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Abstract: The St. Marys River is a key waterway that supports the navigation activities in the
Laurentian Great Lakes. However, high year-to-year fluctuations in ice conditions pose a challenge
to decision making with respect to safe and effective navigation, lock operations, and ice breaking
operations. The capability to forecast the ice conditions for the river system can greatly aid such
decision making. Small-scale features and complex physics in the river system are difficult to capture
by process-based numerical models that are often used for lake-wide applications. In this study,
two supervised machine learning methods, the Long Short-Term Memory (LSTM) model and the
Extreme Gradient Boost (XGBoost) algorithm are applied to predict the ice coverage on the St. Marys
River for short-term (7-day) and sub-seasonal (30-day) time scales. Both models are trained using
25 years of meteorological data and select climate indices. Both models outperform the baseline
forecast in the short-term applications, but the models underperform the baseline forecast in the
sub-seasonal applications. The model accuracies are high in the stable season, while they are lower in
the freezing and melting periods when ice conditions can change rapidly. The errors of the predicted
ice-on/ice-off date lie within 2–5 days.

Keywords: ice forecast; St. Marys River; Great Lakes; machine learning; LSTM; XGBoost

1. Introduction

In the Laurentian Great Lakes (hereafter the Great Lakes), lake ice starts to form in
late November and early December [1–3] and causes severe navigation problems in the
St. Marys River region. This important waterway connects Lake Superior to Lake Huron
and is displayed in Figure 1. In addition, Figure 2 shows a zoomed-in view of the St. Marys
River. Federal and commercial icebreaking operations help keep the shipping routes open
in early winter and spring, but the navigational lock system is closed from mid-January
to late March. In the transition periods (i.e., when lake ice starts to form and melt), an
ice forecasting capability with sufficient accuracy and lead time is desired by lock and ice
breaking operators as well as the shipping industry.

In any given year, the formation, movement, and timing of the ice cover on the Great
Lakes is temperamental and changes substantially with shifts in weather and climate
patterns. Extremely cold air across the Great Lakes is a major contributor to ice formation
on the Great Lakes. Surface air temperature and its interannual variability are major factors
in determining when and how much ice cover develops. These factors are also impacted by
teleconnection patterns, such as the El Niño–Southern Oscillation and the North Atlantic
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Oscillation. In addition to the large year-to-year fluctuations, the Great Lakes annual
maximum ice cover has shown a downward trend since the 1970s [4,5].
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Figure 1. Satellite image of the Great Lakes taken on 25 March 25 2019 based on the Moderate Res-
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tude N 46°30.079′ and longitude W 84°25.7424′. 
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both short-term (a few days) and seasonal (a few months) time scales [4,7]. They success-
fully demonstrated the forecasting capabilities via process-based numerical and statistical 
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1.1. Background on Previous Ice Cover and Analysis Methods

Several ice cover forecasting studies have been conducted in the Great Lakes area
for both short-term (a few days) and seasonal (a few months) time scales [4,7]. They
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successfully demonstrated the forecasting capabilities via process-based numerical and
statistical models. However, these ice cover forecasting models did not cover the river
systems or waterways. This was mainly because it is difficult to capture the detailed,
complex physics at these focused geographic scales while also modeling the lake-wide-
scale phenomena. As a result, the ice forecasting capability over both short-term and
seasonal time scales for the key river systems and waterways is currently limited in the
Great Lakes domain, despite the importance of forecast information noted by the shipping
community in these domains and the time scales [8].

1.2. Overview of Machine Learning Models

Machine learning (ML) techniques have become popular in many scientific fields, such
as medicine, finance, geophysics, and climate research [9–12]. They are increasingly used
to extract patterns and insights from the ever-increasing volume of geospatial data in the
identification of useful connections in the climate system. In addition, they are used to
train statistical models which mimic the behavior of climate models. This helps identify
and leverage the non-linear relationships between climate variables. However, current
approaches may not be optimal if the system behavior is dominated by spatial or temporal
patterns. Contextual cues should therefore be used as part of ML (an approach that is
able to extract spatio-temporal features automatically) to gain a further understanding of
climate science, thus improving the performance of seasonal forecasts, and the modeling
of long-range spatial connections across multiple time scales. To date, applications of
ML models are limited for the Great Lakes domain, where a few pioneering studies that
focused on waves [13,14] and ice/water classification [15]. ML models were also used for
ice forecasting tasks in the Arctic Ocean [11,16,17]. However, ML-driven ice forecasting
applications have not been developed for the Great Lakes.

ML models, such as the Long Short-Term Memory (LSTM) method and the Extreme
Gradient Boost (XGBoost) model are attractive approaches to examining ice forecasting
in lieu of numerical modeling. This is especially true for the river systems where lake-
wide numerical models are challenged. An obvious advantage of using an ML model
versus a numerical geophysical model is the reduced computational cost and possibly
better performance for certain processes that numerical models do not necessarily represent
well. The Great Lakes waterways fall into this category since they are small but complex
systems. Thus, the potential of ML for Great Lakes ice forecasting applications warrants
pilot research. This includes finding the most appropriate ML model, identifying the
suitable features, and adjusting the best parameters for our prediction problems. Such work
is critical in order to support future products that can support decision making by lock
operators, vessel managers, ship captains, and U.S. and Canadian Coast Guards around
the St. Marys River water system in a way that they can maximize their shipping time and
avoid unnecessary cost.

In the present study, we configure two ML models to assess the ice coverage over
the St. Marys River, examine various input data including the surface meteorology, water
surface temperature, and climate indices, conduct model optimizations, and assess the
models’ skill for 7-day and 30-day forecast ice predictions.

2. Materials and Methods
2.1. Model Selection

Our main ML models are the Long Short-Term Memory (LSTM [18]) and Extreme
Gradient Boost (XGBoost [19]) techniques. LSTM is a variant of a neural network that is
widely used for predicting time series data. XGBoost is a popular ML method that uses
a gradient tree boosting technique [14]. Each model has its own learning methods and
prediction capabilities, as further described in the following sections.
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2.1.1. Long Short-Term Memory Networks (LSTM)

Long Short-Term Memory networks are a deep-learning model introduced by Hochre-
iter and Schmidhuber in 1997 [18]. LSTM is an advanced Recurrent Neural Network (RNN).
Compared with RNN, LSTM can store long-term dependency information, which is pivotal
for data that have a long-time range. However, RNNs frequently suffer from a problem
called vanishing gradient, which causes model learning to become too slow. Consequently,
LSTM models are widely applied for time series prediction and have proven to perform
better than RNN in these applications.

RNN are always formed by a chain of repeating cells. In a standard RNN, the repeating
cells usually have a simple structure such as a “tanh” layer. However, in LSTM, the internal
structure is relatively complicated. Instead of a single “tanh” layer, there are four layers
interacting in a special way. The structure of an LSTM network is shown in Figure 3.
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The principal component of an LSTM is a cell state, which resembles a belt that runs
straight down the entire chain. An LSTM can selectively remove or add information to the
cell state. Therefore, the LSTM has the ability to solve long-term dependency problems.

In an LSTM model, the cell state is regulated by structures called gates. Gates are a
structure that optionally lets information through. Gates are usually composed of a sigmoid
neural net layer and a pointwise multiplication operation. It will output a number between
zero and one. A zero means that all information will be removed, while a one means all
information will get through. There are three types of gates in an LSTM network to control
the cell state, which are the forget gate ft (Equation (1)), the input gate it (Equation (2)),
and the output gate ot (Equation (3)). In these three equations, σ is a sigmoid function that
normalizes the result from 0 and 1. W represents the weighted matrix and b represents the
bias vector. In Equation (4), the candidate cell state (C̃t) is calculated. Then, the new cell
state (Ct) is updated based on the result of the forget gate and input gate in equation (5).
Finally, in Equation (6), the new output (ht) will be computed based on the new cell state.

ft = σ
(

W f ·[ht−1, Xt] + b f

)
(1)

it = σ(Wi·[ht−1, Xt] + bi) (2)

ot = σ(Wo·[ht−1, Xt] + bo) (3)

C̃t = tanh (Wc·[ht−1, Xt] + bc) (4)

Ct = ft ∗ Ct−1 + it ∗ C̃t (5)

ht = ot ∗ tanh (Ct) (6)
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2.1.2. Extreme Gradient Boost (XGBoost)

XGBoost is a decision-tree-based ensemble ML algorithm that uses a gradient boosting
framework [19]. XGBoost is based on decision tree ensembles which are composed of
classification and regression trees. Gradient boosting is a supervised machine learning
algorithm that attempts to accurately predict a target variable by combining an ensemble
of estimates from a set of simpler and weaker models. Boosting is an ensemble learning
technique of building many models sequentially where each new model attempts to correct
for the deficiencies in the previous model by adding weights. In tree boosting, each new
model that is added to the ensemble is a decision tree. Models are added sequentially until
no further improvements can be made. The objective of Gradient boosting is to minimize
the loss function of the model by aggregating the predictions of weak learners using the
gradient descent procedure. Gradient boosting is a greedy algorithm and can overfit the
data. Its performance can be improved using tree constraints, shrinkage, random sampling,
and penalized learning. XGBoost is an advanced implementation of gradient boosting
along with some regularization factors. XGBoost can help reduce overfitting through
L1 and L2 regularization by penalizing complex models. It has auto tree pruning where the
decision trees do not grow beyond certain limits (specified by the max_depth parameter). It
has a built-in routine to handle missing values and outliers to a certain extent and has a
built-in cross-validation method that runs cross-validation at every iteration of the boosting
process. It supports parallel processing at the node level and sequential processing at the
tree level. Its capabilities include out-of-core computing, efficient memory management for
large datasets, cache optimization and scalability.

2.2. Data and Preprocessing

The data used in this study consist of meteorological surface data, water surface
temperature data, ice coverage, and climate indices for select teleconnection patterns. The
data source and preprocessing procedure for each of the datasets are described in the
following sections.

2.2.1. Surface Meteorology

The surface meteorology data were obtained from the Climate Forecast System Reanal-
ysis (CFSR, -2011) and the Climate Forecast System version 2 (CFSv2) operational analysis
(2011–2021) [21,22], which were downloaded from the Research Data Archive (RDA). CFSR
is a third-generation reanalysis product. It is a global, high-resolution, coupled atmosphere-
ocean-land surface-sea ice system designed to provide the best estimate of the state of these
coupled domains over this period. CFSv2 provides operational analyses for the years after
2011, which is not covered by CFSR.

The CFSR global atmosphere resolution is ~38 km (T382) with 64 vertical levels. The
global ocean has a 0.25◦ spatial resolution at the equator, extending to a global 0.5◦ beyond
the tropics, with 40 vertical levels. Lake surface temperature and ice coverage in the
Great Lakes in CFSR and CFSb2 are based on satellite-based measurements [21,22]. In this
research, we mainly focus on five features from the CFSR and CFSv2 datasets, and they
are listed in Table 1. All these features are extracted for the domain of the St. Marys River
using the latitude and longitude range 46.05–46.59◦ N and 84.65–83.80◦ W. The 6-hourly
data obtained from the CFSR and CFSv2 datasets were averaged to create daily values.

2.2.2. Water Surface Temperature

Water surface temperature data were downloaded from the National Atmospheric
and Oceanic Administration (NOAA) CoastWatch Great Lakes Node website [23]. This
dataset contains daily lake-wide-averaged water surface temperature (in Celsius) of Lake
Superior, Lake Michigan, Lake Huron, Lake Ontario, Lake Erie, and Lake St. Clair from
1995 to present. In particular, we use water surface temperature data of Lake Superior and
Lake Huron since these two lakes are connected to the St. Marys River.
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Table 1. Surface meteorology features and their units.

Feature Name Unit

Meridional component of the 10 m wind meter/second (m/s)

Zonal component of the 10 m wind meter/second (m/s)

2 m air temperature Kelvin (K)

Surface air pressure Pascal (Pa)

Relative humidity Percentage (%)

2.2.3. Ice Data

Ice data were also downloaded from the NOAA CoastWatch Great Lakes Node [23].
This dataset contains the Great Lakes ice concentration obtained from the U.S. National Ice
Center (NIC). The gridded ice analysis products are produced from available data sources
including Radarsat-2, Envisat, AVHRR, Geostationary Operational and Environmental
Satellites (GOES), and the Moderate Resolution Imaging Spectroradiometer (MODIS). The
spatial resolution of the ice concentration data is 2.55 km in 2005, and 1.8 km from 2006
to 2017. The resulting NIC dataset defines ice concentration values from 0 to 100% in
10% steps. As before, the research area was trimmed to the area of St. Marys River by
its latitude and longitude (46.05–46.59◦ N, 84.65–83.80◦ W). We calculate the average ice
concentration over the St. Marys River. A snapshot of this spatial map is shown in Figure 4.
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2.2.4. Climate Indices for Select Teleconnection Patterns

Teleconnection patterns are large-scale patterns of pressure and circulation anomalies
that are persistent and recurrent and are spread across vast geographical areas. Climate
indices are diagnostic quantities that help to identify and quantify the variability and
changes in particular aspects of the climate system [4,24]. Climate indices have become
widely used in climate research studies, including those in the Great Lakes [4,24,25]. These
indices can help describe the climate in a more approachable way than using the measures of
the distribution such as the mean and the standard deviation. Atmospheric teleconnection
patterns, especially the North Atlantic Oscillation (NAO) and El Niño, La Niña events were
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also found to be associated with mild and severe ice cover on the Great Lakes. In this study,
six climate indices are used which are the El Nino–Southern Oscillation (ENSO), North
Atlantic Oscillation (NAO), Pacific North/America (PNA), Tropical North Hemisphere
(TNH), and Eastern Pacific Oscillation (EPO) or East Pacific/North Pacific Oscillation
(EP/NP). The historical data of the climate indices were collected from the National Weather
Service Climate Prediction Center and NOAA’s Physical Sciences Laboratory websites.

2.3. Model Configuration

We have implemented our ML models in Python 3.7.6, with keras-2.3.1 and the
tensorflow-2.3.0 backend. Some other relevant libraries include Pandas, Numpy, and
Matplotlib. Jupyter Notebook IDE was used for data analysis.

In both the LSTM and XGBoost models, the features specified in Section 2.2. were
used as input data and the ice concentration served as the target variable. Both LSTM and
XGBoost models predict percent coverage of ice cover over the river. Considering that these
are time series data, in which serial correlations exist between successive observations,
the usual approach of a random assignment to the three partitions (training, validation,
and testing) is not followed. Instead, continuous periods of the time series are assigned
to each partition. The data from the previous 25 years, i.e., 1996 to 2021, were used. In
our study, an ice season is defined from November in the previous year to the following
May. For example, a year “1996” indicates November 1995 to May 1996, covering the
winter of 1995/1996. The data were divided into the training set (1996–2010), the validation
set (2011–2015), and the test set (2016–2021). With the training set, reliable estimates of
the trainable model parameters are achieved. The validation set is used in the selection
of model hyperparameters such as the tree depth and to check for overfitting on the
training data. Finally, the test set is used to assess how well the ML models generalize
to unseen conditions. The model specific configurations are described in Section 2.5.
Moreover, the data from November 1 to May 10 are further divided into the freezing phase
(1 November–14 January), the stable phase (15 January–25 March) and the melting phase
(26 March–10 May). Apart from predicting for the whole winter season (1 November–
10 May), we also conducted predictions based on these three phases and observed the
performance of our models in different phases. The ML models were trained, validated,
and tested for 7-day and 30-day predictions separately.

2.4. Evaluation Methods

The following evaluation methods are used to evaluate the accuracy and predictive
power of the models. The evaluation metrics are calculated for LSTM, XGBoost and the
“baseline” which is the average of all the years of the data considered for the research.

Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) are generally used
to diagnose the variation in errors in the forecasts and evaluate the goodness of fit. MAE is
the average of all absolute errors and RMSE is the standard deviation of the residuals. This
is represented in Equations (7) and (8), where N is the number of data points, Xi represents
original values and X̂i represents predicted values. Both the MAE and RMSE can range
from zero to infinity. They are negatively oriented scores, hence lower values are better.
Since the errors are squared before they are averaged, the RMSE is more sensitive to outliers.
This means the RMSE is most useful when large errors are particularly undesirable.

MAE =
1
N ∑n

i=1

∣∣Xi − X̂i
∣∣ (7)

RMSE =

√
∑N

i=1
(
Xi − X̂i

)2

N
(8)

In order to compare the observed and predicted ice-on/off dates, we defined the ice
on/off dates as the following: If the ice coverage over the domain (Figure 4) is above 10%
for three consecutive days, it will be considered as an ice-on date. If the ice coverage is
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below 10% then it is considered an ice-off date. The differences between the observed and
predicted ice-on/off dates are calculated as a metric to assess the skills of the two models.

In order to compare the model simulations with the normal year values, we calculate
the baseline daily ice coverage time series by calculating 26-year mean values for each day
from 1996 to 2021. This baseline provides the approximate information of ice coverage
at a given time of a season in the “normal” year. If the error for our model is lower than
the baseline, it indicates that our models have better predictive ability than using the
normal-year information for the forecast.

2.5. Effective Features—Feature Significance

Out of the 12 features (or input variables) in total, we seek to select features that matter
most to the target values. In other words, we seek to ensure that every feature we input is
meaningful. For LSTM, we calculated the feature importance and implemented a feature
selection via the built-in class of the scikit-learn library called “selectKBest”, which offers a
suite of different statistical tests to examine the importance of input variables. The selected
regression is called “f_regression”, which is appropriate for numerical inputs. Features
with low importance were removed in the hyperparameters tuning, which is described
in Section 2.6.

2.6. Hyperparameters Tuning

Hyperparameters were optimized for LSTM using the Sherpa hyperparameter opti-
mization library [26]. For XGBoost, the optimal hyperparameters were chosen manually by
evaluating the model performance iteratively. The detailed information on the hyperpa-
rameters is described below. The tuning was conducted for the validation set (2011–2015).

2.6.1. LSTM

Hyperparameter tuning for the LSTM model was conducted from four different
dimensions. Firstly, we removed the same variables based on the feature selection result.
Variables with low feature importance score are removed from the input data one by one to
see whether the accuracy can be improved. The test was done both for 7-day prediction
and 30-day prediction. We found that the removal of the climate indices SOI, PNA and
EPNP maximized the accuracy. Secondly, we found that the “RMSProp” optimization
method presented the highest accuracy among “RMSProp”, “Adam” and “SGD”. Thirdly,
we found that the “softsign” activation method presented the highest accuracy among
“relu”, “elu”, “softsign” and “softmax”. Finally, we explored how the number of hidden
neurons and hidden layers and learning rate inside the LSTM affect the prediction accuracy.
The accuracy did not have a linear relation with these parameters. Hence, for these
three parameters, we used the default learning rate (0.001), 20 hidden neurons, and one
hidden layer.

2.6.2. XGBoost

The XGBoost parameters can be divided into three categories. First, the general
parameters control the booster type in the model. “booster” and “nthread” are examples of
such general parameters. Second, the booster parameters control the performance of the
selected tree booster. “max_depth”, “subsample”, “colsample_bytree” are some of the booster
parameters. Third, the learning task parameters set and evaluate the learning process of the
booster from the given data. “objective” and “eval_metric” are the learning task parameters.
The functioning of each of these parameters as well as the optimized values used in this
study are listed in Appendix A. Like LSTM, when the climate indices SOI, PNA and EPNP
are removed, the accuracy of the XGBoost model improves slightly.

2.7. Shuffling of the Training Data

We conducted an experiment where ice years were shuffled to remove the long-term
trend and to add more randomness to the training and validation sets. In this experiment,
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we defined an ice year from October 1 to September 30 in the following year (e.g., the
1996 ice year covers 1 October 1995–30 September 1996). This definition preserves the
consecutive ice data in a winter and avoids artificial discontinuities in the ice time series
that would occur if we defined an ice year based on the calendar year. In this experiment,
we shuffled the winter years based on the duration of the winter, i.e., we distributed winters
with anomalously long and short durations evenly between the training and validation
sets. Table 2 shows how we divided the training set and validation set in this experiment
as well as the ice duration for each winter year. We kept the test set the same as before in
order to make the comparison between before and after shuffling.

Table 2. Ice years in each of the training, validation, and test sets plus the duration of the winter.

Data Ice Years and Durations of Winter

Training set
(16 years)

2012 (94 days), 1998 (101 days), 2010 (113 days), 1999 (114 days), 2007 (129 days),
2002 (134 days), 2006 (135 days), 2001 (138 days), 1997 (139 days), 2008 (139 days),
2009 (141 days), 2013 (146 days), 2015 (160 days), 1996 (163 days), 2014 (165 days)

Validation set
(6 years)

2000 (103 days), 2005 (129 days), 2011 (134 days), 2004 (138 days), 1995 (141
days), 2003 (151 days)

Test set
(6 years) 2016–2021

The period of 1 October–31 December 2015 was not used in the shuffling experiment because it is used in the test set.

3. Results and Discussion

We present our prediction results in three ways, which are the time series of the ice
coverage, prediction errors, and ice duration. The time series can indicate the variation of
the ice concentrations and visually compare the relationship between the observed and
predicted values. The prediction errors (RMSE and MAE) of the test set can quantita-
tively compare the relationship among original values, predicted values and the baseline.
Comparisons of the modeled ice duration with observational data can present the error of
ice-on/off dates for both models, which is an important metric for the shipping commu-
nity. Except for the ice duration comparison, the results are only evaluated on the test set
(2016–2021).

The results of the feature importance analyses are shown in Figure 5. The ice coverage
from the previous days (Ice1, Ice2, and Ice3) were the most important features. The 2
m air temperature three and two days prior to the target date followed (temperature3,
temperature2). Interestingly, the order of the importance for the 2 m air temperature was not
in the expected temporal order. This means that the 2 m air temperature three days prior
was more important than the 2 m air temperature on the preceding 1–2 days. Next, the
water surface temperature in Lake Huron and Lake Superior followed. Surface wind speeds,
humidity, and the climate indices were not as important as the above-mentioned features.
These features with low importance score were not included in the hyperparameters tuning
and final models.

3.1. Ice Coverage Time Series

Figure 6 shows the time series of the ice coverage with a 7-day prediction interval.
Compared with the green curve (baseline), the temporal variations of the red curve (LSTM)
and the blue curve (XGBoost) are more similar to the black curve (observation), which
indicates that the model prediction results are more accurate than the baseline.
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Figure 6. Time series of the ice coverage over the St. Marys River system for 7-day predictions.

According to this time series plot, the blue curve (LSTM) and the red curve (XGBoost)
overlap with the black curve for most of the time, except in December and April for each
year. During these two months, we can see that the black curve (observation) contains
some small fluctuations, which indicates that the ice value varies dramatically in a short
period. The red curve (LSTM) and the blue curve (XGBoost) both divert from the black
curve (observation), indicating that the models have less skills in these two months. The
fluctuations in these periods may be caused by a drastic change in the local air temperature,
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which is difficult to predict by using the previous weather data, especially when the
predicted interval is large.

Table 3 compares the MAE and RMSE among the XGBoost, LSTM and the baseline in
the short-term (7-day) and sub-seasonal (30-day) applications. The prediction accuracies of
both ML models are better than the baseline when the predicted interval is 7 days. This
indicates that the ML models have better accuracy than simply using the normal year
values for the forecast.

Table 3. Prediction error (RMSE and MAE) on the test set before shuffling.

Metric MAE RMSE

Duration Phase XGBoost LSTM Baseline XGBoost LSTM Baseline

7 day forecast
model

Freezing 10.35% 10.65% 11.75% 15.70% 15.53% 17.35%
Stable 5.92% 6.04% 6.3% 8.92% 8.81% 11.37%
Melting 9.73% 9.80% 23.93% 14.58% 13.42% 28.83%
Whole year 7.64% 8.75% 12.72% 12.43% 13.09% 19.21%

30 day forecast
model

Freezing 14.73% 14.32% 11.75% 21.69% 20.40% 17.35%
Stable 8.92% 9.52% 6.3% 13.26% 13.83% 11.37%
Melting 33.55% 19.32% 23.93% 38.91% 28.09% 28.83%
Whole year 33.53% 13.73% 12.72% 38.89% 20.58% 19.21%

For the prediction in the different phases (freezing, stable, and melting), both models
present lower RMSEs and MAEs during the stable phase, while they are relatively higher
in the freezing and melting phase. This is likely because ice cover tends to change more
dramatically in the freezing and melting phases, which makes the prediction difficult.

Figure 7 shows the time series of the ice coverage with a 30-day prediction interval.
When compared with the 7-day results, both the red curve and the blue curve have notable
differences between the black curve (observation). The green curve (baseline) appears to
be closer to the black curve (baseline). The prediction accuracy represented by RMSE and
MAE (Table 3) is worse than the baseline for both LSTM and XGBoost. This indicates that
our ML models are not well suited for a sub-seasonal prediction.
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As for the comparison between LSTM and XGBoost, LSTM performed slightly better
than XGBoost did, both for the 7-day and 30-day predictions. In particular for freezing
periods and melting periods, the RMSE of XGBoost is notably larger than that of LSTM.
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This could be because XGBoost is a tree-based model with input being partitioned into finite
possibilities. XGBoost is unable to extrapolate the target values beyond the limits of the
training data, e.g., it is limited in predicting outliers that are not captured in the training set.
Such situations may occur commonly when ice conditions are rapidly changing. Therefore,
XGBoost is less appropriate for predicting ice conditions that are changing drastically.
Neural networks such as LSTM generally outperform XGBoost in this regard. On the other
hand, XGBoost tends to perform better in the stable period.

3.2. Shuffling Ice Years

Table 4 shows the RMSE and MAE from the experiment of the shuffled years for LSTM
and XGBoost. For LSTM, the prediction accuracy remains approximately the same after
shuffling for the 7-day prediction. For the 30-day prediction, the accuracy becomes even
lower than before shuffling, especially for the melting phase. For XGBoost, the prediction
accuracy remains unchanged overall. It improves in the stable period after shuffling but
tends to be lower in the freezing, melting and whole year periods. Overall, shuffling years
did not improve the prediction accuracy significantly for LSTM and XGBoost.

Table 4. Prediction error (RMSE and MAE) on the test set after shuffling.

Metric MAE RMSE

Duration Phase XGBoost LSTM Baseline XGBoost LSTM Baseline

7 day forecast
model

Freezing 10.08% 11.27% 11.75% 15.40% 15.06% 17.35%

Stable 5.27% 4.70% 6.3% 7.48% 7.63% 11.37%

Melting 8.26% 9.26% 23.93% 15.73% 12.73% 28.83%

Whole year 8.89% 8.25% 12.72% 14.22% 12.04% 19.21%

30 day forecast
model

Freezing 15.21% 14.98% 11.75% 22.76% 21.35% 17.35%

Stable 8.43% 6.48% 6.3% 12.96% 9.93% 11.37%

Melting 34.52% 29.68% 23.93% 39.38% 38.75% 28.83%

Whole year 35.21% 15.59% 12.72% 41.68% 24.36% 19.21%

3.3. Ice Season Duration

Figure 8 shows the comparison between the original ice-on/ice-off dates and the
predicted ice-on/ice-off dates for 7-day predictions. Since the accuracy of the 30-day
prediction was not satisfactory, the ice-on/off plot for the 30-day prediction is not shown
here. The black, red and blue lines represent the observed ice duration, and the predicted
ice durations of LSTM and XGBoost, respectively.

The differences between the observed and predicted ice-on/off dates for both ML
models are small, mostly within 3–5 days. However, for the small ice periods (very short
black lines in the plot), both ML models do not capture them accurately.

Overall, the errors of ice-on/ice-off dates were mostly within 5 days for both ML
models with the 7-day predicted interval. Interestingly, even in the warmest winters when
the lakes were largely ice free (e.g., 1997–1998, 2001–2002, 2005–2006, and 2011–2012 [4]),
there were notable ice durations over the river. This is likely because of the shallowness of
the river and ice inflow into the river from Whitefish Bay in Lake Superior. This reinforces
that forecast models for the lake-wide conditions cannot simply extrapolated to the river
system, and therefore it is important to have a forecast capability specific to the river.
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4. Summary and Conclusions

In an effort to develop a decision support tool for waterways and river systems, in
this study, we configured, optimized, and evaluated two machine learning models (LSTM
and XGBoost) for short-term and sub-seasonal ice prediction with the application to the
St. Marys River.

Our analyses showed that both LSTM and XGBoost outperformed the baseline predic-
tion (i.e., normal year prediction) in their short-term predictions (7 days). The prediction
error of the ice-on and ice-off dates were within 3–5 days in the short-term predictions.
However, the models did not outperform the baseline prediction in the sub-seasonal
(30-day) prediction.

For both ML models, the most important features (or input variable) were ice coverage,
2 m air temperature, and lake surface temperature on the previous days. The climate
indices, wind speed, and surface pressure were less important in both short-term and
sub-seasonal predictions.

Both LSTM and XGBoost performed relatively well in the stable phase (15 January–
25 March) compared to the freezing (1 November–14 January) and melting (26 March–
10 May) phases. This is likely because the ice conditions in the river system vary notably
day by day in the freezing and melting phases, whose dynamic changes are difficult to
capture based on the conditions on the previous days. This is likely because XGBoost was
not able to extrapolate the target values beyond the limits of training data when making
predictions on continuous data.

The limitations of our research are identified as follows: First, machine learning
modeling is in general unable to predict any unprecedented event since the model forecasts
are based on past data. Second, the gridded atmospheric reanalysis data used in this study
do not have sufficient spatial resolution to resolve the river system (i.e., only a few grid
boxes over the river region), likely impacting the representation of surface meteorology
over the region. Third, the accuracy of the machine learning models is strongly influenced
by the predicted interval. Fourth, the ML models in this study do not provide spatial
distribution of ice coverage or motion of ice and therefore cannot be a direct replacement of
process-based models that can predict dynamic conditions of ice cover in the river system.
However, the spatially aggregated time series is still informative to the end users and is
appropriate to examine for this pilot study.

With the demonstrated performance in the 7-day forecast applications, this study
shows that the two machine learning models provide computationally efficient, verified
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alternatives to process-based numerical models for ice forecasting in the St. Marys River
and potentially other waterways where ice cover hinders navigational activities.
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Appendix A. Optimized XGBoost Parameters in This Study

The following settings were used as the optimized XGBoost parameters in the experiment.

1. General Parameters

# Booster[default = gbtree];
# Booster type = gbtree, gblinear;
# nthread[default = maximum cores available];
# silent[default = 0].

2. Booster Parameters—Parameters for Tree and Linear Booster

# nrounds = 20;
# learning rate = 0.0005;
# gamma[default = 0];
# max_depth = 3;
# min_child_weight[default = 1];
# subsample = [0.5, 0.6, 0.7];
# colsample_bytree = [0.5, 0.6];
# lambda[default = 0];
# alpha[default = 1].

3. Learning Task Parameters

# Objective: reg:squared error;
# eval_metric = RMSE—root mean square error (used in regression).
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