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Abstract: A hydroelastic model is developed of a floating flexible structure in the presence of a
submerged perforated base connected with mooring lines under oblique wave action. Using the
velocity decomposition method, the analytical solution of the referred model is obtained in finite
water depth. The convergence of the analytical solution for different oblique wave incidences is
examined, and the present results of deflection amplitude are compared with experimental datasets
and the numerical results available in the literature. The effects of oblique wave incidence, along
with various design parameters on the reflection, transmission, and dissipation coefficients, as well
as structural displacements, are analysed through hydroelastic analysis. Further, the effect of oblique
incidence angle on the free oscillation hydroelastic waves in two wave modes is investigated by
deriving the free motion velocity potential in a wave basin.

Keywords: horizontal flexible plate; oblique wave incidence; hydroelasticity; plate displacement;
free oscillations; wave basin

1. Introduction

Due to the rise in marine and human activities in offshore and coastal regions, there is
considerable significance in the application of horizontal flexible floating and or submerged
structures as breakwaters for protecting coastal infrastructures and offshore platforms. To
meet the increasing demand for coastal protection and utilization of ocean space, there is a
need to develop and analyse multi-use flexible structure systems that could be applied as
floating breakwaters or land-filled artificial islands. Therefore, for practical engineering
design, it is necessary to examine the hydrodynamic performance of flexible structures
through hydroelastic analysis (see [1–3]). Hence, the interest in designing or modelling
horizontal floating and submerged flexible porous structures have increased to investigate
their effectiveness via hydroelastic analysis.

These types of horizontal structures are unique in nature, primarily because of their
flexibility; displacement; and associated hydroelastic response, analysis, and design when
compared with fixed structures. Constructions of these structures are cost-effective when
the water depth is large as they are easy and fast to construct and can be removed or
expanded with ease. These structures are protected from seismic shocks because the energy
can be dissipated into the infinite ocean, and they do not damage the marine eco-system or
obstruct the ocean current and are thus environmentally friendly. On the other hand, the
effectiveness of these flexible porous structures is due to the fact that they are able to reflect,
absorb, and dissipate wave energy. Moreover, the use of flexible porous structures has great
advantages compared to rigid impermeable structures because the structural porosity helps
in dissipating a large amount of wave energy, and the flexibility of the structure provide
the additional feature of wave attenuation through structural displacement [4].

Commonly, the potential theory is used for the analysis of the linearized hydroelastic
problem under the assumption of small wave amplitude. The classical thin-plate theory is
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frequently employed to analyse the dynamic response of floating structures (see [5,6]). On
the other hand, the dynamic response of offshore platforms and wave loads on floating
bridges were studied in [7]. The hydroelasticity modelling challenges associated with
problems in various areas of engineering applications in offshore and arctic regions are
reviewed in [8]. The mathematical theory and methods of hydroelasticity for solving
problems associated with wave interaction with floating flexible structures are viewed as
the major challenges to adequate and successful treatment of such complex models in the
application of technology development.

In past studies, there have been several types of numerical methods successfully used
in marine engineering to investigate the hydrodynamic effect of fluid-structure interaction
problems. For example, the Finite Volume Method in [9], the Arbitrary Lagrangian-Eulerian
Method in [10], particle-based methods, such as the Smoothed Particle Hydrodynamics
in [11], coupled methods, such as coupled SPH-DEM in [12], coupled SPH-FEM in [13],
and ANSYS® AQWA (henceforth called only AQWA for simplicity), which is a BEM
code [14]. On the other hand, the hydroelastic analysis of various geometries of very large
floating structures (VLFS) was studied based on different numerical methodologies. For
instance, the hydroelastic analysis of VLFS by attaching an annular plate below VLFS
using the Rayleigh–Ritz technique was investigated in [15]. The hydroelastic response of
VLFS using vertical elastic mooring lines was studied in [16] based on the hybrid finite
element–boundary element method. Further, a Finite Element-Multi-Domain Boundary
Element method was presented for the hydroelastic analysis of VLFSs with perforated
plates attached at the fore or aft under linear wave theory in [17]. A hydroelastic model
based on the multi-mode expansion and the Finite Element Method (FEM) was developed
in 2D for VLFS in [18], along with a coupled-mode model in 3D over the variable bottom
(see [19]). Based on the BIEM approach, the effect of mooring lines on a floating flexible
plate was analysed in [20]. The hydroelastic responses of a submerged horizontal porous
plate attached at the front of a VLFS of rectangular type were analysed in [21] based on the
matched eigenfunction expansion method (MEFEM).

Another interesting aspect of this class of problem is the analysis of wave loads,
displacements, and the moment of the structure under the action of waves. The wave-
induced loads on the deck and beam elements were measured based on physical model tests
of exposed piers/jetties/bridges in [22]. A finite-element analysis (FEA) code, LS-DYNA,
is used to perform the CFD analysis and compute the wave loading on coastal bridges
in [23]. A large-scale hydrodynamic experiment of tsunami wave interaction with an I-
girder bridge with cross frames was presented to analyse the impact of tsunamis on bridge
inundation mechanisms as well as the associated connection forces between the super-
and sub-structures of these bridges [24]. The significant effect of the trapped air on the
pressures, total forces, and the response of coastal bridges were studied in [25] based on
experiments. Further, the forces on a bridge superstructure in the horizontal and vertical
directions based on experimental and numerical hydrodynamic models were investigated
to determine the effect of variations in bridge elevation and wave height on the magnitude
of the horizontal and vertical forces and overturning moment [26].

There has been considerable progress in understanding the behaviour of submerged
horizontal porous structures and their effect on floating flexible structures based on MEFEM.
The interaction of oblique monochromatic waves with a submerged horizontal porous
plate in the framework of two-dimensional potential flow was inspected in [27] based
on MEFEM, and reflection and transmission coefficients were further studied using the
Boundary Element Method (BEM) in [28]. In [29], a time-domain hybrid FEM-BEM was
presented to investigate the interaction between oblique irregular waves and a very large
floating structure (VLFS) edged with dual inclined perforated plates.

The hydroelastic response of a mat-like rectangular VLFS with dual horizontal inclined
porous anti-motion plates using BEM was investigated in [30]. The hydroelastic problem of
a pontoon-type VLFS connected with porous plates and non-porous plates was studied
in [31], both numerically and experimentally. Under velocity decomposition, an analytical
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model of surface gravity waves with a submerged flexible membrane in the presence of
a floating elastic plate connected with mooring lines was presented in [32]. Further, a 3D
analytical hydroelastic model of a floating and a submerged flexible plate was developed
(see [33]) to study the effect of mooring lines and modes of oscillation on a floating elastic
plate in the presence of a submerged fixed membrane in the water of finite depth (FD)
under ocean wave action.

Therefore, here, a mathematical model of a floating horizontal flexible structure in the
presence of a submerged perforated structure connected with mooring lines of finite dimensions
under oblique waves is developed to analyse the effect of oblique incident angle in FD.

The new contributions of the present physical model compared with [34] are the
reduced wave equation, boundary conditions, and solutions, along with the comparison
of results of deflection amplitudes with existing published experimental datasets and the
numerical BEM-FEM model. Further, the effect of oblique wave incidence angle along
with different design parameters on the moored floating flexible structure with a moored
submerged porous structure is investigated by analysing the reflection, transmission, and
dissipation coefficients as well as plate displacements in different cases via hydroelastic
analysis. In addition, the effect of oblique incidence angle on the free oscillation hydroelastic
waves in a wave tank is investigated in two wave modes.

2. Model Definition

A similar model in two dimensions was analysed in [34]. Here, the effect of oblique
incident angle on the reflection, transmission, and dissipation coefficients and plate dis-
placements are analysed in three dimensions, presenting significant contributions towards
formulation and solutions, and the results are discussions.

The model is defined under the hypothesis of linear wave theory and the Cartesian
variables (x, y, z), where the x− z plane is considered as the still position of the water sur-
face and the y-axis is pointing positively downward. A horizontal floating and submerged
porous plate with a length of 2L occupies −L < x < L 0 < z < ∞ and is placed at y = 0
(floating plate), and a porous plate is situated at y = d that also occupies −L < x < L and
0 < z < ∞ with the bottom bed y = h FD. For practical interest, both plates are connected
with mooring lines with stiffnesses q f j and qsj at x = ±L for j = 1, 2, and they are extended
along the z-direction at 0 < z < ∞. Structural dimensions and problem definitions are
presented in Figure 1.
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Therefore, the entire fluid region is bifurcated as:

Fluid domain =

{
−∞ < x < −L, L < x < ∞, y ∈ (0, h), 0 < z < ∞ (Open water region),
−L < x < L, y ∈ (0, d) ∪ (d, h), 0 < z < ∞ (Plate covered region).

(1)

It is assumed that a progressive wave is obliquely incident with an angle, θ, on the
floating and submerged porous plate along the x-axis. Further, the fluid is modelled as
inviscid and incompressible, and the motion is irrotational.

It should be mentioned that there are many areas in applied mathematics and engi-
neering, especially in fluid flows and elastic plate/membranes, which leads to the solution
of the Laplace equation in two/three dimensions. The appropriate choice of boundary
conditions is of paramount importance in the selection of appropriate mathematical tools to
solve the problem of interest. Often, the three-dimensional Laplace equation is further sim-
plified to Φ(x, y, z; t) = Re

{
φ(x, y)ei(γz−ωt)

}
, which reduces the three-dimensional Laplace

equation to a two-dimensional elliptic PDE so-called reduced wave equation. Moreover,
the z-component is absorbed by the term γ, which is associated with the z-component of
the wavenumber β0, associated with the incident waves in the open water region.

Therefore, the linear wave theory yields to the velocity potential, Φ(x, y, z; t) =

Re
{

φ(x, y)ei(γz−ωt)
}

, for a fluid motion that is simple and harmonic in time, with an

angular frequency, ω, where i =
√
−1, γ = β0 sin θ is the z-component of the wavenumber

β0 associated with the incident waves in open water regions, and φ(x, y) refers to the spatial
velocity potential and satisfies the reduced wave equation:

(∇2
xy − γ2)φ = 0, in the fluid domain (2)

where ∇2
xy = ∂2/∂x2 + ∂2/∂y2.

The linearized free surface at y = 0 is derived by combining the linearized kinematic
and dynamic conditions as:

φy + τφ = 0,−∞ < x < −L, L < x < ∞ with τ = ω2/g (3)

The usual non-flow condition in water of FD at y = h can be read as:

φy = 0,−∞ < x < ∞ (4)

Now, the boundary conditions on y = 0 give (as in [34]):

κ1
∂5φ1

∂y5 − ε1
∂3φ1

∂y3 +
∂φ1

∂y
+ τφ1 = 0 on y = 0 for − L < x < L, z < ∞ (5)

The boundary condition on y = d are given by:

φ2y = φ1y = −iωw2 + iσ(φ2 − φ1) on y = d (6)

(
κ2

∂5φ2
∂y5 − ε2

∂3φ2
∂y3 −mp2

∂φ2
∂y + τφ2

)
+ iσ

(
κ2

∂4

∂y4 − ε2
∂2

∂y2 −mp2
∂

∂y

)
(φ2 − φ1)− τφ1 = 0,

y = d,−L < x < L, z < ∞
(7)

where κj = Ej Ij/(ρg−mpjω
2), ε j = Nj/(ρg−mpjω

2), and τ = ρω2/(ρg−mpjω
2). Fur-

ther, mpj = ρpjaj is the mass per unit length and aj is the thickness of the plate. In
addition, Ej, Ij = a3

j /12(1− υ2), and υ is the Poisson’s ratio of each plate. In addition,
Nj is the uniform compressive force (Njx = Njz = Nj, j = 1, 2 where N1 and N2 are the
uniform compressive forces acting on the plates). Further, σ is the porous-effect parameter
of the submerged flexible porous plate where σ = σr + iσi is the complex porous effect
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parameter, as in [35], where σr is the resistance force coefficient and σi is the inertial force
coefficient. The subscripts t and y refer to the partial derivatives w. r. t. t and y, respectively.
Further, w2(x, z; t) denotes the submerged porous plate deflection. φ1 and φ2 denote the
velocity potentials for the region −L < x < L, 0 < y < d, 0 < z < ∞ and −L < x < L,
d < y < h, 0 < z < ∞, respectively. Further, w2, defined in Equation (6), is the deflection of
the submerged porous plate and is assumed by the following form:

w2(x, z; t) = Re
{

w20(x)ei(γz−ωt)
}

.
The moored edge conditions at x = ±L, y = 0 of the floating flexible plate give:

E1 I1

(
∂xx − υγ2

)
φy = 0 (8)[

E1 I1

(
∂xx − (2− υ)γ2

)
∂x + N1∂x

]
φy = q f jφy (9)

Additionally, the moored edge conditions at x = ±L, y = d provide:

E2 I2(∂xx − υγ2)φy = 0 (10)[
E2 I2

(
∂xx − (2− υ)γ2

)
∂x + N2∂x

]
φy = qsjφy (11)

Further, the following continuity conditions at (0, r) with r = 0, d are necessary to
solve this referred physical problem:

φy
∣∣
(0+ ,r) = φy

∣∣
(0− ,r), φxy

∣∣
(0+ ,r) = φxy

∣∣
(0− ,r) (12)

Ej Ij(∂xx + υ∂zz)φy

∣∣∣
(0+ ,r)

= Ej Ij(∂xx + υ∂zz)φy

∣∣∣
(0+ ,r)

,[
∂x[Ej Ij{∂xx + (2− υ)∂zz}+ Nj]φy

]∣∣∣
(0+ ,r)

=
[
∂x[Ej Ij{∂xx + (2− υ)∂zz}+ Nj]φy

]∣∣∣
(0− ,r)

.

 (13)

The continuity of pressure and velocity at x = 0±, L± give:

φ(0+, y) = φ(0−, y), φ(L+, y) = φ(L−, y) (14)

φx(0+, y) = φx(0−, y), φx(L+, y) = φx(L−, y) (15)

In the end, the far-field radiation condition related to the incident, reflected, ane
transmitted wave amplitudes, I0, R0, and T0, respectively give:

φ(x, y) =
{ (

I0e−iµ0x + R0eiµ0x)Ω(y) as x → ∞,
T0e−iµ0xΩ(y) as x → −∞

(16)

where Ω(y) = cosh β0(h− y)/cosh β0h with µ2
0 = β2

0 − γ2 and β0 is the real root and
satisfies the gravity wave dispersion relation ω2 = gβ0tanhβ0h in the open water region.

2.1. Solution

By considering the geometrical symmetry of the physical problem regarding x = 0,
the velocity potentials associated with the physical problems are rewritten as the sum
of the symmetric and antisymmetric potentials for simplification, which can be handled
easily for the solution at hand. Hence, the original problem is split into two simpler
problems in the semi-infinite region along the x-axis of 0 < z < ∞. Here, to derive the
system of equations, the orthogonal relation associated with the eigenfunctions in the
open water region is used. Hence, it is sufficient to consider only the region 0 < x < ∞
of 0 < z < ∞ because the solution can be extended into the whole fluid domain using
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symmetric relations. Proceeding similarly as in [2], the split potentials, L(x, y) and L̂(x, y),
fulfil Equations (1)–(6), and can be written as:

L(x, y) =

 ∑
n

anΨS
n(x, y), 0 < x < L, for n = 0, I, I I, I I I, 1, 2, . . .

I0Γ0(x, y) + ∑
n

bnΓn(x, y), L < x < ∞, for n = 0, 1, 2, . . .
(17)

L̂(x, y) =

 ∑
n

anΨS
n(x, y) for 0 < x < L, for n = 0, I, I I, I I I, 1, 2, . . .

I0Γ0(x, y) + ∑
n

bnΓn(x, y) for L < x < ∞, for n = 0, 1, 2, . . .
(18)

where ΨS(x, y) = JS
n (x) fn(y), JS

n (x) = (cosh αnx)/(cosh αnL), ΨA(x, y) = JA
n (x) fn(y),

JA
n (x) = (sinhαnx)/(sinhαnL), Γ0(x, y) = e−iµ0(x−L)ϕ0(y), Γn(x, y) = eiµn(x−L)ϕn(y),

fn(αn, y) =

{ Q1(αn ,y)cschαnd
N1(αn ,d) , y ∈ (0, d),

−i
{

τ + iσ(κ2α4
n − ε2α2

n)
} cosh αn(h−y)

cosh αn H , d < y < h,
(19)

Q1(αn, y) =
{

τ + iσ(κ2α4
n − ε2α2

n)
}{

αn(κ1α4
n − ε1α2

n + 1) cosh αny− τsinhαny
}

(20)

where α2
n = β2

n − γ2 and αns are the zeros of the dispersion relation:

Z(α) = τ2(1 + cothαdcothαH)− τ[α(κ1α4 − ε1α2 + 1)cothαH
+
{

α(κ2α4 − ε2α2) + α(κ1α4 − ε1α2 + 1)
}

cothαd
−iσ(κ2α4 − ε2α2)(1 + cothαdcothαH)] + α2(κ1α4 − ε1α2 + 1)(κ2α4 − ε2α2)
−iσα(κ2α4 − ε2α2)(κ1α4 − ε1α2 + 1)(cothαd + cothαH),

(21)

where τ = ω2/g and H = h− d; if γ = 0 in Equation (16), then the truncated result will be the
same as in [34]. All roots of the dispersion relation (21) are complex (for details, see [34] (below
Equation (19)). It should be mentioned that, assuming the practical interest of the problem,
only four roots are taken into account for the boundedness of the solution. The normalized
vertical eigenfunction ϕn(y) is obtained by replacing φn(y) in Equation (49) of [34].

2.2. Boundary Conditions in Connection with L(x, y) and L̂(x, y)

Boundary conditions (7)–(9) need to be expressed in connection with L and L̂ to
determine the constants an, bn, an, and bn associated with Equations (10) and (11). Hence,
conditions (8)–(11) can be reformulated as:

E1 I1

(
∂xx − υγ2

)∂L(L, 0)
∂y

= 0 (22)

∂x[E1 I1
{

∂xx − (2− υ)γ2}+ N1]
∂L̂(L,0)

∂y = q f
∂2L̂(L,0)

∂x∂y

E2 I2
(
∂xx − υγ2) ∂L(L,d)

∂y = 0
(23)

∂x[E2 I2

{
∂xx − (2− υ)γ2

}
+ N2]

∂L̂(L, d)
∂y

= qs
∂2L̂(L, d)

∂x∂y
(24)

where υ is the Poisson’s ratios of floating and submerged flexible plates.
Further, the continuity conditions (12) and (13) at (0, r) in terms L(x, y) and L̂(x, y)

can be expressed as:
Ly(0, r) = 0, Lxy(0, r) = 0 (25)

Ej Ij

(
∂xx − υγ2

)
L̂y(0, r) = 0 (26)

∂x[Ej Ij

{
∂xx − (2− υ)γ2

}
+ Nj]L̂y(0, r) = 0 (27)
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The continuity conditions (14) and (15) give:

L(x, y) = 0, at x = L (28)

∂L̂(x, y)
∂x

= 0. at x = L. (29)

In the end, the condition as x → ∞ satisfy:

L(x, y) ≈
(

I0e−iµ0x + b0eiµ0x
)

ϕ0(y) (30)

L̂(x, y) ≈
(

I0e−iµ0x + b0eiµm0x
)

ϕ0(y) (31)

where b0 = R0 − T0 and b0 = R0 + T0 with R0 and T0 is the same as in Equation (16).
The equation system presented in Appendix A can be solved numerically to determine
an, bn, an, and bn. Then, the reflection, transmission, and dissipation coefficients can be calcu-
lated along: Cr =

∣∣∣(b0 + b0)/2I0

∣∣∣, Ct =
∣∣∣(b0 − b0)/2I0

∣∣∣, and Ce = 1− Cr − Ct, respectively.
To understand the effect of oblique incidence angle for different design parameters

on the moored submerged flexible porous plate in the presence of a floating flexible plate,
various results on the Cr, Ct, and Ce, as well as the submerged porous plate displacements,
are analysed. From now on, all numerical results are performed by taking into account
the same length, 2L, for the floating and submerged plates; ρ = 1025kgm−3; g = 9.8ms−1;
mooring stiffness, q f = qs = 102Nm−1; Young’s modulus, E1 = 0.47 × 109Nm2 and

E2 = 0.47× 107Nm2; compressive force on the floating plate, N1 = 0.5(E1 I1ρg)1/2; the
submerged porous plate, N2 = 0.2(E2 I2ρg)1/2; d/h = 0.25; L/h = 2.5; σ = 1.0 + 0.5i; and
plate thickness, a1 = a2 = 0.1m, if not otherwise specified.

MATLAB R2016b (MATLAB 9.1, source: mathworks.com/trademarks), 64-bit (win64) was
used to perform calculations in a very quick manner. All numerical computations of the
analytical expressions were performed on a desktop machine with Intel ® core i7–7700 CPU
with a4.20 GHz processor and 16 GB of RAM, 3601 Mhz, 4 Core(s), and 8 Intel Processor(s).
The data was written onto an SSD disk and, on average, each case took roughly 8–10 min to
complete. Further, using the present solutions, MATLAB codes were developed to simulate
the Cr, Ct, and Ce as well as the plate displacements.

3. Numerical Results and Discussions

It should be noted that to avoid repetition, the results analysis of the Cr, Ct, and Ce.
for different design parameters versus non-dimensional wavelengths are deferred here
(see [34]). Here, the new contribution is the analysis of the effect of oblique incidence angle
on the reflection, transmission, and dissipation coefficients, and in addition, the structural
displacements are presented.

Recently, the convergence of the Cr and Ce of a similar problem in two-dimensions was
studied in [34] for different mooring stiffness and compressive force. Here, the convergence
of the Cr and Ct of the series solution is checked for different oblique incidence angles
with d/h = 0.6 and wave period T = 5 sec. Table 1 demonstrates the values of Cr and Ct
converged to N ≥ 6 , and hence for computational accuracy, N = 6 is confined to compute
Cr, Ct, and Ce.
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Table 1. Convergence analysis.

Parameter N Cr Ct

0o 2 0.776671 0.122774
3 0.776668 0.122773
6 0.776669 0.122774

30o 2 0.782145 0.137840
3 0.775545 0.125941
6 0.775542 0.125940

45o 2 0.785870 0.139198
3 0.774964 0.129311
6 0.774961 0.129310

75o 2 0.801884 0.140470
3 0.779231 0.135731
6 0.779228 0.135730

In Figure 2, the comparison of deflection amplitude (m) of the floating flexible plate
between the present analytical against experimental datasets (see [30], Figure 8a) and the
numerical FEM-BEM results (see [30], Figure 9c) versus non-dimensional wavenumber, βoL,
are plotted. The trends of the deflection amplitude are well captured and for smaller values of
wavenumber, the data points are well in agreement between the two models. However, some
data points are not matched well with the analytical results for higher wavenumbers.
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Figure 2. Comparison of the deflection amplitude with experimental datasets and FEM-BEM results
for ε = 0.5i and d/h = 0.5.

It should be mentioned that the interaction of a VLFS with a dual submerged horizontal
porous plate is investigated in [30], where the ends of the VLFS were not moored. Here,
the smaller values of mooring stiffness, q f = qs = 102Nm−1, and the critical value

N2 = 0.5(E2 I2ρg)1/2 in Figure 2 is chosen to approach the free edge conditions and less
compressive force. Therefore, the behaviour of the results between the model (see [30]) and
the present one is deemed to be similar.
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Comparison results showed that the trend of the deflection amplitude between the
experimental and the numerical FEM-BEM (see [30]) with the present analytical results
are all well captured. However, a very few experimental data points in the deflection
amplitude are a little far from the model (see [30]) with a higher wavenumber. These
deviations may be explained by the present solution associated with the two propagating
wave modes along with compressive force in the flexible plates. Additionally, the effects of
complex wavenumber and the compressive force considered in the present model can take
part in the behaviour of the deflection pattern of the flexible plate, while these effects were
not considered in [30]. Therefore, it is suspected that the present model reproduces a little
lower deflection amplitude for higher non-dimensional wavenumber that the model (as
in [30]) cannot reproduce.

3.1. Effect of Oblique Incidence Angles on the Reflection, Transmission, and Dissipation Coefficients

Figure 3 displays the effect of the Cr, Ce, and Ct versus oblique angle θ (deg.) for
different mooring stiffness, q f , of the floating flexible plate with qs = 102Nm−1. The
reflection coefficients, Cr, will be higher as the values of q f increase, whilst the dissipation
coefficients, Ce and Ct, decreases. However, for θ = 90◦, it is seen that all incident waves
neither reflected nor dissipated. This is due to the fact that both the floating and the
submerged porous plates are considered to be of infinite length in the z-direction. Therefore,
when the incident wave is perpendicular to the plate system, it propagates along the plate
system in the z-axis direction only, and no there are no waves in the x-axis direction.
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Figure 3. Effects of the Cr, Ce, and Ct against θ for different q f with qs = 102Nm−1.

Figure 4 shows the effect of N1 on the reflection, transmission, and dissipation coef-
ficients against θ with N2 = 0.2

√
E2 I2ρg. As observed, the compressive force increases

as Cr increases, while Ce and Ct become lower. This may be because, with an increase in
the compressive force on the floating flexible plate, it becomes stiffer with a certain value
of mooring stiffness in the submerged porous plate, which leads to higher reflection and
smaller dissipation and transmission.
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Figure 4. Effects of the Cr,Ct and Ce versus θ for different compressive forces, N1.

In Figure 5, the comparison results of the Cr,Ct and Ce for various d/h versus angles θ
are simulated. More importantly, the dissipation coefficient increases with an increase
in the values of depth of submergence d/h, while the effect of transmission coefficient is
negligible, as seen in Figure 5, which is due to a large portion of the wave energy being
absorbed by the submerged porous plate.
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Figure 6 gives the variations Cr,Ct, and Ce against θ on several structural lengths, L/h.
It is observed that as the plate length increases, the Cr becomes lower and wave energy
absorption over the submerged structure increases. This is due to the sizeableness of the
flexibility and the pores in the plate.
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Figure 6. Effects of L/h on the Cr, Ct, and Ce versus θ with σ = 1.0 + 0.5i.

Figure 7 demonstrates the effect of the porous effect parameter on the reflection
and dissipation coefficients Cr and Ce versus θ. It is observed that as the values of the
porous parameter in the submerged flexible plate increase, the reflection coefficients, Cr,
decreases, while the dissipation coefficients increase only for θ > 30o. However, for smaller
angles,θ < 30o, the trend of Ce is reversed to that of θ > 30o, which is due to the change
of phase of waves when the resistance force coefficient and inertial force coefficient of the
porous-effect parameter are different.

It may be noted that, in Figures 3–6, the trend of the Cr,Ct, and Ce is significantly dependent
on the value of mooring stiffness, compressive force, submergence depth, and plate length.
For small wave angles (θ < 55◦), the reflection coefficient becomes higher for higher mooring
stiffness, submergence depth, and compressive force, while the Ct and Ce follow the reverse
pattern. However, for θ = 90◦, all incident waves neither reflected nor dissipated.

3.2. Structural Displacements via Hydroelastic Analysis

Figure 8 depicts the displacements, w2(m), of the moored submerged flexible porous
plate for various oblique incidence angles: θ for σ = 0.5i versus β0h and plate length
L(m). From Figure 8a–d, it can be seen that, for higher oblique incidence angle, θ, the
displacement of the submerged porous plate decreases, and only a single peak occurs at
the edges of the plate.
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Figure 8. Displacement w2(m) with a floating flexible plate for different θ with σ = 0.5i versus β0h
and L(m).
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Figure 9 demonstrates the displacements, w2(m), for different submergence depths
with an incident angle versus non-dimensional wavenumber and plate length. From
Figure 9a–d, it can be observed that, for higher submergence depth, the displacement
amplitude of the submerged flexible plate becomes lower. This is due to less interaction
with the floating plate and absorption of wave energy over the submerged porous plate.
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Figure 9. Submerged porous plate displacement with a floating flexible plate for various d/h with
σ = 0.5i and θ = 60 (deg .).

Figure 10 simulates the displacements, w2(m), for various compressive forces, N1,
with σ = 0.5i and θ = 60 (deg .) versus non-dimensional wavenumber, β0h, and plate
length, L(m). In Figure 10a–d, for higher values of N1, the deflections become smaller,
which is due to the increased wave energy reflected as a result of less wave energy being
absorbed by the submerged porous plate, which leads to lower deflection. Although the
number of crests is the same in each case (a–d), the displacement amplitudes decrease as
the values of compressive force become higher.

Figure 11 displays the submerged porous plate displacements for different mooring
stiffness: (a) qs = 101Nm−1, (b) qs = 102Nm−1, (c) qs = 103Nm−1, and (d) qs = 105Nm−1

with d/h = 0.25. In Figure 11a–d, it can be clearly seen that the plate displacement decreases
with an increase in the values of mooring stiffness. This is due to the fact that, as the stiffness
of the mooring line increases, the flexibility of the plate becomes harder as a result of the
decrease in the displacements of the flexible plate.
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Figure 10. Porous plate displacement with floating flexible plate for different compressive forces
with θ = 60 (deg.) versus β0h and L(m).

It should be noted that there is only one single peak in each Figure (Figures 8–11)
in the deflections being observed, which is due to the phase change of the incident and
reflected waves, leading to constructive/destructive interference of the waves at the edge
of the structure.

In the next section, the free oscillation hydroelastic waves in a wave tank of floating
flexible plate in the presence of a submerged porous plate will be analysed in a specific
case in two wave modes. In the case of surface wave interaction with a floating flexible
plate in the presence of a horizontal flexible porous plate, two types of wave mode exist
due to the interaction of waves with the floating plate and submerged flexible porous plate.
One corresponds to the floating flexural mode (FFM) and another one corresponds to the
submerged flexural mode (SFM). Further, the waves in the FFM are generated due to the
presence of the floating flexible plate and the waves in SFM are generated because of the
submerged flexible porous plate.
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Figure 11. Influence of the mooring stiffnesses on the submerged flexible porous plate displacement
for θ = 60o and σ = 0.5i.

4. Effect of Oblique Incidence Angle on the Hydroelastic Waves in a Wave Tank in
FFM and SFM

The role of different design parameters on the hydroelastic waves in FFM and SFM in
a two-dimensional closed wave tank was inspected in [34]. Here, the effects of oblique inci-
dence angle on the phase and group velocities, dispersion curves, and period of oscillations
in FFM and SFM are investigated.

Consider a basin bounded by vertical planes, x = 0, l, and a horizontal flexible plate
floating at the free surface with a porous plate submerged below the floating plate; a
detailed sketch of the arrangements is shown in Figure 12. Further, the basin length of
l(m) and γ = β0 sin θ present the z-component of the wavenumber, β0, related to the plane
progressive waves in the open water region, with an incidence angle of θ. It is assumed
that the fluid characteristics and structural response is the same as discussed in Section 2.
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The velocity potential, φ(x, y), associated with the free motion can be expressed
by satisfying Equations (1) and (3), boundary conditions (4)–(6) with 0 < x < l, and
(∂φ/∂x)|x=0,l = 0 as:

Φ(x, y; t) =
∞

∑
n=1

{
I

∑
s=0
AnLqn(x, y)eiω+

n t +
I I I

∑
s=I I
BnLqn(x, y)eiω−n t

}
(32)

where the +ve sign corresponds to waves in FFM and the −ve sign corresponds to waves
in the SFM. The waves in the FFM are generated due to the presence of the floating flexible
plate, and the waves in SFM are generated by the presence of the submerged flexible porous
plate. The values of ω+ and ω− are the frequencies of the waves in the FFM and SFM,
respectively. Further, Lsn(x, y) = cos(nπx/l) fsn(αsn, y), fsn(αsn, y), and s = 0, .., I I I are

the same as in Equation (19), with αsn =
{
(nπ/l)2 + γ2

}1/2
, which satisfies the dispersion

relation:

τ =
αsn(κ1α4

sn − ε1α2
sn + 1)

Λn
, (33)

where

Λn =
τ(1 + tanhαqndtanhαqn H)− ϑ(αqn)

{
iσ(1 + tanhαqndtanhαqn H) + tanhαqnH

}
τ(tanhαqnd + tanhαqn H)− ϑ(αqn)

{
iσ(tanhαqnd + tanhαqn H) + tanhαqndtanhαqnH

} (34)

with ϑ(αqn) = αqn(κ2α4
qn − ε2α2

qn). The expression for Λn contains a ω2 term, thus solving

Equation (32) for ω2 in terms of basin length and angle of incidence as αqn =
{
(nπ/l)2 + γ2

}1/2
.

In the case of deep water, the dispersion relation (32) yields:

ω2+
n = gαqn(κ1α4

qn − ε1α2
qn + 1) and ω2−

n =
gαqn(κ2α4

qn − ε2α2
qn)(1 + 2iσ)

2
(35)

Where the + and− signs correspond to the waves in FFM and SFM, respectively. From
Equation (34), the phase velocities, vp+

n in FFM and vp−
n in SFM, are found to be:

vp+
n =

√
g(κ1α4

qn − ε1α2
qn + 1)

αqn
and vp−

n =

√
g(κ2α4

qn − ε2α2
qn)(1 + 2iσ)

2αqn
(36)

Further, the group velocities, vg+
n in FFM and vg−

n in SFM, are obtained as:

vg+
n =

(5κ1α4
qn − 3ε1α2

qn + 1)
√

g

2
√

αqn(κ1α4
qn − ε1α2

qn + 1)
and vg−

n =
(5κ2α4

qn − 3ε2α2
qn)
√

g(1 + 2iσ)

2
{

2αqn(κ2α4
qn − ε2α2

qn)
}1/2 (37)

Finally, the period of hydroelastic wave oscillations, T+
n , of the floating flexible plate

in FFM and T−n of the submerged flexible porous plate in SFM are derived as:

T+
n =

√
4π

g(n/a)(κ1α4
qn−ε1α2

qn+1)
and

T−n =
√

8
g(n/a)2αqn(κ2α2

qn−ε2)(1+2iσ)
.

(38)

In the numerical results, the significant contributions to the effect of oblique incidence
angle on the vp+

n , vp−
n , vg+

n , vg−
n , ω2+

n , ω2−
n , T+

n , and T−n in FFM and SFM are analysed by
comparing their results propagating in FFM and SFM.

The numerical results are computed by considering water density=ρ = 1025 kg/m3,
d/h = 0.25, gravitationalconstant, g = 9.8 ms−1, E1 I1 = 0.47× 103Nm2, E2 I2 = 0.47× 102Nm2,



J. Mar. Sci. Eng. 2022, 10, 1205 17 of 24

N1 = 1.2
√

E1 I1ρg, N2 = (1/2)
√

E2 I2ρg, σ = 1.0 + i, and n = 1 (n = 1 is considered for the
sake of simplicity), if not otherwise specified).

Figure 13 compares the results of vp+
n and vp−

n for different values of oblique incidence
angle, θ, versus l(m) are plotted. The phase velocity, vp−

n , moves faster than those of vp+
n

for a shorter basin with different values of θ. However, in longer wave basins with lower
values of θ, the phase velocity, vp−

n , moves slower than those of vp+
n due to the presence

of compressive force and porosity in the submerged plate, which yields to the strong
absorption of wave energy by the porous plate. On the other hand, at the edges of the
basin, the variation of the effect of θ becomes significant in both the cases of vp−

n and vp+
n .
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Figure 14 compares the group velocity, vg+
n and vg−
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Figure 14 reveals that vg−

n in SFM passes faster than those of vg+
n in FFM for almost all

higher values of θ. However, in a longer wave basin with lower values of θ, the group
velocity, vg−

n , in SFM moves slower than that of vg+
n in FFM, for reasons similar to those in

Figure 13. Further, it can be seen that the variations of vg+
n in FFM for different values of

oblique angle, θ, have no significant effect compared to vg−
n in SFM. This can be attributed

to the fact that the wave energy is dissipated by the submerged flexible porous plate, while
less incident wave transmits, which leads to more impact to vg−

n in SFM.
Figure 15 compares ω+

n in FFM and ω−n in SFM for different angles, θ, against l(m). It
can be seen that, for higher values of the angle, θ, both ω+

n and ω−n increase. Further, the
values of ω+

n are lower than those in SFM, which is due to the presence of porosity in the
submerged flexible plate that absorbs wave energy. Further, it is also observed that, for a
longer basin, the effect of oblique angle, θ, on the wave dispersion is significant while, for a
shorter basin, the effect of θ is negligible.
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Figure 15. Effects of different oblique angles, θ, on ω+
n and ω−n against l(m).

In Figure 16, the period of oscillations, T+
n and T−n , decreases with an increase in the

values of θ. This is due to the fact that, as the incident angle changes, the direction and types
of the oscillation also change with their mode shapes, which results in a lower period of
oscillation. However, the effect of θ is significant for a longer basin, and the vibration of the
floating plate becomes less, possibly due to the wave energy absorbed by the porous plate.
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Figure 16. Comparison between T+
n and T−n versus l(m) for different θ.

Figure 17 shows the effect of the period of oscillation, T−n , on the increasing values of the
porous-effect parameter versus basin length, l(m), for different angles of incidence,θ. It can be
seen that the period of oscillations, T−n , decreases with increasing values of θ. In the case of
θ = 00, the observation is similar to that obtained in [34]. However, the period of oscillation
experienced peaks for zero incidence angle at around 10–15 m, which may be due to phase
change of incident and reflected waves, leading to constructive/destructive interference of the
waves in SFM. The decreasing rate of oscillation is much faster for increasing θ, and as the basin
length increases, the period of oscillation reaches a smooth trend. One of the reasons for this
may be the increasing rate of energy dissipation along the porous plate.
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Figure 18 shows the effect of the first six modes, n, in the horizontal direction, on the
period of oscillation, T+

n , of the floating flexible plate with incidence angle θ = 300 versus
basin length l(m). It is observed that the variations of the period of oscillations continue to
decrease with an increase in basin length. This indicates that the modes of oscillation have
an effect at the edges of the plate for a certain value of the incident angle, which changes
the shape of the floating plate.
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Figure 18. Effect of modes on the period of oscillation, T+
n , of floating flexible plate with θ = 300.

5. Conclusions

In this paper, a new contribution complementing [34] addresses the influence of
oblique incidence angle based on the reduced wave equation. The hydroelastic analysis of
a moored floating and a submerged flexible porous plate is investigated by studying the
effect of the incident angle for different design parameters. Further, the free oscillation of
hydroelastic waves in a wave basin is performed in specific cases. From the analysis, it has
been observed that:

1. The convergence of the obtained solution is verified for different oblique incidence
angles, and N = 6 is confined for computational accuracy.

2. It is found that the obtained results are supported by the published experimental and
numerical FEM-BEM results.

3. For small oblique incidence angles (θ < 55◦), Cr increase for higher values of mooring
stiffness and the compressive force of the floating plate with all parameters except
porous-effect parameter associated with submerged porous plate, while Ct and Ce follow
the reverse pattern. However, for θ = 90◦, the incident wave is normal to the floating
and submerged flexible porous plates; it travels along with the plate in the z-direction,
while the reflection Cr decreases and Ce increases for higher values of porosity.

4. The displacement results showed that, for compressive force and submergence depth,
the amplitude of the plate displacement at the edges continues increasing as the
incident angle increases, occurring a higher number of crests on the plate surface. On
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the other hand, it is observed that the submerged porous plate deformation decreases
with an increase in mooring stiffness.

5. In a closed wave basin, for the higher angle of incidence, the period of oscillations of
hydroelastic waves over FFM and SFM decreases, while the ω±n , vp±

n , and vg±
n increase.

Further, vp−
n and vg−

n move faster than that of vp+
n and vg+

n , having a significant effect
of oblique incidence angle in a longer wave basin. The analysis of the results will be
useful in the laboratory testing and design of a wave tank.

6. The present study indicated that the appropriate choice of oblique incidence angle,
mooring stiffness, compressive force, and submergence depth will be useful to design
a flexible plate system for an effective breakwater and the reduction of the hydroelastic
response of floating flexible structures.

7. The limitations of the present study are that the relevant boundary conditions must be
linear and of higher-order, maybe 3rd or 5th order, and the structural boundaries must
be a constant of the co-ordinates; hence, the solution must be a series of solutions.
Therefore, the present approach can be used for rectangular and circular-shaped
flexible/porous plate and membrane type structures.

8. Further, the model formulation and calculation allow analysis of the hydrodynamic
loads (horizontal and vertical) on the structure and the axial forces on the mooring lines.
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Nomenclature

Ej Ij: Flexural rigidities
Nj: Compressive forces
w1: Floating plate deflection
w2: Submerged porous plate deflection
ω: Angular frequency
σ: Porous-effect parameter
ρ: Density of water
Φ: Velocity potential
φj: Spatial velocity potentials
ΨS

n(x, y): Eigenfunction in plate covered region
Γn(x, y): Eigenfunction in open water region
mpj: Mass per unit length
aj: Thickness of the plates
g: Gravitational constant
υ: Poisson’s ratio
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d: Height between floating and submerged porous plate
h: Water depth
H: Depth between submerged porous plate and bottom
α: Wavenumber in plate-covered region
γ: z-component of the wavenumber associated with β0 in the open water region
L̂(x, y): Split potential
L(x, y): Split potential
ϕn(y): Normalized eigenfunction in the open water region
N: Number of terms in the series
L: Plate length
q f : Mooring stiffness of floating plate
qs: Mooring stiffness of the submerged porous plate
β0: Wavenumber of gravity wave dispersion relation
I0: Incident wave amplitude
Cr: Reflection coefficient
Ct: Transmission coefficient
Ce: Dissipation coefficient
θ: Incidence angle
BEM: Boundary Element Method
FD: Finite Water Depth
FFM: Floating Flexural Mode
ID: Infinite Water Depth
MEFEM: Matched Eigenfunction Expansion Method
SFM: Submerged Flexural Mode
VLFS: Very Large Floating Structure

Appendix A. Equation System for Determining the Unknowns

A system of equations are obtained with an, bn, an, and bn inL(x, y) and L̂(x, y) by utilizing
the continuity condition at x = L and orthogonal conditions (see [2]) as:

∑
n

anΞνn − bnδνn + I0δν0 = 0 (A1)

∑
n

anαnΞνncothαnL− iµnδνnbn + iµ0 I0δν0 = 0 (A2)

∑
n

anΞνn − bn − I0δν0 = 0 (A3)

∑
n

anαnΞνntanhαnL− iµnbnδνn + iµ0 I0δν0 = 0 (A4)

where

n = 0, I, I I, I I I, 1, 2, . . . , N, Ξνn = {`(αn, d)Oνn − Sνn}/
{
(β2

ν − α2
n)
√

χν

}
Oνn = [βν

{
τtanhαnd− αn(κ1α4

n − ε1α2
n + 1)

}
cos αnd− αncothβνd]sinhβνd

×
{

τcothαnd + αn(κ1α4
n − ε1α2

n + 1)
}

sinhαnd
+αn

{
αn(κ1α4

n − ε1α2
n + 1)− τcothβνh

}
sinhβνh,

Sνn = (βνtanhβνd− αntanhαnd) cosh αnh cosh βνd, `(αn, d) = (αnsinhαnd)/N′1(αn, d)

Further, the boundary conditions (8, 9) and (10, 11) provide:

∑
n

anE1 I1αn(α
2
n − υγ2)`(αn, d) = 0 (A5)
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∑
n

anE2 I2αn(α
2
n − υγ2)sinhαnd = 0 (A6)

∑
n

anα2
n`(αn, d)[E1 I1

{
α2

n − (2− υ)γ2
}
+ N1 − q f ]tanhαnL = 0 (A7)

∑
n

anα2
n[E2 I2

{
α2

n − (2− υ)γ2
}
+ N2 − qs]tanhαnLsinhαnd = 0 (A8)

where ν = 0, 1, 2, . . . , N and m = 1, 2, 3, . . .. The system of Equations (A1)–(A8) can be
solved numerically to determine an, bn, an, and bn.
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