integrated into the IR method and the
BFS algorithm. Simultaneously, the loop mechanism of the algorithm is changed, and the



J. Mar. Sci. Eng. 2022, 10, 1851 9 of 26

feedback mechanism and the convergence criteria for the NR algorithm are added to the
FHP-BFS algorithm.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 10 of 29 
 

 

current subinterval. Conversely, if m
u  is not in the recording interval, which indicates 

that the m
u  value is not in the current subinterval, then the feedback operation will be 

performed on the next subinterval. Second, the updating of the iteration interval and the 

operations of the bisection table of the IR method in the feedback operation are as follows: 

The iteration interval is updated by the recording interval index in the feedback to the 

current subinterval; then, the recording interval is updated according to   , , ,2
s m e

u u u . In 

addition, a deletion operation is performed on the bisection table, that is, all subsequent 

records of the index f  are deleted. However, the iteration interval will be directly up-

dated by the next subinterval in the feedback to the next subinterval, and all records in 

the bisection table are deleted. 

 

Figure 8. Overall design of the fast high-precision bisection feedback search (FHP-BFS) algorithm. 

The iterative result m
u  determines the principle of performing iteration operations 

or feedback operations in the NR method. If m
u  is in the current iteration interval, then 

the probability that the convergence solution lies in the interval increases. In this case, the 

iteration operation continues until the condition 
m

E  is satisfied to obtain the global 

optimum. Conversely, if the iterative result m
u  is not in the current iteration interval, 

which indicates that the convergence solution is out of the interval, then the feedback op-

eration is performed. 

Figure 8. Overall design of the fast high-precision bisection feedback search (FHP-BFS) algorithm.

The loop mechanism of the FHP-BFS algorithm first reduces the iteration interval of
possible solutions. Then, the BFS algorithm is used to provide the ability to quickly locate
the range of the convergence results and realize the ability to jump out of local minimum
values. Finally, the NR method is used to refine the precision of the convergence result. The
solution that meets the threshold is achieved after several iterations and feedback loops.

The condition for using the NR algorithm in the FHP-BFS algorithm is judged by
the length of iteration interval Eu with threshold γ. When Eu < γ, the NR method with
the initial value of um is executed for convergence. Figure 2 shows that the “precision
refinement” process begins when Eu = 3.49× 10−3, and um is an excellent and stable initial
value for the NR method. Therefore, it is recommended that γ be set to 10−3. Furthermore,
through our practice experiments, the recommended threshold γ = 10−3 not only improves
the computational efficiency of the FHP-BFS algorithm but also ensures stability.

The feedback object should be first clarified for the feedback criterion of the NR method
in the FHP-BFS algorithm, that is, the feedback is provided to the current subinterval or
the next subinterval. In the iteration of the IR method, if the target solution is not in the
current iteration interval [us, ue], the bisection table is searched to judge whether the target
parameter um is in the recording interval. Assume that the record is [us, um, ue, w]; if w = 0
or w = 1, which means the interval [us, um] or [um, ue] was chosen when recording, then
the judgment of whether um is in the interval [um, ue] or [us, um] is performed. In addition,



J. Mar. Sci. Eng. 2022, 10, 1851 10 of 26

if w = 2, which means the interval had been fed back, then the record will be skipped.
If um is in the recording interval, then the index f in the bisection table is recorded, and
the feedback operation will be performed on the current subinterval. Conversely, if um
is not in the recording interval, which indicates that the um value is not in the current
subinterval, then the feedback operation will be performed on the next subinterval. Second,
the updating of the iteration interval and the operations of the bisection table of the IR
method in the feedback operation are as follows: The iteration interval is updated by the
recording interval index in the feedback to the current subinterval; then, the recording
interval is updated according to [us, um, ue, 2]. In addition, a deletion operation is performed
on the bisection table, that is, all subsequent records of the index f are deleted. However,
the iteration interval will be directly updated by the next subinterval in the feedback to the
next subinterval, and all records in the bisection table are deleted.

The iterative result um determines the principle of performing iteration operations or
feedback operations in the NR method. If um is in the current iteration interval, then the
probability that the convergence solution lies in the interval increases. In this case, the iteration
operation continues until the condition Em < β is satisfied to obtain the global optimum.
Conversely, if the iterative result um is not in the current iteration interval, which indicates
that the convergence solution is out of the interval, then the feedback operation is performed.

Finally, in the FHP-BFS algorithm, the different processing methods in the NR method
and the BFS algorithm should be noted. If the iteration result um of the NR method does not
satisfy the threshold β, it is necessary to determine whether the calculated result is in the
current interval before the iteration operation continues; moreover, the iteration parameter
is updated by um directly. The iteration operation of the BFS algorithm is performed directly,
and the iteration parameter is updated by the recording interval in the bisection table. In
addition, the current iteration interval [us, ue] of the NR method is unchanged, and the
iterative value um of the subsequent iterations is not recorded in the bisection table until um
is fed to the BFS algorithm or the iterative value um of the NR method converges. However,
the current iteration interval [us, ue] of the BFS algorithm changes according to the values
of the index, and the iteration interval is permanently recorded in the bisection table.

3.2. Flattening Algorithm Based on the FHP-BFS Algorithm

The purpose of applying the FHP-BFS algorithm to the flattening algorithm is mainly
to improve the computation speed. The processes of the flattening algorithm between
inversion and projection are distributed in series; hence, the whole computation speed can
be improved by enhancing the computation speed of the individual processes. Furthermore,
the progress of the precision in the inversion process will directly reduce the error of the
subsequent projection operation, indirectly affecting the updating accuracy of the control
points and knot vectors.

Algorithm 1 shows the pseudocode of the improved flattening algorithm based on
the FHP-BFS algorithm. The improved algorithm, which directly corresponds to the task
of ship hull reconstruction, uses the data of the offsets table of the ship hull as input
and then interpolates the data to half-width cross-section NURBS curves. In lines 4 and
5, the FHP-BFS algorithm inverses the flattening points; the inversion solutions ul , ur
are involved in the knot refinement operation in line 11, and then the control points are
updated according to the projection operation in line 12 based on the refined knot vectors.
Therefore, the processes of control point updating and the flattening effect are affected
by the improvement in the inversion based on the FHP-BFS algorithm. In addition, the
NURBS interpolation algorithm and the knot refinement algorithm are used separately
in lines 2 and 11. Detailed information on the two algorithms, such as the principle and
parameter settings, can be found in [15].



J. Mar. Sci. Eng. 2022, 10, 1851 11 of 26

Algorithm 1: Flattening algorithm based on the fast high-precision bisection feedback search
(FHP-BFS) algorithm.

Input: Q—list of offsets table; Ql , Qr—location points of flattening line segment ends;
p—degree of the interpolated NURBS curve.
Output: P, U— control point vector and knot vector of a flattened NURBS curve.
1: function FlatteningAlg(Q, Ql , Qr, p)
2: P, U = NURBSInterpolation(Q, p)//interpolation operation of list Q
3: //ul , ur are parametric values of the endpoint of the flattening line segment
4: ul = FHPBFS(P, U, Ql)//point inversion by the FHP-BFS algorithm
5: ur = FHPBFS(P, U, Qr)
6: //s is the number of points projected successfully
7: //n is the knot refinement number
8: n = p
9: while s ≤ p + 1 do
10: n = n + 1
11: U = KnotVecRe f ine(U, ul , ur, n)//knot refinement algorithm
12: Projection of the control point P located on the same side of the flattening line segment
13: update P, s
14: end while
15: return P, U
16: end function

4. Results

In this section, the effectiveness of the algorithms is verified by comparative experi-
ments. In the experiments, the cross-section data of a ship hull are selected as the original
data, and the flattening points are extracted as the inversion sample points. Table 1 shows
the half-width cross-section data of the ship hull of selected cross-sections. Figure 9 shows
the distribution of the interpolated cross-section NURBS curve, where the left-hand coordi-
nate system is taken as the coordinate system, and the origin of the coordinates is located at
the stern of the ship. From the origin of the coordinates, each cross-section is numbered in
the positive direction of the x-axis, called the “station”. The cross-section data of 32 stations
are used in this section.

Table 1. Sample points of the half-width cross-section of the ship station.

x (Station 4) x (Station 14) x (Station 32)
Index y z Index y z Index y z

1 0.000 0.731 1 0.000 0.000 1 0.000 0.932
2 0.082 0.750 2 4.490 0.000 2 0.115 1.000
3 0.179 0.821 3 5.000 0.035 3 0.267 1.241
4 0.303 1.000 4 6.000 0.313 . . . . . . . . .
5 0.426 1.287 5 6.322 0.500 10 0.000 4.306

. . . . . . . . . 6 6.541 0.710 11 0.000 7.306
23 6.191 6.953 7 6.732 1.000 12 0.164 7.371
24 6.359 7.610 8 6.850 1.319 . . . . . . . . .
25 6.531 8.630 9 6.900 1.719 14 2.000 8.877
26 6.638 9.520 10 6.900 15.00 15 2.505 9.284
27 6.638 15.00 - - - 16 2.505 15.00



J. Mar. Sci. Eng. 2022, 10, 1851 12 of 26

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 12 of 29 
 

 

10:      = +1n n  

11:      ( )= , , ,
l r

U KnotVecRefine U u u n //knot refinement algorithm 

12:      Projection of the control point P  located on the same side of the flattening line segment 

13:      update P , s 

14:   end while 

15:   return ,P U  

16: end function 

4. Results 

In this section, the effectiveness of the algorithms is verified by comparative experi-

ments. In the experiments, the cross-section data of a ship hull are selected as the original 

data, and the flattening points are extracted as the inversion sample points. Table 1 shows 

the half-width cross-section data of the ship hull of selected cross-sections. Figure 9 shows 

the distribution of the interpolated cross-section NURBS curve, where the left-hand coor-

dinate system is taken as the coordinate system, and the origin of the coordinates is lo-

cated at the stern of the ship. From the origin of the coordinates, each cross-section is 

numbered in the positive direction of the x-axis, called the “station”. The cross-section 

data of 32 stations are used in this section. 

Table 1. Sample points of the half-width cross-section of the ship station. 

x (Station 4) x (Station 14) x (Station 32) 

Index y z Index y z Index y z 

1 0.000 0.731 1 0.000 0.000 1 0.000 0.932 

2 0.082 0.750 2 4.490 0.000 2 0.115 1.000 

3 0.179 0.821 3 5.000 0.035 3 0.267 1.241 

4 0.303 1.000 4 6.000 0.313 … … … 

5 0.426 1.287 5 6.322 0.500 10 0.000 4.306 

… … … 6 6.541 0.710 11 0.000 7.306 

23 6.191 6.953 7 6.732 1.000 12 0.164 7.371 

24 6.359 7.610 8 6.850 1.319 … … … 

25 6.531 8.630 9 6.900 1.719 14 2.000 8.877 

26 6.638 9.520 10 6.900 15.00 15 2.505 9.284 

27 6.638 15.00 - - - 16 2.505 15.00 

 

Figure 9. Distribution of the interpolated cross-section curves of 32 ship hull stations. Figure 9. Distribution of the interpolated cross-section curves of 32 ship hull stations.

The method for extracting the flattening points from the sample data is as follows: for
the cross-section data at the same station, if the y or z coordinates of two adjacent points
have the same value and the z or y coordinates have different values, then the two adjacent
points are the end of a straight line segment. Figure 10 shows the interpolated NURBS
curves of station 4, station 14, and station 32. The data that can be used as sample flattening
points are the 26th and the 27th points of station 4 in Table 1, which correspond to p3 and
p4 in Figure 10a. The 1st and 2nd points of station 14 in Table 1 correspond to p10 and p11
in Figure 10b. The 15th and 16th points of station 32 in Table 1 correspond to p16 and p17 in
Figure 10c. In the comparative experiments, 100 flattening points are randomly selected as
the inversion sample points.

4.1. Comparison of Algorithms between FHP-BFS and IR-BFS

In the comparative experiments in this section, the parameter γ takes the recom-
mended value of 10−3, and the parameter α takes a value equal to parameter β.

4.1.1. Validation of the Practical Effectiveness of the FHP-BFS Algorithm

In this section, experiments are designed to compare the FHP-BFS algorithm and
the IR-BFS algorithm with conventional and high-precision threshold values, and the
computation time of the iteration process is recorded. The acceleration effect is verified by
analyzing the computation time of algorithms in the “precision refinement” process. The
selection criteria for the analysis point are as follows: First, 20 points with a single “precision
refinement” process are selected as reference points; then, the average computation time
of the reference points is calculated; finally, the reference point with a computation time
near the average computation time is chosen as an analysis point. According to the criteria,
p16 is taken as the analyzing point, and the β precision thresholds are set as 10−3 and
10−13. In addition, we used a sample with a single “precision refinement” process for
the analysis, and in practice, multiple iterations are often the superposition of numerous
single processes.

Figure 11 shows the inversion processes of the analyzing point p16 based on the
FHP-BFS algorithm and the IR-BFS algorithm, where “Process A” denotes the “precision
refinement” process. Figure 11a shows the inversion process with the conventional thresh-
old β = 10−3. The total computation time of the FHP-BFS algorithm is 1.24× 10−2s, and
the total computation time of the IR-BFS algorithm is 1.12× 10−2s. In this case, the time
consumed by the FHP-BFS algorithm is longer than that of the IR-BFS algorithm. Fig-
ure 11b shows the inversion process based on the high-precision threshold of 10−13. The
total computation times of the FHP-BFS algorithm and IR-BFS algorithm are 1.72× 10−2s



J. Mar. Sci. Eng. 2022, 10, 1851 13 of 26

and 3.27× 10−2s, respectively. In this case, the time consumed by the FHP-BFS algorithm
is less than that of the IR-BFS algorithm.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 13 of 29 
 

 

The method for extracting the flattening points from the sample data is as follows: 

for the cross-section data at the same station, if the y  or z  coordinates of two adjacent 

points have the same value and the z  or y  coordinates have different values, then the 

two adjacent points are the end of a straight line segment. Figure 10 shows the interpo-

lated NURBS curves of station 4, station 14, and station 32. The data that can be used as 

sample flattening points are the 26th  and the 27th  points of station 4 in Table 1, which 

correspond to 3
p  and 4

p  in Figure 10a. The 1st  and 2nd  points of station 14 in Table 

1 correspond to 10
p  and 11

p  in Figure 10b. The 15th  and 16th  points of station 32 in 

Table 1 correspond to 16
p  and 17

p  in Figure 10c. In the comparative experiments, 100 

flattening points are randomly selected as the inversion sample points. 

   
(a) (b) 

  
(c) 

Figure 10. Interpolated cross-section curves and distribution of flattening points of different stations 

of the ship hull. (a) Station 4. (b) Station 14. (c) Station 32, where the red dots denote the flattening 

points. 

4.1. Comparison of Algorithms between FHP-BFS and IR-BFS 

Figure 10. Interpolated cross-section curves and distribution of flattening points of different stations of
the ship hull. (a) Station 4. (b) Station 14. (c) Station 32, where the red dots denote the flattening points.

In “Process A” of Figure 11a, the distribution of the time points of the FHP-BFS
algorithm becomes longer when t = 0.58× 10−2. Therefore, the NR method is used at
this point, and the precision of the threshold is reached in two iterations. Similarly, the
precision of the threshold in the IR-BFS algorithm is reached in five iterations. In Figure 11b,
“Process A” of the FHP-BFS algorithm begins when t = 0.57× 10−2, and the threshold is
satisfied in four iterations; moreover, “Process A” of the IR-BFS algorithm also starts when
t = 0.57× 10−2 but too many iterations are needed.



J. Mar. Sci. Eng. 2022, 10, 1851 14 of 26

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 15 of 29 
 

 

4.1.1. Validation of the Practical Effectiveness of the FHP-BFS Algorithm 

In this section, experiments are designed to compare the FHP-BFS algorithm and the 

IR-BFS algorithm with conventional and high-precision threshold values, and the compu-

tation time of the iteration process is recorded. The acceleration effect is verified by ana-

lyzing the computation time of algorithms in the “precision refinement” process. The se-

lection criteria for the analysis point are as follows: First, 20 points with a single “precision 

refinement” process are selected as reference points; then, the average computation time 

of the reference points is calculated; finally, the reference point with a computation time 

near the average computation time is chosen as an analysis point. According to the crite-

ria, 16
p  is taken as the analyzing point, and the   precision thresholds are set as −310  

and −1310 . In addition, we used a sample with a single “precision refinement” process for 

the analysis, and in practice, multiple iterations are often the superposition of numerous 

single processes. 

Figure 11 shows the inversion processes of the analyzing point 16
p  based on the 

FHP-BFS algorithm and the IR-BFS algorithm, where “Process A” denotes the “precision 

refinement” process. Figure 11a shows the inversion process with the conventional thresh-

old  −= 310 . The total computation time of the FHP-BFS algorithm is − 21.24 10 s , and 

the total computation time of the IR-BFS algorithm is − 21.12 10 s . In this case, the time 

consumed by the FHP-BFS algorithm is longer than that of the IR-BFS algorithm. Figure 

11b shows the inversion process based on the high-precision threshold of −1310 . The total 

computation times of the FHP-BFS algorithm and IR-BFS algorithm are − 21.72 10 s  and 
− 23.27 10 s , respectively. In this case, the time consumed by the FHP-BFS algorithm is 

less than that of the IR-BFS algorithm. 

 
(a) 

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 16 of 29 
 

 

 
(b) 

Figure 11. Inversion process of the knot value u  of the fast high-precision bisection feedback 

search (FHP-BFS) algorithm and interval reformation and bisection feedback search (IR-BFS) algo-

rithm with analyzing point 16
p  and at different precision thresholds  . (a)   is 

−310 . (b)   

is 
−1310 , where “Process A” denotes the “precision refinement” processes. 

In “Process A” of Figure 11a, the distribution of the time points of the FHP-BFS algo-

rithm becomes longer when −=  20.58 10t . Therefore, the NR method is used at this point, 

and the precision of the threshold is reached in two iterations. Similarly, the precision of 

the threshold in the IR-BFS algorithm is reached in five iterations. In Figure 11b, “Process 

A” of the FHP-BFS algorithm begins when −=  20.57 10t , and the threshold is satisfied in 

four iterations; moreover, “Process A” of the IR-BFS algorithm also starts when 
−=  20.57 10t  but too many iterations are needed.  

In summary, the FHP-BFS algorithm performs best with a high-precision threshold. 

However, the advantage of the low computation time is minor with the threshold of con-

ventional precision. Therefore, a suitable precision threshold should be set for the FHP-

BFS algorithm to maintain superiority. 

4.1.2. Setting the Precision of the Threshold of the FHP-BFS Algorithm 

This section determines the optimal precision threshold through comparative exper-

iments to maintain the superiority of the FHP-BFS algorithm. Figure 12 shows the com-

putation time of the inversion process at different precision thresholds based on the FHP-

BFS algorithm and the IR-BFS algorithm, which contains the curves of s
u , m

u  and e
u ; 

the straight line segment in the t -plane of the coordinate system is the projection of the 

curve of m
u . 

The value of threshold   decreases from −310  to −1310 , and the computation time 

based on the FHP-BFS algorithm is − 21.24 10 s , − 21.23 10 s , − 21.24 10 s , − 21.45 10 s ,

, − 21.72 10 s  and − 21.72 10 s . The minimum value min
t  and the maximum value 

max
t  are − 21.23 10 s  and − 21.72 10 s , respectively, and the range of the computation 

time −
max min

t t  is − 20.49 10 s . The values of the computation time based on the IR-BFS 

algorithm are − 21.21 10 s , − 21.27 10 s , − 21.41 10 s , − 21.50 10 s , , − 23.08 10 s  and 
− 23.27 10 s . The minimum value min

t  and the maximum value max
t  are − 21.21 10 s  

Figure 11. Inversion process of the knot value u of the fast high-precision bisection feedback search
(FHP-BFS) algorithm and interval reformation and bisection feedback search (IR-BFS) algorithm
with analyzing point p16 and at different precision thresholds β. (a) β is 10−3. (b) β is 10−13, where
“Process A” denotes the “precision refinement” processes.

In summary, the FHP-BFS algorithm performs best with a high-precision threshold.
However, the advantage of the low computation time is minor with the threshold of
conventional precision. Therefore, a suitable precision threshold should be set for the
FHP-BFS algorithm to maintain superiority.

4.1.2. Setting the Precision of the Threshold of the FHP-BFS Algorithm

This section determines the optimal precision threshold through comparative ex-
periments to maintain the superiority of the FHP-BFS algorithm. Figure 12 shows the
computation time of the inversion process at different precision thresholds based on the
FHP-BFS algorithm and the IR-BFS algorithm, which contains the curves of us, um and ue;



J. Mar. Sci. Eng. 2022, 10, 1851 15 of 26

the straight line segment in the tβ-plane of the coordinate system is the projection of the
curve of um.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 17 of 29 
 

 

and − 23.27 10 s , respectively, and the range of the computation time −
max min

t t  is 
− 22.06 10 s . Hence, the distribution of values of the computation time in the FHP-BFS 

algorithm fluctuates less and is relatively stable in the inversion process. In contrast, the 

distribution of the computation time in the IR-BFS algorithm has approximate linear 

growth with large fluctuations. Therefore, the computation time of the FHP-BFS algo-

rithm has good robustness and is not significantly affected by the precision of the thresh-

old, while the computation time of the IR-BFS algorithm is more affected by variations in 

the precision threshold.  

 

Figure 12. Inversion results of computation time t  of parametric value u  of sample point 16
p  

based on the fast high-precision bisection feedback search (FHP-BFS) algorithm and interval refor-

mation and bisection feedback search (IR-BFS) algorithm at different precision thresholds  . 

In the inversion process of the sample point 16
p  in Figure 12, the computation time 

of the FHP-BFS algorithm is longer than that of the IR-BFS algorithm when the threshold 

 −= 310 , while the computation time of the FHP-BFS algorithm is less than that of the IR-

BFS algorithm when the threshold  − 310 . A comparative experiment is designed to 

discuss the inversion threshold that makes the computation time of the FHP-BFS algo-

rithm better than that of the IR-BFS algorithm. To ensure the generality of the analysis 

results, 50 sample points are randomly selected in the experiment, and the precision of 

threshold   is set as ( )=-10 3,4,5, ,12,13i i . In addition, to discuss the improvement 

in the computation time of the FHP-BFS algorithm at different precision thresholds, the 

parameter of improved percentage of computation time percent
T  is proposed to measure 

the computation efficiency of the FHP-BFS algorithm. The calculation formula is as fol-

lows: 

Figure 12. Inversion results of computation time t of parametric value u of sample point p16 based
on the fast high-precision bisection feedback search (FHP-BFS) algorithm and interval reformation
and bisection feedback search (IR-BFS) algorithm at different precision thresholds β.

The value of threshold β decreases from 10−3 to 10−13, and the computation time based
on the FHP-BFS algorithm is 1.24× 10−2s, 1.23× 10−2s, 1.24× 10−2s, 1.45× 10−2s,· · · ,
1.72× 10−2s and 1.72× 10−2s. The minimum value tmin and the maximum value tmax
are 1.23× 10−2s and 1.72× 10−2s, respectively, and the range of the computation time
tmax − tmin is 0.49× 10−2s. The values of the computation time based on the IR-BFS al-
gorithm are 1.21× 10−2s, 1.27× 10−2s, 1.41× 10−2s, 1.50× 10−2s,· · · , 3.08× 10−2s and
3.27× 10−2s. The minimum value tmin and the maximum value tmax are 1.21× 10−2s and
3.27× 10−2s, respectively, and the range of the computation time tmax− tmin is 2.06× 10−2s.
Hence, the distribution of values of the computation time in the FHP-BFS algorithm fluctu-
ates less and is relatively stable in the inversion process. In contrast, the distribution of the
computation time in the IR-BFS algorithm has approximate linear growth with large fluctu-
ations. Therefore, the computation time of the FHP-BFS algorithm has good robustness
and is not significantly affected by the precision of the threshold, while the computation
time of the IR-BFS algorithm is more affected by variations in the precision threshold.

In the inversion process of the sample point p16 in Figure 12, the computation time
of the FHP-BFS algorithm is longer than that of the IR-BFS algorithm when the threshold
β = 10−3, while the computation time of the FHP-BFS algorithm is less than that of the
IR-BFS algorithm when the threshold β ≤ 10−3. A comparative experiment is designed to
discuss the inversion threshold that makes the computation time of the FHP-BFS algorithm
better than that of the IR-BFS algorithm. To ensure the generality of the analysis results,
50 sample points are randomly selected in the experiment, and the precision of threshold β
is set as 10−i(i = 3, 4, 5, · · · , 12, 13). In addition, to discuss the improvement in the compu-
tation time of the FHP-BFS algorithm at different precision thresholds, the parameter of



J. Mar. Sci. Eng. 2022, 10, 1851 16 of 26

improved percentage of computation time Tpercent is proposed to measure the computation
efficiency of the FHP-BFS algorithm. The calculation formula is as follows:

Tpercent =
(tIR−BFS − tFHP−BFS)

tIR−BFS
× 100%, (7)

where tFHP−BFS and tIR−BFS are the computation times based on the FHP-BFS algorithm
and the IR-BFS algorithm, respectively. If Tpercent > 0, the computational efficiency of the
FHP-BFS algorithm is higher than that of the IR-BFS algorithm at a specific threshold. If
Tpercent < 0, the computational efficiency of the FHP-BFS algorithm is lower than that of
the IR-BFS algorithm. If Tpercent = 0, the computational efficiency of the IR-BFS algorithm
is nearly equal to that of the IR-BFS algorithm. Figure 13 shows the superposition of the
scatter distribution and the box plot of the computation efficiency Tpercent. Six outliers,
whose values are too large or too small, are deleted.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 18 of 29 
 

 

IR-BFS FHP-BFS
percent

IR-BFS

( - )
 = 100%

t t
T

t
, (7) 

where FHP-BFS
t  and IR-BFS

t  are the computation times based on the FHP-BFS algorithm 

and the IR-BFS algorithm, respectively. If 
percent

0T , the computational efficiency of the 

FHP-BFS algorithm is higher than that of the IR-BFS algorithm at a specific threshold. If 


percent

0T , the computational efficiency of the FHP-BFS algorithm is lower than that of the 

IR-BFS algorithm. If =
percent

0T , the computational efficiency of the IR-BFS algorithm is 

nearly equal to that of the IR-BFS algorithm. Figure 13 shows the superposition of the 

scatter distribution and the box plot of the computation efficiency percent
T . Six outliers, 

whose values are too large or too small, are deleted. 

Figure 13 shows that percent
T  tends to increase as the threshold   numerically de-

creases from −310  to −1310 , indicating that the computational efficiency of the FHP-BFS 

algorithm increases with the precision of the threshold. Taking the mean scatter value of 

percent
T  as the analysis target, if  − 410 , then 

percent
0T  indicates that the computation 

efficiency of the FHP-BFS algorithm is lower than that of the IR-BFS algorithm; if  −= 510

, then percent
T  is slightly greater than zero, while some scatter points with values less than 

zero exist, indicating that the computation efficiency of the FHP-BFS algorithm is nearly 

equal to that of the IR-BFS algorithm; and if  − 510 , then 
percent

0T , and the overall 

trend is increasing, indicating that the computation efficiency of the FHP-BFS algorithm 

is higher than that of the IR-BFS algorithm. In this situation, the smaller the value of 

threshold   is, the higher the computational efficiency of the FHP-BFS algorithm. There-

fore, the computational efficiency of the FHP-BFS algorithm is improved under the con-

dition of a high-precision threshold. Simultaneously, it is recommended that the range of 

the threshold is 
− 510  to maintain the superiority of the FHP-BFS algorithm. 

 
Figure 13. Superposition of the scattering distribution and box plot of Tpercent of the fast high-
precision bisection feedback search (FHP-BFS) algorithm at different thresholds β, where Tpercent

denotes the improved percentage of computation time.

Figure 13 shows that Tpercent tends to increase as the threshold β numerically decreases
from 10−3 to 10−13, indicating that the computational efficiency of the FHP-BFS algorithm
increases with the precision of the threshold. Taking the mean scatter value of Tpercent as
the analysis target, if β ≥ 10−4, then Tpercent < 0 indicates that the computation efficiency
of the FHP-BFS algorithm is lower than that of the IR-BFS algorithm; if β = 10−5, then
Tpercent is slightly greater than zero, while some scatter points with values less than zero
exist, indicating that the computation efficiency of the FHP-BFS algorithm is nearly equal
to that of the IR-BFS algorithm; and if β < 10−5, then Tpercent > 0, and the overall trend is
increasing, indicating that the computation efficiency of the FHP-BFS algorithm is higher
than that of the IR-BFS algorithm. In this situation, the smaller the value of threshold
β is, the higher the computational efficiency of the FHP-BFS algorithm. Therefore, the
computational efficiency of the FHP-BFS algorithm is improved under the condition of a
high-precision threshold. Simultaneously, it is recommended that the range of the threshold
is β ≤ 10−5 to maintain the superiority of the FHP-BFS algorithm.



J. Mar. Sci. Eng. 2022, 10, 1851 17 of 26

4.2. Comparison with Other Algorithms

Comparative experiments are designed with the best existing compound algorithms to
prove the effectiveness of the FHP-BFS algorithm in this section. The compared compound
algorithms are the algorithms of IR-BFS [28], Chen et al. [20], Selimovic [19] and Ma and
Hewitt [18], which are abbreviated as IR-BFS, Chen, Seli, and Ma, respectively, in this
section. Furthermore, the root-finding algorithms that perform well in the local interval are
also compared, which include the algorithms of [41–43], and they are abbreviated as Badr,
Sab, and Kim, respectively.

In the IR-BFS algorithm, the IR method is proposed to shrink the range of the target
interval, and the BFS algorithm is proposed to jump out of local optima. Chen subdivided
the NURBS curve into Bezier sub curves, and the rough solution was obtained when only
one optimal solution was contained in the interval; the exact solution was obtained by a
hybrid algorithm of the bisection method and the NR method. Seli proposed the internal
knot clipping method to eliminate intervals, and a rough solution is obtained when the
sufficient flatness of the subcurve is satisfied or when the range of the solution interval
is less than the given tolerance; the exact solution is calculated by the NR method. Ma
subdivided the NURBS curve into Bezier subintervals by finding a simple and convex
control polygon, and the rough solution was obtained by the iteration of subintervals
between the control polygon and the test point; the exact solution was calculated by the
NR method. Badr selects the optimal iteration value by the trisection and false position
methods. Sab proposed a three-way hybrid root-finding algorithm based on the previously
proposed two-way algorithm. The algorithm uses the methods of bisection, false position,
and NR to select the optimal iteration value. However, the problem of computing the global
optimal solution is still not considered. Kim combined the NR method and the bisection
algorithm to speed up the calculation and improve the local convergence ability of the
algorithm. However, the algorithm cannot jump out of the optimal local solution.

Since 50 sample points have been selected in Section 4.1.2 to analyze the optimal
precision range of the threshold for the FHP-BFS algorithm, to reflect the algorithm’s
generalization ability effectively, the other 50 sample points are selected as inversion points
in this section. The inversion precision threshold is set as 10−i(i = 3, 4, 5, · · · , 12, 13). The
test points or query points in the algorithms are the inversion sample points. The knot
refinement algorithm handles all operations for converting NURBS curves to Bezier curves.
The NR algorithm is considered not converged if the accuracy threshold is not satisfied
after 20 iterations. In the FHP-BFS algorithm, the threshold γ for the NR method is set to
10−3. The settings of the parameters of Chen in the hybrid algorithm based on the bisection
method and the NR method can be found in [44]. The tolerance of the solution interval
in the Seli algorithm is set to β for the sufficient flatness of the subcurves. The maximum
number of iterations of the Ma algorithm in dividing the NURBS curve into Bezier curves
is set to 20 to avoid unnecessary time consumption.

The root-finding algorithms easily fall into local optima if directly used to perform
inversion because they cannot find the global optimal value. Therefore, some processing
must be performed before these algorithms are used; that is, the previously proposed
IR-BFS algorithm was used to reduce the interval of parameters within 0.1 to minimize the
possibility of the root-finding algorithms falling into local optimal values in the samples.
The iteration of the root-finding algorithms terminates when the iterative times arrive at 20
to avoid consuming too much time in nonconvergent samples.

Figure 14 shows a 3D heatmap and 2D contour map of the computation time t of the
sample points calculated by the compound algorithms at different threshold precisions.
The 2D contour map in the bottom plane denotes the projection of the 3D heatmap, the
dotted line is the contour line, and the dashed line is the auxiliary line for observing the
computation time of different algorithms.



J. Mar. Sci. Eng. 2022, 10, 1851 18 of 26J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 21 of 29 
 

 

  

Figure 14. 3D heatmap and 2D contour map of the computation time distribution of 50 sample 

points based on different algorithms at different threshold precision values, where the color is the 

mapping of the value of calculation time t . 

The 3D heatmap shows that the FHP-BFS and IR-BFS algorithms have shorter com-

putation times, and that Seli and Ma have the highest computation times. Through the 2D 

contour map, the mapping colors of the IR-BFS and FHP-BFS algorithms are both dark 

purple when the values of threshold precision change from −310  to −510 , which indi-

cates that the computation time of the IR-BFS algorithm is similar to that of the FHP-BFS 

algorithm in this case; however, when the values of threshold precision change from −510  

to −1310 , the mapping color of the IR-BFS algorithm gradually becomes blue, while the 

mapping color of the FHP-BFS algorithm remains purple and is almost unchanged, which 

indicates that the computation time of the IR-BFS algorithm increases in this case and 

gradually exceeds that of the FHP-BFS algorithm. Furthermore, the mapping colors of the 

Sab, Badr, and Kim algorithms change significantly with the threshold precision. The col-

ors are light blue or green when the threshold precision varies from −310  to −610 , indi-

cating that relatively little computation time is consumed. However, when the values of 

the threshold precision change from −610  to −1310 , the colors gradually change to yellow 

or even orange, which indicates that the computation time is significantly increased. The 

considerable variation in computation time is because the root-finding algorithms cannot 

jump out of local optimal values, and the number of samples that cannot converge grad-

ually increases after the accuracy threshold increases. Therefore, the FHP-BFS algorithm 

performs the best in the experiment, and the root-finding algorithms have medium-level 

performance among the compared algorithms. 

The experimental results are analyzed in more depth to make more practical and 

theoretical conclusions. The computation process of the compound algorithms is divided 

into the processes of rough
P  and exact

P , which denote the process of computing the rough 

solution and the exact solution, respectively. Moreover, the computation time of each pro-

cess is represented as 1
t  and 2

t , respectively. The total computation time is represented 

as t ; i.e., = +
1 2

t t t . In the FHP-BFS algorithm, 1
t  denotes the computation time 

Figure 14. 3D heatmap and 2D contour map of the computation time distribution of 50 sample points
based on different algorithms at different threshold precision values, where the color is the mapping
of the value of calculation time t.

The 3D heatmap shows that the FHP-BFS and IR-BFS algorithms have shorter compu-
tation times, and that Seli and Ma have the highest computation times. Through the 2D
contour map, the mapping colors of the IR-BFS and FHP-BFS algorithms are both dark pur-
ple when the values of threshold precision change from 10−3 to 10−5, which indicates that
the computation time of the IR-BFS algorithm is similar to that of the FHP-BFS algorithm in
this case; however, when the values of threshold precision change from 10−5 to 10−13, the
mapping color of the IR-BFS algorithm gradually becomes blue, while the mapping color
of the FHP-BFS algorithm remains purple and is almost unchanged, which indicates that
the computation time of the IR-BFS algorithm increases in this case and gradually exceeds
that of the FHP-BFS algorithm. Furthermore, the mapping colors of the Sab, Badr, and
Kim algorithms change significantly with the threshold precision. The colors are light blue
or green when the threshold precision varies from 10−3 to 10−6, indicating that relatively
little computation time is consumed. However, when the values of the threshold precision
change from 10−6 to 10−13, the colors gradually change to yellow or even orange, which
indicates that the computation time is significantly increased. The considerable variation in
computation time is because the root-finding algorithms cannot jump out of local optimal
values, and the number of samples that cannot converge gradually increases after the
accuracy threshold increases. Therefore, the FHP-BFS algorithm performs the best in the
experiment, and the root-finding algorithms have medium-level performance among the
compared algorithms.

The experimental results are analyzed in more depth to make more practical and
theoretical conclusions. The computation process of the compound algorithms is divided
into the processes of Prough and Pexact, which denote the process of computing the rough
solution and the exact solution, respectively. Moreover, the computation time of each
process is represented as t1 and t2, respectively. The total computation time is represented
as t; i.e., t = t1 + t2. In the FHP-BFS algorithm, t1 denotes the computation time consumed
by the IR-BFS algorithm with a precision threshold of β < 10−3, and t2 denotes the time



J. Mar. Sci. Eng. 2022, 10, 1851 19 of 26

consumed by the NR method. In the Chen algorithm, t2 denotes the computation time
consumed by the hybrid algorithm composed of the bisection algorithm and NR method.
In the algorithms of Ma and Seli, t2 denotes the computation time consumed by the
NR method. In addition, the root-finding and IR-BFS algorithms are not divided into
subprocesses because they do not need to compute rough solutions. Figure 15 shows the
2D heatmap of the computation times of processes based on the algorithms at different
threshold precisions in the inversion of sample points. The specific values corresponding
to each color are added to the figure and rounded to two decimal places to compare the
results more precisely. In addition, IR in Figure 15 denotes the IR-BFS algorithm.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 22 of 29 
 

 

consumed by the IR-BFS algorithm with a precision threshold of  − 3 10 , and 2
t  de-

notes the time consumed by the NR method. In the Chen algorithm, 2
t  denotes the com-

putation time consumed by the hybrid algorithm composed of the bisection algorithm 

and NR method. In the algorithms of Ma and Seli, 2
t  denotes the computation time con-

sumed by the NR method. In addition, the root-finding and IR-BFS algorithms are not 

divided into subprocesses because they do not need to compute rough solutions. Figure 

15 shows the 2D heatmap of the computation times of processes based on the algorithms 

at different threshold precisions in the inversion of sample points. The specific values cor-

responding to each color are added to the figure and rounded to two decimal places to 

compare the results more precisely. In addition, IR in Figure 15 denotes the IR-BFS algo-

rithm. 

  

Figure 15. 2D heatmap of the computation times of the inversion of sample points calculated by the 

algorithms at different threshold precision values, where IR denotes the fast high-precision bisection 

feedback search (FHP-BFS) algorithm. 

In Figure 15, when 
−= 310 , the computation times, 1

t , are 2.13s , 7.57s , 13.66s  

and 20.94s  in rough
P  according to the compound algorithms of FHP-BFS, Chen, Ma and 

Seli, respectively, and the range of 1
t  is 18.81s , which is calculated by −

max min
t t . In ad-

dition, the computation times, 2
t , are 0.31s , 0.83s , 0.89s  and 1.02s  in exact

P  accord-

ing to the compound algorithms, and the range of 1
t  is 0.71s . Therefore, the FHP-BFS 

Figure 15. 2D heatmap of the computation times of the inversion of sample points calculated by the
algorithms at different threshold precision values, where IR denotes the fast high-precision bisection
feedback search (FHP-BFS) algorithm.

In Figure 15, when β = 10−3, the computation times, t1, are 2.13s, 7.57s, 13.66s and
20.94s in Prough according to the compound algorithms of FHP-BFS, Chen, Ma and Seli,
respectively, and the range of t1 is 18.81s, which is calculated by tmax − tmin. In addition, the
computation times, t2, are 0.31s, 0.83s, 0.89s and 1.02s in Pexact according to the compound
algorithms, and the range of t1 is 0.71s. Therefore, the FHP-BFS algorithm consumes the
least amount of time in both the Prough and Pexact processes, and the range of t1 is greater
than that of t2. When β = 10−4, the computation times, t1, are 2.22s, 7.96s, 14.23s and
21.65s in Prough, and the range of t1 is 19.43s. Additionally, the computation times, t2, are
0.61s, 0.99s, 1.04s and 1.12s in Pexact, and the range of t2 is 0.51s. Therefore, the FHP-BFS
consumes the least time in the two processes, and the range of t1 is greater than that of
t2. Similarly, it can be found that when β > 10−4, the distribution of computation time t1



J. Mar. Sci. Eng. 2022, 10, 1851 20 of 26

is consistent with this conclusion. Therefore, the FHP-BFS algorithm consumes the least
computation time compared to the other compound algorithms in both the Prough and Pexact
processes. In addition, the range of t1 is greater than that of t2, which indicates that the
differences in the computation time are significant in Prough, while the differences are minor
in Pexact.

Moreover, the performance of the computation time with the change in threshold
precision β should be noted. In the inversion of the FHP-BFS algorithm, the maximum
and minimum values of t are 3.46s and 2.44s, respectively; the range of t is 1.02s, where
the range of t1 is 0.11s and the range of t2 is 0.9s. In the inversion of Chen, Ma, and Seli,
the ranges of t are 1.62s, 2.26s and 2.89s, respectively. Furthermore, the ranges of t1 are
1.02s, 1.63s and 2.24s; the ranges of t2 are 0.6s, 0.62s and 0.64s. Through the comparison,
the FHP-BFS algorithm has the smallest range of t1, indicating that the algorithm has the
best robustness with the change in threshold precision β in Prough. Moreover, the ranges of
t2 among the compound algorithms are similar, and the range of t for the IR-BFS algorithm
is 3.86s, which indicates that the design of the NR method maintains better robustness in
Pexact.

In summary, the FHP-BFS algorithm, which consumes the least computation time
in both the Prough and Pexact processes, performs the best in computation efficiency and
robustness among the compound algorithms. Specifically, the FHP-BFS algorithm signifi-
cantly reduces the computation time in Prough and, to some extent, reduces the time in the
Pexact process.

4.3. Evaluation of the Flattening Algorithm

This section designs experiments to verify the precision performance of the improved
flattening algorithm. The flattening performance can be judged by the curvature change
near flattening points before and after the flattening operation. If the curvature near the
flattened points is gradually reduced to 0, the algorithm has a good flattening effect. The
cross-section curves at stations 4, 8, and 27 are taken as sample curves. In addition, the
threshold precisions are set as α = β = 10−8 and γ = 10−3. Figure 16 shows the curvature
of the sample curves before and after the flattening operation, where ps and pe denote the
two flattening points. Figure 17 shows porcupine plots of the curvature distribution of the
flattened ship cross-section curves. For the sake of making the curvature distribution clear,
the curvature value greater than 1.5m−1 is still represented by 1.5m−1 in the plot.

Figure 16a,c show the curvature of the NURBS curve of stations 4 and 27. The two
flattening points of each figure are distributed at the right end of the NURBS curve, and the
curvature after point ps is gradually reduced to 0. The curvature near the flattening point ps
increases after flattening, which not only enhances the bending degree of flattened curves
near point ps but also speeds up the rate at which the curves’ curvature drops to zero after
point ps. In Figure 17a,c, the flattened NURBS curve of the right half-width cross-section
of the ship hull corresponds to the curvature in Figure 16a,c), in which the curve between
points ps and pe is converted to a straight line, and the remaining part of the half-width
NURBS curve is still expressed as a curve. Therefore, the precision of inversion of flattening
points satisfies the preset threshold of 10−8, and the flattening algorithm performs well on
the NURBS curve of stations 4 and 27.

Figure 16b shows the curvature of the NURBS curve of station 8. The two flattening
points are distributed at the right end of the NURBS curve and the curvature after point
ps is gradually reduced to 0. Comparing the curvature change before and after flattening,
the curvature of the flattened curve decreases at point ps; the curvature after point ps has a
negative value and the extremum of curvature after point ps is smaller than before flattening,
where the negative sign only indicates the direction of curvature. Therefore, the curvature
decrease at the flattening point also reduces the curvature change after the flattening point
in the opposite direction, which eventually speeds up the curvature drops to 0 in the
flattening part. In Figure 17b, the flattened curve of the right half-width corresponds to
the curvature in Figure 16b, in which the flattened NURBS curve is successfully expressed



J. Mar. Sci. Eng. 2022, 10, 1851 21 of 26

as a straight line in the flattening part. Therefore, the inversion precision of the flattening
points satisfies the requirements, and the flattening algorithm performs well in this case.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 24 of 29 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure 16. Curvature of the NURBS curve of the half-width cross-section of the ship hull before and 

after the flattening operation. (a) Station 4; (b) Station 8; (c) Station 27, where, s
p  and e

p  denote 

the two flattening points; and K denotes the curve curvature. 

Figure 16. Curvature of the NURBS curve of the half-width cross-section of the ship hull before and
after the flattening operation. (a) Station 4; (b) Station 8; (c) Station 27, where, ps and pe denote the
two flattening points; and K denotes the curve curvature.



J. Mar. Sci. Eng. 2022, 10, 1851 22 of 26
J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 25 of 29 
 

 

 
(a) 

  
(b) (c) 

Figure 17. Porcupine plot of the curvature distribution of the NURBS curves of the ship hull cross-

section. (a) Station 4; (b) Station 8; (c) Station 27. 

Figure 16a,c show the curvature of the NURBS curve of stations 4 and 27. The two 

flattening points of each figure are distributed at the right end of the NURBS curve, and 

the curvature after point s
p  is gradually reduced to 0. The curvature near the flattening 

point s
p  increases after flattening, which not only enhances the bending degree of flat-

tened curves near point s
p  but also speeds up the rate at which the curves’ curvature 

drops to zero after point s
p . In Figure 17a,c, the flattened NURBS curve of the right half-

width cross-section of the ship hull corresponds to the curvature in Figure 16a,c), in which 

the curve between points s
p  and e

p  is converted to a straight line, and the remaining 

part of the half-width NURBS curve is still expressed as a curve. Therefore, the precision 

of inversion of flattening points satisfies the preset threshold of −810 , and the flattening 

algorithm performs well on the NURBS curve of stations 4 and 27. 

Figure 17. Porcupine plot of the curvature distribution of the NURBS curves of the ship hull cross-
section. (a) Station 4; (b) Station 8; (c) Station 27.

In summary, the flattening algorithm based on the FHP-BFS algorithm can gradually
change the curvature near the flattening point and exhibits a good flattening effect. The
improved flattening algorithm, which ensures that the inversion results of the flattening
points meet the high-precision threshold, can improve the computation efficiency and
maintain the smoothness of the flattened curves.

5. Discussion

In this paper, a fast inversion algorithm of the NURBS curve with a high precision-
threshold is proposed and applied to the NURBS curve-flattening algorithm to improve
the calculation speed. Then, through a series of comparative experiments, the algorithms
are verified.



J. Mar. Sci. Eng. 2022, 10, 1851 23 of 26

Section 4.1.1 compared the proposed FHP-BFS algorithm with the IR-BFS algorithm.
The IR-BFS algorithm was slightly faster in conventional precision situations, and the
FHP-BFS algorithm was more rapid in high-precision cases. By comparing the number of
iterations, the iterations needed for convergence of the FHP-BFS algorithm were much less
than those of the IR-BFS algorithm. This indicated that the FHP-BFS algorithm is more
robust in computation time and revealed the fundamental reason for the better performance
in high-precision computation. Thus, although the IR-BFS algorithm has the advantage of
fast single iterations, it must go through many iterations due to its low convergence speed;
under this condition, the inversion process eventually leads to a long total computation
time. In contrast, the NR process of the FHP-BFS algorithm converged quickly, although
it has the disadvantage of a long single iteration time. Therefore, the superiority of the
FHP-BFS algorithm over the IR-BFS algorithm is reflected well in the case of the long
computation time. Then, a suitable precision value of threshold 10−5 was determined
to maintain the priority of the FHP-BFS algorithm through comparative experiments in
Section 4.1.2.

Section 4.2 compared the FHP-BFS compound algorithms with the algorithms
of [18–20,28,41–43]. Algorithms [41–43] are local root-finding algorithms that perform
very average computation time. Algorithms [18–20] consumed too much time computing
the rough solution but showed a significant advantage in calculating the exact solution. The
IR-BFS algorithm calculates the rough solutions of the FHP-BFS algorithm, and the compar-
ison demonstrated that the proposed approach makes the algorithm more efficient in this
process. Ref. [18] and ref. [20] calculated rough solutions by dividing the NURBS curves
into subcurves with their proposed partitioning algorithms. The comparison demonstrated
that this approach consumes too much time due to the intersection and interpolation of
curves. Ref. [19] calculated rough solutions by dividing curves directly by the NURBS
interpolation algorithm, which lacks directness to the target solution and consumes too
much time. Therefore, the computation time required to obtain rough solutions signifi-
cantly differs among the compound algorithms. In addition, the exact solutions of the
algorithms FHP-BFS, refs. [18,19] are calculated by the NR method; Ref. [20] calculates the
exact solution with the hybrid algorithm composed of the bisection algorithm and the NR
method. Therefore, the computation time in obtaining exact solutions is similar among the
compound algorithms due to the same convergence rate of the NR method. In brief, the
FHP-BFS algorithm, which takes advantage of the IR-BFS algorithm and NR method to
compensate for their respective disadvantages, performs best in terms of robustness in the
two processes.

Section 4.3 verifies the smoothness of the flattened NURBS curve while ensuring the
computation time at high-precision thresholds. In the flattening algorithm, the processes of
inversion and projection distribute in series; hence, the overall computation efficiency of the
algorithm is directly improved by reducing the computation time in the inversion process.
Finally, the FHP-BFS algorithm speeds up the computation of the flattening algorithm.

In summary, the proposed FHP-BFS algorithm can improve the computation efficiency
at the proposed threshold precision, especially at high precision values. However, the algo-
rithm still needs further improvement. First, in the selection of the threshold γ, increasing
the threshold γ in many samples can further improve the calculation speed, but in a few
samples, the problem of increasing the computation time will also occur. To solve this
problem, we can set the optimal threshold precision γ for different inversion points through
the curve characteristic parameters. Second, in the interpolation process of the NURBS
curve-flattening algorithm, it is still necessary to consider the influence of the number of
control points of the flattened curve to avoid causing a more complicated form. Third, the
algorithm is only a high-precision and fast inversion research for NURBS curves, and it still
needs to be further applied to NURBS surfaces.



J. Mar. Sci. Eng. 2022, 10, 1851 24 of 26

6. Conclusions

This paper studies how to solve the “precision refinement” problem in NURBS curve
inversion based on ship hull station curves. A new compound algorithm is proposed to
calculate the exact solution using the faster convergence algorithm to solve the problem.
Then, the optimal values of the parameters in the algorithm are determined by experiments,
and many comparison experiments are performed with other algorithms. Finally, the
proposed algorithm is applied to the NURBS curve-flattening algorithm to improve the
computational efficiency. The main contributions are as follows:

(1) The FHP-BFS algorithm, a compound algorithm that improves computational
efficiency while guaranteeing computational accuracy, is proposed. In the algorithm, the
fast single iteration of the BFS algorithm ensures the quick inversion of rough solutions,
and the NR algorithm provides fast convergence to the exact solution. Then, the FHP-BFS
algorithm is compared with the best existing algorithms, and the high computational
efficiency of the FHP-BFS algorithm is demonstrated with high-precision thresholds.

(2) The optimal range of the threshold precision in the FHP-BFS algorithm is proposed.
The computation time of the inversion solutions is compared at different threshold preci-
sions. Then, the relationship between the improved percentage of computation time and
the threshold precisions is analyzed, and the optimal range of the threshold precision is
derived. Furthermore, the computation time consumption of the FHP-BFS algorithm is
compared at the optimal precision threshold, and the high efficiency is verified. In addition,
the proposed ranges of the precision thresholds can make the FHP-BFS algorithm easier to
use in other applications.

(3) The flattening algorithm of the NURBS curve is improved based on the FHP-BFS
algorithm. The precision of the improved flattening algorithm in the processes of projection
and control point updating is greatly enhanced by considering the factors of high precision
and low computation time in the inversion of flattening points. Moreover, the effect of
the improved flattening algorithm is verified by the change in the curvature of the curves
before and after flattening.

In subsequent research, the proposed algorithm will be applied to computation tasks
based on ship hull reconstruction, such as the calculation of ship damage stability, ship hull
strength, and ship hull viscous resistance. In addition, the FHP-BFS algorithm is general
and can be applied to more research areas. In the problem of finding the intersection lines
between spline surfaces, the proposed algorithm can be extended to the exaction operation
of intersection solutions obtained with errors based on the partition or tracing method.
In the preprocessing problem of point cloud data of ship hulls or data of ship automatic
identification systems, the proposed algorithms can be implemented to identify and clean
anomalies in the dataset through spatiotemporal information.

Author Contributions: Conceptualization, K.Z.; methodology, K.Z.; software, K.Z. and J.L.; valida-
tion, K.Z. and J.L.; formal analysis, K.Z. and J.L.; writing—original draft preparation, K.Z. and J.L.;
writing—review and editing, K.Z. and J.L.; visualization, K.Z.; supervision, G.S. and J.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China [52201414;
51579025; 51709165]; the Provincial Natural Science Foundation of Liaoning [20170540090]; and
supported by the Navigation College of Dalian Maritime University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors are grateful for the support of the Key Laboratory of Navigation
Safety Guarantee of Liaoning Province, China.

Conflicts of Interest: The authors declare no conflict of interest.



J. Mar. Sci. Eng. 2022, 10, 1851 25 of 26

Abbreviations

FHP-BFS Fast high-precision bisection feedback search
IR-BFS Interval reformation and bisection feedback search
NURBS Non-uniform rational B-spline
NR Newton-Raphson

References
1. Nategh, M.J.; Parvaz, H. Development of computer aided clamping system design for workpieces with freeform surfaces.

Comput.-Aided Des. 2018, 95, 52–61. [CrossRef]
2. Bulian, G.; Cardinale, M.; Dafermos, G.; Lindroth, D.; Zaraphonitis, G. Probabilistic assessment of damaged survivability of

passenger ships in case of grounding or contact. Ocean Eng. 2020, 218, 107396. [CrossRef]
3. Sun, X.; Ni, Y.; Liu, C.; Wang, Z. A practical method for stability assessment of a damaged ship. Ocean Eng. 2021, 222, 108594.

[CrossRef]
4. Martin, W.; Cohen, E.; Fish, R.; Shirley, P. Practical ray tracing of trimmed NURBS surfaces. J. Graph. Tools 2000, 5, 27–52.

[CrossRef]
5. Guthe, M.; Balázs, A.; Klein, R. GPU-based trimming and tessellation of NURBS and T-Spline surfaces. ACM Trans. Graph 2005,

24, 1016–1023. [CrossRef]
6. Dokken, T. Finding intersections of B-spline represented geometries using recursive subdivision techniques. Comput.-Aided Geom.

Des. 1985, 2, 189–195. [CrossRef]
7. Dokken, T.; Skytt, V.; Ytrehus, A.M. Recursive subdivision and iteration in intersections and related problems. In Mathematical

Methods in Computer Aided Geometric Design; Academic Press: Cambridge, MA, USA, 1989; pp. 207–214.
8. Sederberg, T.W.; Nishita, T. Curve intersection using Bézier clipping. Comput. Aided Des. 1990, 22, 538–549. [CrossRef]
9. Efremov, A.; Havran, V.; Seidel, H.P. Robust and numerically stable Bézier clipping method for ray tracing NURBS surfaces. In

Proceedings of the 21st Spring Conference on Computer Graph, Budmerice, Slovakia, 12–14 May 2005; pp. 127–135.
10. Lee, D.; Lee, S.S.; Park, B.J. 3-D geometric modeler for rapid ship safety assessment. Ocean Eng. 2004, 31, 1219–1230. [CrossRef]
11. Lu, C.; Lin, Y.; Ji, Z.; Chen, M. Ship hull representation with a single NURBS surface. In Proceedings of the ISOPE-2005 Conference:

International Offshore and Polar Engineering Conference, Seoul, Republic of Korea, 19–24 June 2005.
12. Lu, C.; Lin, Y.; Ji, Z. Ship hull representation based on offset data with a single NURBS surface. Ship Technol. Res. 2007, 54, 81–88.

[CrossRef]
13. Guo, J.; Zhang, Y.; Chen, Z.; Feng, Y. CFD-based multi-objective optimization of a waterjet- propelled trimaran. Ocean Eng. 2019,

195, 106755. [CrossRef]
14. Kuznecovs, A.; Ringsberg, J.W.; Johnson, E.; Yamada, Y. Ultimate limit state analysis of a double-hull tanker subjected to biaxial

bending in intact and collision-damaged conditions. Ocean Eng. 2020, 209, 107519. [CrossRef]
15. Piegl, L.A.; Tiller, W. The NURBS Book, 2nd ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1997.
16. Johnson, D.E.; Cohen, E. A framework for efficient minimum distance computations. In Proceedings of the IEEE International

Conference on Robotics & Automation (ICRA), Leuven, Belgium, 20 May 1998; pp. 3678–3684.
17. Johnson, D.E.; Cohen, E. Distance extrema for spline models using tangent cones. In Proceedings of the GI’05: Proceedings of

Graphics Interface 2005, Victoria, BC, Canada, 9–11 May 2005; pp. 169–175.
18. Ma, Y.L.; Hewitt, W.T. Point inversion and projection for NURBS curve and surface: Control polygon approach. Comput.-Aided

Geom. Des. 2003, 20, 79–99. [CrossRef]
19. Selimovic, I. Improved algorithms for the projection of points on NURBS curves and surfaces. Comput.-Aided Geom. Des. 2006, 23,

439–445. [CrossRef]
20. Chen, X.D.; Yong, J.H.; Wang, G.; Paul, J.C.; Xu, G. Computing the minimum distance between a point and a NURBS curve.

Comput.-Aided Des. 2008, 40, 1051–1054. [CrossRef]
21. Chen, X.D.; Xu, G.; Yong, J.H.; Wang, G.; Paul, J.C. Computing the minimum distance between a point and clamped B-spline

surface. Graphical Models 2009, 71, 107–112. [CrossRef]
22. Oh, Y.T.; Kim, Y.J.; Lee, J.; Kim, M.S.; Elber, G. Efficient point projection to freeform curves and surfaces. In Proceedings of the

International Conference on Geometric Modeling and Processing, Castro Urdiales, Spain, 16–18 June 2010; pp. 192–205.
23. Oh, Y.T.; Kim, Y.J.; Lee, J.; Kim, M.S.; Elber, G. Continuous point projection to planar freeform curves using spiral curves. The

Visual Comp. 2012, 28, 111–123. [CrossRef]
24. Li, X.W.; Wu, Z.N.; Hou, L.K.; Wang, L.; Yue, C.G.; Xin, Q. A geometric orthogonal projection strategy for computing the minimum

distance between a point and a spatial parametric curve. Algorithms 2016, 9, 15. [CrossRef]
25. Quinlan, S. Efficient distance computation between non-convex objects. In Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), San Diego, CA, USA, 8–13 May 1994; pp. 3324–3329.
26. Dennis, J.E.; Schnabel, R.B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations; Society for Industrial and

Applied Mathematics (SIAM): Philadelphia, PA, USA, 1996.
27. Shacham, M. Numerical solution of constrained nonlinear algebraic equations. Int. J. Numer. Methods Eng. 1986, 23, 1455–1481.

[CrossRef]

http://doi.org/10.1016/j.cad.2017.10.003
http://doi.org/10.1016/j.oceaneng.2020.107396
http://doi.org/10.1016/j.oceaneng.2021.108594
http://doi.org/10.1080/10867651.2000.10487519
http://doi.org/10.1145/1073204.1073305
http://doi.org/10.1016/0167-8396(85)90024-X
http://doi.org/10.1016/0010-4485(90)90039-F
http://doi.org/10.1016/j.oceaneng.2004.01.004
http://doi.org/10.1179/str.2007.54.2.003
http://doi.org/10.1016/j.oceaneng.2019.106755
http://doi.org/10.1016/j.oceaneng.2020.107519
http://doi.org/10.1016/S0167-8396(03)00021-9
http://doi.org/10.1016/j.cagd.2006.01.007
http://doi.org/10.1016/j.cad.2008.06.008
http://doi.org/10.1016/j.gmod.2009.01.001
http://doi.org/10.1007/s00371-011-0632-5
http://doi.org/10.3390/a9010015
http://doi.org/10.1002/nme.1620230805


J. Mar. Sci. Eng. 2022, 10, 1851 26 of 26

28. Zhu, K.G.; Shi, G.Y.; Liu, J. Improved flattening algorithm for NURBS curve based on bisection feedback search algorithm and
interval reformation method. Ocean Eng. 2022, 247, 110635. [CrossRef]

29. Bertsekas, D.P. Constrained Optimization and Lagrange Multiplier Methods; Academic Press: Cambridge, MA, USA, 2014.
30. Ring, W.; Wirth, B. Optimization methods on Riemannian manifolds and their application to shape space. SIAM J. Optim. 2012,

22, 596–627. [CrossRef]
31. Huang, F.; Kim, H.Y.; Yang, C. A new method of ship bulbous bow generation and modification. In Proceedings of the

Twenty-Fourth International Offshore and Polar Engineering Conference, Busan, Republic of Korea, 15–20 June 2014.
32. Absil, P.A.; Baker, C.G.; Gallivan, K.A. Trust-region methods on Riemannian manifolds. Found. Comput. Math. 2007, 7, 303–330.

[CrossRef]
33. Absil, P.A.; Mahony, R.; Sepulchre, R. Optimization Algorithms on Matrix Manifolds; Princeton University Press: Princeton, NJ, USA, 2008.
34. Ortega, J.M.; Rheinboldt, W.C. Iterative Solution of Nonlinear Equations in Several Variables; Society for Industrial and Applied

Mathematics (SIAM): Philadelphia, PA, USA, 1987.
35. Deuflhard, P. Newton Methods for Nonlinear Problems; Springer: Berlin/Heidelberg, Germany, 2011.
36. Jiang, X.N.; Yan, L. Relevant integrals of NURBS and its application in hull line element design. Ocean Eng. 2022, 251, 111147.

[CrossRef]
37. Nam, J.H.; Bang, N.S. A curve based hull form variation with geometric constraints of area and centroid. Ocean Eng. 2017, 133,

1–8. [CrossRef]
38. De Boor, C. A Practical Guide to Splines; Springer: New York, NY, USA, 1978.
39. McCartney, J.; Hinds, B.K.; Chong, K.W. Pattern flattening for orthotropic materials. Comput.-Aided Des. 2005, 37, 631–644.

[CrossRef]
40. Takezawa, M.; Matsuo, K.; Maekawa, T. Control of lines of curvature for plate forming in shipbuilding. Comput.-Aided Geom. Des.

2019, 75, 101785.1–101785.14. [CrossRef]
41. Badr, E.; Sultan, A.; Abdallah, E.G. A Comparative Study among New Hybrid Root Finding Algorithms and Traditional Methods.

Mathematics 2021, 9, 1306. [CrossRef]
42. Sabharwal, C.L. An Iterative Hybrid Algorithm for Roots of Non-Linear Equations. Eng 2021, 2, 7. [CrossRef]
43. Kim, J.; Noh, T.; Oh, W. An improved hybrid algorithm to bisection method and Newton-Raphson method. Appl. Math. Sci. 2017,

11, 2789–2797. [CrossRef]
44. Ye, Y. Combining Binary Search and Newton′s Method to Compute Real Roots for a Class of Real Functions. J. Complex. 1994, 10,

271–280. [CrossRef]

http://doi.org/10.1016/j.oceaneng.2022.110635
http://doi.org/10.1137/11082885X
http://doi.org/10.1007/s10208-005-0179-9
http://doi.org/10.1016/j.oceaneng.2022.111147
http://doi.org/10.1016/j.oceaneng.2017.01.031
http://doi.org/10.1016/j.cad.2004.09.006
http://doi.org/10.1016/j.cagd.2019.101785
http://doi.org/10.3390/math9111306
http://doi.org/10.3390/eng2010007
http://doi.org/10.12988/ams.2017.710302
http://doi.org/10.1006/jcom.1994.1014

	Introduction 
	Modeling and Deformation of the Ship Hull 
	Inversion Algorithms of NURBS Curves 
	Problems with the IR-BFS Inversion Algorithm 
	Research Objectives and Structure 

	Mathematical Background 
	NURBS Curve 
	IR-BFS Inversion Algorithm 
	Flattening Algorithm of the NURBS Curve 

	Framework of the Proposed Methodology 
	Overall Design of the FHP-BFS Algorithm 
	Flattening Algorithm Based on the FHP-BFS Algorithm 

	Results 
	Comparison of Algorithms between FHP-BFS and IR-BFS 
	Validation of the Practical Effectiveness of the FHP-BFS Algorithm 
	Setting the Precision of the Threshold of the FHP-BFS Algorithm 

	Comparison with Other Algorithms 
	Evaluation of the Flattening Algorithm 

	Discussion 
	Conclusions 
	References

