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Abstract: The edge wave on a uniform-sloped seabed was described by the velocity-potential function
by Mok and Yeh in 1999. Edge waves cannot be extended above a certain level from the still-water
level, and the upper limit of the run-up of the edge waves for given conditions is found here. In
this study, quantitative mass transport by the edge waves of the beach is introduced. The maximum
run-up height is decided from the wave’s amplitude at shoreline, and the maximum run-up distance
from the shoreline is proportional to the wavelength of the edge waves. The fluid alongshore-
mass-transport profile shows that the strongest mass transport rate corresponds to the position
offshoreward multiplied by 0.0362 times the wavelength, and its magnitude is 1.23 times the mass-
transport rate at the shoreline. The maximum cross-sectional total mass-transport rate is 0.214 times
the mass transport at the shoreline, multiplied by the wavelength for the maximum run-up condition.
This study suggests that edge waves cannot be increased infinitely and that there is a maximum
run-up on the coast.

Keywords: edge waves; wave run-up; maximum edge waves; beach erosion

1. Introduction

Coastal morphological changes have interested many researchers in the fields of coastal
engineering and oceanography. Morphological changes, such as beach scarps, directly affect
the safety of artificial structures around dunes, while underwater morphological changes
affect seabed ecology [1,2], maintenance of navigation channels [3], and the sustainability
and resilience of beaches [4–7].

Scarps are closely linked to wave run-up. Wave run-up is closely related to beach
cusps, and beach cusps may be exposed parts of rhythmic, underwater bedforms near
the shoreline and the surf-zone terrace. Shore-normal wave-induced run-up has been
treated as the highly nonlinear deformation of waves hitting the beach in a nearly normal
direction. However, edge waves also have run-up. We need to know the order of the edge
wave-induced run-up magnitude at fields. Some waves travel along shoreline at the edges
of coasts, and they are called “edge waves”.

Edge waves, which have long been known as curiosities by researchers such as
Lamb [8], have recently received much attention as a research target. This is due to
the fact that edge waves clearly play an important role in the dynamics of coastal areas and
beach-erosion processes [9]. Unfortunately, field edge waves and their run-up have not
yet been reported well. Possible driving forces of edge waves may include low-pressure
movement along coastline [10], under-sea earthquakes [9,11], or incident waves or their
broken waves approaching almost normally near the coastline [12–14]. Existing theories
on the alongshore wave-induced current, driven by radiation-stress gradients of obliquely
approaching, short-period waves describe the underwater flow pattern [15]. However,
the steady alongshore current field induced by wave-average properties cannot describe
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the flow above the wave set-up level. Wave-resolving theories exist, and they are keen to
breaking criteria, and the driven, alongshore current develops mainly around the breaker
line, not around the beachface.

The concept of edge-wave development being due to normally approaching waves
includes the wave reflection at the shoreline and refraction of the reflected waves, but this
concept has not been mathematically explained yet [16–18]. We know that edge waves
do exist. They have been generated in three-dimensional laboratory wave basins. For
example, edge waves have been generated with a vertical pedal with a hinge [19–21].
Some questions still remain regarding edge wave attributes. First, it has not been shown
whether they can maintain their shape while travelling a long distance. Edge waves have
travelled only a few wavelengths due to the limited laboratory basin space available for
Mok and Yeh’s experiments [21]. Second, the magnitude of edge waves at coasts has not
been evaluated. If edge waves are high, the importance of their existence also becomes
high. Beach cusps and rhythmic bedforms along coastal edges have often been observed
along straight beaches [22,23], and some researchers argue that they are closely linked to
edge waves, based on the reasoning that the periodic bedform lengths should match the
edge waves’ lengths. However, the above assumption has not been proven yet.

When edge waves with a given wave period are in a resonance mode, the water
surface will preserve the wavelength, wave crest lines or trough lines will be stationary,
and therefore, the bedform lengths may be assumed to be a multiple of the wavelength in
the alongshore direction. In reality, the sediment particle movement is much complicated,
including saltation, suspending, and settling, and the relationship between the spectra of
the bedform lengths and the wavelengths of the edge waves should be carefully examined.

Difficulties in separating out edge waves from complex, multi-superposed field waves
with a spectrum may come from various causes: infiltration at the bed boundary, viscosity
in the bed-boundary layer, turbulence, or highly nonlinear behavior at the water’s surface,
such as waves breaking. Some of the above difficulties may exist even in well-controlled
laboratory experiments. Due to the lack of a satisfactory confirmation of the existence
of edge waves from field data, the importance of edge waves on coastal morphological
shaping has not yet been addressed well. We could say that even, if edge waves are not high,
they may effect morphological change slowly but persistently, influencing the formation of
cusps, bedforms, or run-up, and contributing to the development of scarps between dunes
and beachfaces. It is obvious that edge waves should be treated more seriously since, if their
magnitudes at fields are significant, they can contribute to beach morphology profoundly.

Edge waves have been described as mathematical theories since 1940. Governing
equations of coastal edge waves are virtually the same as the three-dimensional continuity
equation and the three momentum equations, i.e., the Navier–Stokes equations. There have
been two distinctly different approaches: shallow water waves and irrotational potential-
function waves.

The final equations for water levels are slightly different from each other due to the
different interim assumptions. Nonlinear solutions are not available yet, weakly nonlinear
solutions have been proposed by some researchers [24–28], and linear solutions have
been well-introduced from both the shallow-water assumption and the velocity-potential
functions [10,29,30]. Most existing edge-wave formations are based on the separation of
variables concept.

The mass transport due to edge waves has been described by Weber and Ghaffari [9].
However, their theory does not cover the on-shore zone. Mok and Yeh [21] carried out
laboratory experiments and measured mass transport due to edge waves. However, they
focused on the vertical distribution of the mass transport in underwater zones.

We have adopted an existing solution set rooted in the potential function assumption
for progressive edge waves proposed by Mok and Yeh [21]. We focus on the horizontal–
vertical distribution of mass transport due to edge waves underwater and on the beach.
As a first step, progressive edge waves propagating parallelly along the shoreline or the
bed-level contour lines are considered here. In other words, edge waves are not oblique to
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the shoreline. Two opposite edge waves can form a resonance pattern, but the resonance of
the edge waves is not treated here. Section 2 proposes the maximum run-up limit formula.
Section 3 introduces the possible alongshore mass transport in the coastal field scale using
the maximum run-up limit formula and quantitatively analyzes the results. Then, the
conclusion of this paper is given in the Section 4.

2. Finding the Maximum Run-Up Limit

The formulation of equations to describe edge waves includes governing equations
and boundary conditions. The onshore boundary condition is especially important as it
defines the characteristics of an edge wave. Any kind of folding of the bed boundary, such
as that shown in Figure 1a,b deteriorates the behavior of an edge wave. We focus on waves
over a straight profile with a uniform slope, as shown in Figure 1c, where the onshore
boundary limit meets the bed boundary.
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We use convenient, inclined coordinates (xs, y, zs) for the velocity-potential function,
and we use the horizontal and vertical coordinates (x, y, z) for the displacement of the
water surface from the still-water level, as shown in Figure 2.
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The governing equation of an edge wave is the Laplace equation derived from the
fluid mass conservation.

∇2φs = 0 (1)

Vs = ∇φs (2)

where φs is the velocity-potential function, Vs is the velocity vector (us, v, ws), and us, v, ws
are the fluid velocity components in the xs, y, zs directions, respectively.

Mathematical solutions cover the whole domain, including the upper zone above the
bed and the lower zone below the bed, but only a partial portion of the solutions is valid
from the physical point of view. See Figure 3.

The kinematic boundary condition on the water’s surface is:

ωs =
Dη

dt
on z = η (3)

The kinematic boundary condition on the seabed is:

ωs = 0 on zs = 0 (z = −x tan β) (4)

where β is the angle between the horizon and the seabed, and η is the displacement of the
water’s surface from the still-water level.

The dynamic free-surface boundary condition is:

p
ρ
= 0 on z = η (5)
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where p is the fluid pressure and ρ is the fluid density. Analytical solutions have been
proposed by Mok and Yeh [21]. Taking Ursell’s mode 0 from their solutions [31], we have
the potential function, the surface displacement, and the dispersion relationship, which are:

φs(xs, y, zs, t) =
αg
ω

exp(−kxs) sin(ky−ωt) (6)

η(x, y, t) = α exp(−kx cos β) cos(ky−ωt) (7)

ω2 = gk sin β (8)

us = −
αgk
ω

exp(−kxs) sin(ky−ωt) (9)

v =
αgk
ω

exp(−kxs) cos(ky−ωt) (10)

ws = 0 (11)

where α is the wave amplitude at the shoreline (x = 0), g is the acceleration due to gravity,
k is the wave number, φs is the velocity potential of Ursell’s mode 0, β is the beach slope
angle, ω is the wave angular frequency, and t is time.

The run-up and run-down propagate along the shoreline with a constant celerity.
The above solution for the displacement of the surface level limits the run-up which is a
multiplication of an exponential function and a sinusoidal function. See Figure 4.
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The upper envelope of the water’s surface level corresponds to the case when the
wave phase is 0◦.

ky− ωt = 0η(x, 0, 0) = α exp(−kx cos β). (12)

The water’s surface makes a tangent to the seabed line for the maximum run-up. The
seabed is expressed as:

zb(x) = −x tan β (13)

As the bed level line is tangential to the water’s surface curve, we apply the following
two equations: Equating Equations (12) and (13),

α exp(−kx cos β) = −x tan β (14)
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For another example, derivatives of Equations (12) and (13) should match, as:

dη

dx
=

dzb
dx

(15)

Then, we find the position of the maximum run-up:

x = − 1
k cos β

(16)

Accordingly, the maximum run-up height becomes

η = eαmax (17)

Inserting the above relationship into Equation (13):

αmax =
tan β

ek cos β
(18)

When the water’s surface amplitude at the shoreline α is known, the wave number
k is decided if maximum run-up develops, or vice versa. The water’s surface maximum
amplitude at the shoreline is αmax; the base of the natural logarithm is e. The instantaneous
water depth h is the sum of the still-water depth xtanβ and the surface displacement from
the still-water level η:

h = α exp(−kx cos β) cos(ky−ωt) + x tan β (19)

Assuming s mild-slope seabed, the fluid flow velocity in the y direction is:

v =
αgk
ω

exp(−kx cos θ) sin(ky−ωt) (20)

The wave-period-average fluid flux in the x direction is zero.

qx =
1
T

∫ T

0
hudt = 0 (21)

Qx =
∫

qxdx = 0 (22)

where qx is the mass transport for a specific position, Qx is an on-offshore integration of qx
over the entire section.

The wave-period-average fluid flux in the y direction qy is a function of x:

qy =
1
T

∫ T

0
hvdt (23)

At x = 0, we have an approximate solution for qy,

qy(0) =
1
4

gα2k
ω

(24)

The y-directional total fluid flux across a section in the x direction is obtained from the
integration of qy in the x direction:

Qy =
∫

qydx (25)
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We introduce a non-dimensional integration coefficient δ as:

Qy = δqy(0)L (26)

The δ can be a stable and universal coefficient of 0.214 if the edge waves satisfy the
maximum run-up condition. However, if the edge waves are lower than the maximum
run-up condition, the integration coefficient of δ becomes smaller, as shown in Figure 5.
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3. Field Scales of Alongshore Mass Transport

We examined the magnitude of the mass transport profile at real coastal fields. In
order to analyze the distribution of mass transport along the coast, mass transport was
analyzed as a test case of real fields. We took two cases of wave conditions which are
typical on the East Coast of Korea. See Table 1.

Table 1. Test case to examine the magnitude of mass transport.

Case ω
(
s−1) L(m) * k

(
m−1) α(m) tanβ (deg.) Remark

1 0.579 62.8 0.100 1.43 20 αmax
2 0.579 62.8 0.100 0.71 20 αmax/2

*: wave length.

The flow fields on the water’s surface of the edge waves are shown in Figure 6,
which describes the overall propagation of the edge waves in the y direction. The along-
shore fluid flux distributed two sections in the x direction, as shown in Figure 7. Point
A shows that qy/qy(0) is 1.00(-), which is thought to be significant, considering the
surrounding shallow bathymetry. Point B shows that qy/qy(0) is 1.23(-), nondimen-
sional offshore distance from shore (x/L) is 0.0362(-). The total sectional fluid flux is
computed as 11.2 m3/s. It is obvious that the mass transport plays an important role in
the transporting of sediment at the beachface. If the wave height is less than that for
the maximum run-up case, the alongshore mass transport rate will be reduced, and the
resultant total sectional transport rate will be reduced. Talking the example of Case 2,
the total sectional fluid mass transport rate is 2.37 m3/s, which is about a quarter of that
for the maximum run-up situation.
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4. Conclusions

Little has been reported on alongshore sediment transport around beachfaces due
to both the difficulty in measurements and the inherent mechanical complexity of flow
and sediment movement there. The movement of sediments in the swash zone and the
change in the shape of the seabed are actually very complicated issues. The slope of the
beach varies depending on the wave and flow conditions. The bedform is mainly due to
the action of waves, changes in drag due to bed roughness, the introduction of shape drag,
and the generation of energy loss due to the secondary current. The problem is further
complicated by sediment movement due to the mixture of water and sediments in the
swash zone. In this problem, the boundary layer’s properties may not behave like clear
water, which makes accurate decisions much more difficult.. The present mass transport
due to edge waves is different from the obliquely approaching wave-induced alongshore
current in the sense that the two currents cover different zones. See Figure 8.

Edge waves over a constant-sloped seabed include run-up and alongshore mass
transport. Conventional potential function theory can be applied to edge waves to find the
maximum possible runup position and height.

If we applied the existing potential function theory to edge waves, we can found
the the possible maximum run-up position and height. Approximate alongshore mass
transport distribution in the offshore direction was computed, and the result shows that the
maximum alongshore mass transport occurs at 0.0362 times the edge wave’s wavelength
from the shoreline. The maximum mass transport rate qy/qy(0) is 1.23 times larger than
that at the shoreline.
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Figure 8. Concept of edge wave mass transport and oblique wave-induced current distribution [9].

The total fluid flux, or the integrated alongshore mass transport, the coefficient δ
was found to be 0.214 the mass transport rate at the shoreline and the wavelength at the
maximum run-up conditions. The coefficient δ was found to reduce to 0.159 as the ratio
between the wave amplitude at shoreline and the wavelength for the maximum run-up
situation decreases.

The present computational results are based on the ideal fluid assumption. The
total mass transport around the beachface implies strong sediment transport in the zone.
However, the real flows on the coast involve bed friction, infiltration through sands or
gravels, and laminar or turbulent bed-boundary-layer formation. The sediment transport
involves more factors on top of those. The possibility of the existence of edge-waves
involving various mechanisms and how to calculate the mass transport needs more follow-
up studies. Also, further research could link the present fluid mass transport due to the
edge waves to sediment transport, morphological change onshore, and the sustainability
of beaches.
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