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Abstract: Coral sand is the main filling material for the island–reef foundation. Under tidal actions,
the saturation (Sr) of coral sand layers varies with the specific depths in the reclaimed foundation.
Studying the Sr effect of coral sand’s mechanical behaviors is crucial for the stability of the reclaimed
foundation of island–reefs. In this study, a “quantitative injection method” was designed to prepare
coral sand with saturation ranging from 90% to 100%, and unconsolidated–undrained (UU) triaxial
shear tests were conducted on coral sand under different effective confining pressures (σ′3). The
results indicated that the stress–strain curves of coral sand under various conditions were of the
strain-softening type. When σ′3 = 200, 400, 600, and 800 kPa, the shear strength of coral sand decreased
exponentially by 13.1, 9.1, 16.8, and 15.2%, respectively, with the increase in Sr from 90% to 100%. As
Sr rose, the internal friction angle (ϕ) dropped by 3.77◦. The cohesion (c) was not significantly affected
by Sr compared to ϕ. In consideration of the physical susceptibility of coral sand to breakage, relative
breakage ratio (Br) and modified relative breakage index (B∗r ) were introduced to evaluate the particle
breakage behaviors of coral sand samples with different Sr levels in the triaxial shear process. It was
found that Br and B∗r increase linearly with increasing Sr; the effect of Sr on the particle breakage of
coral sand weakens significantly when σ′3 is sufficiently large. The median particle size (d50) of coral
sand decreases with increasing Sr, and presents a negative linear correlation with both Br and B∗r .
Based on comparing the strength and particle breakage characteristics of coral sand samples with
varying Sr levels, this study suggests that 92.5% should be considered as the Sr value of coral sand
available for testing.

Keywords: coral sand; saturation; effective confining pressure; shear behavior; particle breakage

1. Introduction

Coral sand, also known as calcareous sand, is a geomaterial composed primarily of
CaCO3 [1,2]. Coral sand is mainly distributed on both sides of the equator in the Pacific
Ocean, the Indian Ocean, the Atlantic Ocean, and the South China Sea [3]. In recent years,
China has launched large-scale island–reef reclamation construction projects in the South
China Sea [4]. According to its natural geographical advantages (i.e., island–reefs in the
South China Sea are far from the mainland) and excellent engineering characteristics, coral
sand has become the preferred material for island–reef foundation filling and infrastructure
construction [5–7]. The reclaimed layers of island–reefs are only 3–5 m thick [8]. Under
tidal actions, coral sand, as the filling material of bearing strata, is generally in a highly
saturated (but not fully saturated) state [9]. Therefore, studying the effects of saturation
(Sr) on the engineering mechanical properties of coral sand is crucial for the stability of the
reclaimed foundation of island–reefs.

Triaxial shear tests can simulate the stress state of geomaterials in strata [10]. Therefore,
predecessors mostly used triaxial shear tests to study the engineering mechanical properties
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of coral sand and achieved some research results (Table 1) [11–18]. However, predecessors
primarily utilized saturated coral sand as the research object but rarely touched upon the
engineering mechanical properties of unsaturated coral sand [19]. Coral sand has a poor
water-holding capacity [20], and it is difficult to precisely arrange coral sand samples with
different Sr levels [21,22]. Water loss is also inevitable when filling coral sand with design
Sr into the mold. These reasons may explain why predecessors have infrequently explored
the engineering mechanical properties of unsaturated coral sand. Before investigating the
engineering mechanical properties of coral sand samples with different Sr levels based
on triaxial shear tests, the first critical technical problem to be solved is to develop a new
sample preparation method. Next, if coral sand undergoes isotropic compression prior
to triaxial shear tests, pore water will inevitably overflow from the sample, decreasing
Sr. It will also be impossible to monitor the change in the Sr of coral sand during this
process using conventional triaxial shear test apparatus. Therefore, it is preferable to
investigate the engineering mechanical properties of coral sand samples with varying Sr
using unconsolidated–undrained (UU) triaxial shear tests.

Table 1. Previous research on mechanical properties of coral sand based on triaxial shear test.

Research
Material

Research
Content

Research
Method Researcher and Year Shear

Type
Research
Variable Main Conclusions

Saturated
coral
sand

Mechanical
proper-

ties

Triaxial
shear test

Sharma and Ismail (2006) [11] CU

Soil origin,
Relative density,

Initial mean
effective stress

The monotonic shear response of
calcareous soil from Goodwyn and
Ledge Point was similar to that of

siliceous sand, and the peak friction
angel were relatively higher than

siliceous sand.

Hassanlourad et al. (2014) [12] CU

Effective
confining
pressure,

Relative density

Coral sand illustrated more shear
strength than quartz sand in the

triaxial consolidated undrained test.

Zhang et al. (2019) [13] CD Fine particle
content

The dilatancy property and peak
deviator stress of coral sand decreased

with the increasing fine
particle content.

Wu et al. (2020) [14] CD

Effective
confining
pressure,

Relative density

The strain softening and dilatation
characteristic of coral sand gradually

weaken with increasing effective
confining pressure and decreasing

compactness.

Saeidaskari et al. (2021) [15] CU

Effective
confining
pressure,

Relative density

Coral sand showed initial contractive
behavior, and the contractive behavior
became more apparent as the effective

confining pressure increased.

Liu et al. (2022) [16] CU

Effective
confining
pressure,

Relative density

The shear modulus of coral sand
increased with effective confining

pressures and relative density, and the
shear strength (or internal frictional
angle) in peak state was more than

that in critical state.

Wang et al. (2022) [17] CD

Particle size,
Effective
confining
pressure

The shear strength of coral sand
specimens with a single particle size

decreased with an increase in
particle size.

Chen et al. (2022) [18] CD

Particle gradation,
Effective
confining
pressure

The softening and dilatancy were
more significant for coral sand with

smaller particle size, and the average
peak friction angle of coral sand

decreased linearly with the increasing
mean particle size.
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Moreover, coral sand is a special geomaterial susceptible to particle breakage even
under low stress [23]. Predecessors also studied the particle breakage characteristics of coral
sand, relying on triaxial shear tests (Table 2) [14,18,24–29]. They discovered how factors
such as particle size, stress, and compactness affect the particle breakage of coral sand.
However, the impact of Sr on the particle breakage of coral sand is seldom reported [30,31].
Indeed, the stress state significantly affects the particle breakage of coral sand [32,33]. It
should be noted that the above findings are primarily obtained from consolidated-drained
(CD) or consolidated-undrained (CU) triaxial shear tests and that the stress state of coral
sand in UU triaxial shear tests differs greatly from CD or CU. Accordingly, the applicability
of the above results to coral sand in UU triaxial shear tests must still be confirmed by solid
test data, and related research should be expanded.

Table 2. Pervious research on particle breakage of coral sand based on triaxial shear test.

Research
Material

Research
Content

Research
Method Researcher and Year Shear

Type Research Variable Main Conclusions

Saturated
coral sand

Particle
breakage

Triaxial
shear
test

Zhang et al. (2008) [24] CD
Effective confining

pressure, Axial
strain

The increase of effective confining pressure
and axial strain could promote the particle

breakage of coral sand.

Shahnazari and Rezvani (2013) [25] CD, CU

Effective confining
pressure,

Relative density,
Axial strain,

Drainage condition,
Grain size

distribution

Increasing of effective confining pressure,
axial strain, relative density and grain size
resulted in a higher particle breakage for

coral sand, and coral sand under undrained
condition had less particle breakage

compared to the drained experiments due
to the increasing of pore pressure.

Yu (2018) [26] CD, CU

Effective confining
pressure,

Initial void ratio,
Consolidated stress

ratio

In isotropic consolidation, more particle
breakage of coral sand was cause in higher

effective confining pressure (or denser
sample), and anisotropic stress yielded

more particle breakage than isotropic stress
for coral sand.

Wu et al. (2020) [14] CD
Effective confining

pressure,
Relative density

The relationship between particle breakage
and plastic work of coral sand could be
described by a power function with a
negative index, and particle breakage

increased with the increasing plastic work
with a hyperbolic form.

Wang et al.(2021) [27] CD, CU
Effective confining

pressure,
Axial strain

Particle breakage of coral sand increased
with axial strain at a gradually decreasing
rate during triaxial drained compression,

and shear strain could induce further
breakage without an increase in stress.

Wang et al.(2021) [28] CD
Effective confining

pressure,
Relative density

For coral gravelly sand, the highest
breakage degree was observed in sand

particles within 1–2 mm size range.

Chen et al. (2022) [18] CD
Particles gradation
Effective confining

pressure

The particle breakage of coral sand
increased with the increasing effective

confining pressure and mean particle size.

Shen et al. (2022) [29] CU Effective confining
pressure

The particle breakage of coral sand
increased in powder function form with

increasing effective confining pressure, and
splitting and abrasion were the main

particle breakage patterns of coral sand
within 400 kPa effective confining pressure.

In light of this, an independently designed “quantitative injection method” was used
in this study to prepare coral sand samples with various Sr levels. The UU triaxial shear
tests were conducted on these samples under different effective confining pressures (σ′3)
to ascertain the Sr effect of the coral sand shear behavior. Finally, screening tests were
performed on tested samples to understand the particle breakage behaviors of coral sand
samples with different Sr levels during UU triaxial shear tests. The study’s results provide
theoretical support for assessing the stability of the reclaimed foundation of island–reefs.
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2. Test Overview
2.1. Material

This study uses uncemented loose coral sand collected from a hydraulically reclaimed
island–reef in the South China Sea. Figure 1 exhibits the uniform initial gradation of coral
sand with particle sizes ranging from 0.25 to 0.5 mm. Its nonuniformity coefficient (Cu)
and curvature coefficient (Cc) are 1.455 and 0.96, respectively (Table 3). According to the
Chinese National Standard of Soil Test Method (GB/T 50123–2019), it should be named as
poorly graded coral medium sand. The specific gravity (Gs), maximum dry density (ρdmax),
and minimum dry density (ρdmin) of coral sand are 2.83, 1.385, and 1.085, respectively.
According to GB/T 50123–2019, the minimum void ratio (emin) and maximum void ratio
(emax) of calcareous sand are 1.043 and 1.608, respectively.
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Table 3. Physical parameters of coral sand.

Sample
Particle

Size
d (mm)

Median
Size

d50 (mm)

Nonuniform
Coefficient

Cu

Curvature
Coefficient

Cc

Specific
Gravity

Gs

Maximum
Void Ratio

emax

Minimum
Void Ratio

emin

Maximum
Dry

Density
ρdmax

(g/cm3)

Minimum
Dry

Density
ρdmin

(g/cm3)

Coral
medium

sand
0.25–0.5 0.375 1.455 0.96 2.83 1.608 1.043 1.385 1.085

2.2. Test Scheme

This study analyzes the effects of Sr on the shear behavior and particle breakage
behavior of coral sand using UU triaxial shear tests. The selection of Sr was determined by
considering the following two assumptions: (I) All the pores in coral sand are in a closed
state, and the effect of the inner pores released due to particle breakage in the shear process
on test results can be ignored; (II) the Sr of coral sand is 100% when interparticle pores
are filled up with water. Considering these assumptions and the nearly saturated state
of coral sand in most reclaimed layers, the Sr of coral sand was set at 100, 97.5, 95, 92.5,
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and 90% utilizing a gradient of 2.5%, respectively. The Sr effect of the shear behavior of
coral sand was studied using UU triaxial shear tests to avoid the change in the Sr of coral
sand caused by water loss during consolidation and shear processes. After foundation
treatment, coral sand can generally reach a compact state [28]. Hence, coral sand in shear
tests was set with a relative density (Dr) of 70% to simulate its actual physical state in strata
as realistically as possible. The σ′3 applied to coral sand was 200, 400, 600, and 800 kPa.
These σ′3 settings covered multiple environments from low to high stress and were intended
to investigate the Sr effect of the shear behavior of coral sand over a broad stress range. All
coral sand samples were Ø39.1 × 80 mm in size (diameter × height). Shearing proceeded
at a 0.15 mm/min rate and stopped when axial strain (εa) reached 30% (Table 4). It is
noteworthy that coral sand is a geomaterial highly susceptible to breakage [34]. Screening
tests were performed on samples to assess the particle breakage behaviors of coral sand
samples with different Sr levels during the UU triaxial shear process.

Table 4. Triaxial shear test scheme.

Sample Sample
No.

Saturation
Sr (%)

Relative
Density
Dr (%)

Specimen Size Effective Confining
Pressure
σ’

3 (kPa)

Shear
Type

Shear Rate
v

(mm/min)

Terminal
Strain
εt (%)

Diameter
(mm)

Height
(mm)

Coral
medium

sand

CS–90 90 70 39.1 80 200 UU 0.15 30

CS–90 90 70 39.1 80 400 UU 0.15 30

CS–90 90 70 39.1 80 600 UU 0.15 30

CS–90 90 70 39.1 80 800 UU 0.15 30

CS–92.5 92.5 70 39.1 80 200 UU 0.15 30

CS–92.5 92.5 70 39.1 80 400 UU 0.15 30

CS–92.5 92.5 70 39.1 80 600 UU 0.15 30

CS–92.5 92.5 70 39.1 80 800 UU 0.15 30

CS–95 95 70 39.1 80 200 UU 0.15 30

CS–95 95 70 39.1 80 400 UU 0.15 30

CS–95 95 70 39.1 80 600 UU 0.15 30

CS–95 95 70 39.1 80 800 UU 0.15 30

CS–97.5 97.5 70 39.1 80 200 UU 0.15 30

CS–97.5 97.5 70 39.1 80 400 UU 0.15 30

CS–97.5 97.5 70 39.1 80 600 UU 0.15 30

CS–97.5 97.5 70 39.1 80 800 UU 0.15 30

CS–100 100 70 39.1 80 200 UU 0.15 30

CS–100 100 70 39.1 80 400 UU 0.15 30

CS–100 100 70 39.1 80 600 UU 0.15 30

CS–100 100 70 39.1 80 800 UU 0.15 30

2.3. Apparatus and Procedure

The test apparatus is a TKA–Advanced full-automatic stress path triaxial testing appa-
ratus manufactured by Nanjing TKA Technology Co., Ltd. (Nanjing, China) (Figure 2). It
mainly consists of a pressure chamber, a displacement sensor, a load sensor, a data acqui-
sition system, a strain control system, and pressure/volume controllers (used to control
confining and back pressure). The apparatus supports variable-speed loading and has a
shear rate range of 0.0001–9.9999 mm/min. The load sensor has a range of 10 kN and a
precision of 0.15% F.S. The two pressure/volume controllers have a stress control range
of 0–2000 kPa (precision = 1 kPa), and a volume range of 250 mL (precision = 0.001 mL).
The LCD screen on each pressure/volume controller displays the current confining pres-
sure/back pressure and the volume of water inside. The on-screen keyboard can be
employed to regulate stress and absorb or drain water by the specified volume.
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Figure 2. Full-automatic stress path triaxial apparatus.

Precise control of Sr is the most critical step in studying the Sr effect on the shear
behavior of coral sand. Most predecessors control the water content of a sample by first
preparing a sample with designed water content and then transferring the sample into
a rubber membrane [35–37]. This approach is ideal for regulating the water content of
fine-grained soils (such as clay and silt). Due to the poor water-holding capacity of coral
sand, it is difficult to prevent water overflow when loading a sample of coral sand with
designed water content into the rubber membrane. Therefore, an original method was
designed to prepare coral sand samples with different Sr levels as follows.

(1) The dry density of the sample under 70% Dr was determined utilizing the physical
parameters listed in Table 1. The mass of the dry sample was calculated from dry density
and sample size, and dry coral sand was weighed accordingly (Figure 3a). An impermeable
stone was placed on the base of the pressure chamber, sheathed by the rubber membrane,
and fixed using a split mold. A vacuum pump was connected to the interface outside of the
split mold to remove the gas between the rubber membrane and the split mold’s inner wall,
allowing the rubber membrane to perfectly fit with the split mold’s inner wall (Figure 3b).

(2) The sample was loaded into the rubber membrane by five layers through sand
alluviation. Each time a layer was loaded, a graduated scale was used to measure the
distance between the sample surface and the split mold top to ensure the compactness of
the sample matched that in Table 2 (Figure 3c). The sample surface was roughened before
the next layer was added. The above steps were repeated until the sample’s upper surface
reached the same level as the top of the split mold. The sample cap was covered after the
completion of sample loading. At this point, the preparation of a dry coral sand sample
with 70% Dr was completed.
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(3) The theoretical water contents of coral sand samples with different Sr levels were
calculated from the physical parameters and test parameters indicated in Tables 1 and 2
as follows:

Dr =
emax − e

emax − emin
(1)

n =
e

e + 1
(2)

where n is porosity. The void ratio e of the coral sand sample with 70% Dr was calculated
by Equation (1) and then substituted into Equation (2) to determine porosity n. The volume
of water in the sample was computed as follows:

VW= Sr·VV= Sr(n·V) (3)

where VW is the volume of water in the sample, VV is the volume of pores in the sample,
and V is the total volume of the sample. The water contents of coral sand samples with
different Sr levels were calculated by Equation (3) (Table 5). First, the sample was vacuum-
treated to remove the gas inside (Figure 3d) and produce a negative pressure (to increase
the seepage rate of water in the sample in the subsequent water injection process). Next,
the pressure chamber was placed on the base of the triaxial shear apparatus, and water was
injected into the pressure chamber so that the sample cap would come into contact with the
load sensor. The confining pressure in the pressure chamber was set at 200 kPa. Multiple
trial tests confirmed that a confining pressure of 200 kPa can prevent the volume expansion
caused by increasing back pressure during the water injection process. After the confining
pressure stabilized, the back pressure valve at the base of the pressure chamber was opened.
The back pressure/volume controller was utilized to inject water into the sample until the
corresponding Sr was achieved (Figure 3e). Due to the gradual filling of pores by water,
back pressure will develop in the sample at this time. Finally, after the water injection was
completed, the sample was left to rest for two hours, after which the back pressure value
displayed on the back pressure/volume controller was recorded (denoted as x kPa). This
value represents the back pressure value prior to shearing. The effective confining pressure
was denoted as y kPa, in which case the actual confining pressure will be (x + y) kPa.

Table 5. Water content of coral sand sample with different saturations.

Sample Sample No. Sr (%) Water Content (mL)

Coral medium sand

CS–90 90 45.56

CS–92.5 92.5 46.82

CS–95 95 48.09

CS–97.5 97.5 49.35

CS–100 100 50.62

(4) UU triaxial shear tests were conducted on coral sand samples under design σ′3.
Shearing was performed at a 0.15 mm/min rate and stopped when εa = 30% (Figure 3f).

(5) After shear tests, samples were washed with clean water into the tray, which
was placed in an oven with a constant temperature of 105 ◦C. It was removed after 24 h
and allowed to cool down to room temperature. Then, screening tests were conducted
on the samples to examine their particle gradation curves (Figure 3g). An excessively
short screening time causes inadequate screening while an excessively long one aggravates
particle breakage. As a result, the screening time was set at 15 min each time [24].

3. Shear Test Result and Analysis
3.1. Deviator Stress–Pore Water Stress–Axial Strain Relationship

Figure 4 shows the deviator stress–axial strain curves (i.e., q–εa curves) of coral sand
samples under different conditions. It can be seen from Figure 4 that, within the σ′3 range of
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800 kPa, the q–εa curves of coral sand samples with 90–100% Sr during the UU triaxial shear
stress state presented a strain softening trend. The q–εa curve of each coral sand sample can
be divided into three stages:
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Figure 4. Deviator stress-axial strain curves of coral sand with different saturations: (a) σ3

’  = 200 
kPa; (b) σ3

’  = 400 kPa; (c) σ3
’  = 600 kPa; (d) σ3

’  = 800 kPa. Figure 4. Deviator stress-axial strain curves of coral sand with different saturations: (a) σ′3 = 200 kPa;
(b) σ′3 = 400 kPa; (c) σ′3 = 600 kPa; (d) σ′3 = 800 kPa.

(1) Elastic stage: In the initial shear stage, q surged with increasing εa, and the q–εa
curve was almost linear.

(2) Plastic yield stage: During the intermediate shear stage, q continued to grow
with increasing εa, but at a gradually slower rate, and the q–εa curve presented a gentle
changing trend.

(3) Failure stage: In the late shear stage, due to increasing εa, q first peaked and then
continued to decrease until the test was complete. The sample showed evident strain
softening characteristics.

Figure 5 depicts the pore water stress–axial strain curves (i.e., u–εa curves) of coral sand
samples under different conditions. When σ′3 = 200 kPa, u was negative, and the sample
exhibited a dilatancy similar to dense sand [38]. When σ′3 = 400 kPa, only CS–100 showed
obvious dilation. When σ′3 = 600 and 800 kPa, u was not negative, and the sample was
always in a state of contraction. First, increasing σ′3 tightened the constraint on the sample
and prevented its dilation deformation [39]. Second, increasing σ′3 aggravated the particle
breakage of the sample in the shear process and reduced its dilation degree [40]. Therefore,
when σ′3 = 600 and 800 kPa, the sample remained in a state of contraction throughout the
shear process.
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Within the σ′3 range of 800 kPa, u−εa curves of coral sand samples with 90–100% Sr
during the UU triaxial shear stress state can also be separated into three stages:

(1) In the initial shear stage, u rose rapidly with increasing εa, and the sample con-
tracted. In the initial UU triaxial shear stage, the sample’s pore water produced u under
external loads. Growing εa (or shear stress τ) increased the mean effective stress (p′) borne
by the sample, resulting in sample contraction. Sample contraction also enhanced the
squeezing action on pore water and caused u to present a growing trend with rising εa [41].
The peak pore water stress (up1) can be utilized to characterize the maximum contraction
degree of coral sand samples. The curve of up1 changing with Sr was plotted to explore the
effect of Sr on u of a coral sand sample in the initial shear stage (Figure 6). According to
Figure 6: (I) there is an apparent positive correlation between up1 and Sr under the same
σ′3. A sample with a higher Sr level contains more pore water content and also produces a
more significant u under the constraint of σ′3. A positive correlation between up1 and Sr
indicates that a sample with a higher Sr level has a greater contraction degree in the initial
shear stage. (II) For coral sand samples with the same Sr, up1 increases more significantly
under high effective confining pressures (σ′3 = 600 and 800 kPa) than under low effective
confining pressures (σ′3 ≤ 400 kPa), and the increments also increase with increasing Sr. This
phenomenon was mainly caused by the constraint imposed by σ′3 on coral sand samples.
Under a low effective confining pressure (σ′3 ≤ 400 kPa), the constraining force was weak,
and u was low and insensitive to the change in Sr. Increasing σ′3 enhanced the constraining
force, caused the increase of u, and amplified the effect of Sr on u.
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(2) u gradually decreased with increasing εa after reaching up1. This was primarily due
to the expansion of coral sand particles in the shear process. During the dilation process,
coral sand particles bore more external loads. Moreover, the external loads carried by coral
sand particles increased with increasing dilation degree, resulting in a decreasing trend
for u.

(3) u increased with increasing εa after reaching the minimum (at which point coral
sand particles had the largest dilation degree). The failure modes of coral sand samples
with various Sr levels were essentially identical. Due to space limitations, Figure 7 only
shows the post-test forms of coral sand samples with different Sr levels when σ′3 = 200 kPa.
In the late shear stage, a shear band emerged gradually in coral sand samples (that is, local
shear occurred) and slowly expanded with increasing εa. This was the fundamental reason
why u increased with increasing εa after reaching the minimum.
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3.2. Stress Path

Stress path curves are curves that describe the process of q′ changing with p′ in the
triaxial shear process. In UU triaxial shear stress state, the q′ and p′ of a geomaterial can be
expressed as:

q′= σ′1 − σ′3 (4)

p′ =
σ′1+2σ′3

3
(5)
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where σ′1 and σ′3 are effective major and minor principal stresses, respectively. When u
reached the minimum, the sample experienced local shear (or the development of sample
deformation was no longer homogeneous), so this study only discussed the stress paths
of coral sand samples before u reached the minimum (Figure 8). As seen in Figure 8,
coral sand samples with different Sr levels have similar stress paths under a low effective
confining pressure (σ′3 ≤ 400 kPa). In the UU triaxial shear process, the difference in u was
the macroscopic mechanism for which coral sand samples with various Sr levels showed
different stress responses under the same σ′3. However, the change in Sr did not significantly
affect the development of stress in coral sand samples, mainly because u was significantly
lower than principal stresses (or there was no noticeable difference in u between coral sand
samples with different Sr levels) under a low σ′3. For example, when σ′3 = 200 kPa, the
maximum deviation in up1 between coral sand samples with different Sr levels was only
67.2 kPa. For this reason, the stress path curves of coral sand samples with different Sr
levels showed no discernible differences from each other. When σ′3 increased to 600 kPa
(or 800 kPa), the maximum deviation in up1 between coral sand samples with different
Sr levels reached 173 kPa (or 320.1 kPa). As a result, the stress path curves of coral sand
samples with many Sr levels differed significantly from each other under high effective
confining pressures (σ′3 = 600 and 800 kPa).

J. Mar. Sci. Eng. 2022, 10, 1280 14 of 33 
 

 

0 200 400 600 800
0

400

800

1200

1600
 CS−90
 CS−92.5
 CS−95
 CS−97.5
 CS−100

Ef
fe

ct
iv

e 
de

vi
at

or
 st

re
ss

 q
' (

kP
a)

Mean effective principal stress p' (kPa)

(a)

 
200 400 600 800 1000

0

400

800

1200

1600

2000

 CS−90
 CS−92.5
 CS−95
 CS−97.5
 CS−100

(b)

Ef
fe

ct
iv

e 
de

vi
at

or
 st

re
ss

 q
' (

kP
a)

Mean effective principal stress p' (kPa)  

400 600 800 1000 1200 1400
0

500

1000

1500

2000

2500
 CS−90
 CS−92.5
 CS−95
 CS−97.5
 CS−100

(c)

Mean effective principal stress p' (kPa)

Ef
fe

ct
iv

e 
de

vi
at

or
 st

re
ss

 q
' (

kP
a)

 
600 800 1000 1200 1400

0

500

1000

1500

2000

2500
 CS−90
 CS−92.5
 CS−95
 CS−97.5
 CS−100

(d)

Ef
fe

ct
iv

e 
de

vi
at

or
 st

re
ss

 q
' (

kP
a)

Mean effective principal stress p' (kPa)  
Figure 8. Stress path of coral sand with different saturations: (a) σ3

’  = 200 kPa; (b) σ3
’  = 400 kPa; (c) 

σ3
’  = 600 kPa; (d) σ3

’  = 800 kPa. 

3.3. Initial Elastic Modulus 
Initial elastic modulus (Ei) is an important indicator characterizing the stiffness of 

geomaterials, defined as the ratio of q to εa of the sample within the elastic limit [14]: 

Ei = q
εa

 (6)

Plastic deformation plays a dominant role in the deformation of coral sand under 
loads, while elastic deformation is minimal [42]. For this reason, the data within the range 
of εa = 1% were adopted to calculate Ei. Figure 9 shows the Ei of coral sand with Sr change 
under different conditions. As seen from Figure 9, Ei fluctuates within an extremely small 
range with changing Sr under the same σ3

’ . Ei
’ was defined as the mean Ei of coral sand 

samples with different Sr levels under a certain σ3
’ : 

Ei
’ = 

Ei1 + Ei2 + ⋯  + Ein

n  (7)

where n is a natural constant, set at 1, 2, 3, and 4, respectively. With increasing σ3
’ , Ei

’ 
gradually increased from 480.1 kPa to 1046.3 kPa (Figure 9). When σ3

’  rose, the constrain-
ing force applied to the sample increased, and so did the slope of the q–εa curve in the 
initial shear stage, as manifested by a positive correlation between Ei

’ and σ3
’ . The results 

in Figure 9 also indicated that, compared to Sr, σ3
’  exerted a more significant effect on the 

Figure 8. Stress path of coral sand with different saturations: (a) σ′3 = 200 kPa; (b) σ′3 = 400 kPa;
(c) σ′3 = 600 kPa; (d) σ′3 = 800 kPa.



J. Mar. Sci. Eng. 2022, 10, 1280 13 of 30

3.3. Initial Elastic Modulus

Initial elastic modulus (Ei) is an important indicator characterizing the stiffness of
geomaterials, defined as the ratio of q to εa of the sample within the elastic limit [14]:

Ei =
q
εa

(6)

Plastic deformation plays a dominant role in the deformation of coral sand under
loads, while elastic deformation is minimal [42]. For this reason, the data within the range
of εa = 1% were adopted to calculate Ei. Figure 9 shows the Ei of coral sand with Sr change
under different conditions. As seen from Figure 9, Ei fluctuates within an extremely small
range with changing Sr under the same σ′3. E′i was defined as the mean Ei of coral sand
samples with different Sr levels under a certain σ′3:

E′i =
Ei1+Ei2 + · · ·+Ein

n
(7)

where n is a natural constant, set at 1, 2, 3, and 4, respectively. With increasing σ′3, E′i
gradually increased from 480.1 kPa to 1046.3 kPa (Figure 9). When σ′3 rose, the constraining
force applied to the sample increased, and so did the slope of the q–εa curve in the initial
shear stage, as manifested by a positive correlation between E′i and σ′3. The results in
Figure 9 also indicated that, compared to Sr, σ′3 exerted a more significant effect on the Ei of
coral sand. In UU triaxial shear stress state, q grew much faster than u in the initial shear
stage (Figures 4 and 5). Coral sand particles bore most external loads and experienced
elastic deformation. Thus, Sr had no obvious effect on Ei.
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3.4. Shear Strength

Shear strength is an important indicator for characterizing the geomaterials’ mechani-
cal properties and a major parameter in geotechnical design [43,44]. The shear strength of
a geomaterial depends on its type, meso-fabric, water content, and other factors [45–48].
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Wiebe [49], Hu et al. [50], Malizia and Shakoor [51] studied terrigenous geomaterials and
found that the soil shear strength decreased as water content increased. Due to its particular
structure, coral sand contains numerous interparticle pores during the natural accumula-
tion process [52], which can accommodate abundant water. Since sand particles and pore
water share external loads, Sr will affect the shear strength of coral sand. In this section,
peak deviator stress (qp) was adopted to analyze the Sr effect of the shear strength of coral
sand (Figure 10). Figure 10 indicates that the qp of coral sand decreases with increasing Sr.
For example, when σ′3 = 200 kPa, the qp of coral sand drops by 184.2 kPa with increasing
Sr from 90% to 100%. When σ′3 = 600 kPa, the qp of coral sand decreases by 363.4 kPa as
the Sr rises from 90% to 100%. Pore water can be divided into free, bound, and capillary
water, among which free water drifts through interparticle pores and has good fluidity.
Nearly saturated coral sand has the highest content of free water [9]. Free water weakens
the frictional resistance between coral sand particles [53], which is an important part of the
strength of coral sand. The content of free water grows as Sr raises, for which the strength
of coral sand declines with increasing Sr.
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Further analysis in this study found that the relationship between qp and Sr could be
expressed as:

qp= m1 +m2exp(m3Sr) (8)

where m1, m2, and m3 are fitting parameters (Table 6). m1 is approximately equal to the qp
of CS–100 under different σ′3 levels. m1 can characterize the shear strength of coral sand
with 100% Sr, which is mainly affected by σ′3. m2 and m3 jointly control the amplitude by
which the shear strength of coral sand increases with decreasing Sr. m3 is a negative value
that characterizes the negative correlation between shear strength and Sr. Measurement of
unsaturated shear strength at an engineering site is complex and costly. Equation (8) can be
applied to predict the shear strength of unsaturated coral sand.

Figure 11 shows how the difference in qp between unsaturated coral sand and saturated
coral sand changed with Sr, as seen in Figure 11.
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Table 6. Peak deviator stress–saturation fitting expression and parameters.

Sample Expression σ’
3 (kPa) m1 m2 m3 R2

Coral medium sand qp= m1 +m2exp(m3Sr)

200 1226.055 1.068 × 1018 −0.404 0.980

400 1634.959 1.939 × 1017 −0.385 0.988

600 1798.559 5.955 × 1017 −0.389 0.997

800 2067.165 1.717 × 1010 −0.194 0.988
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(1) Under the same σ′3, the difference in qp between unsaturated and saturated coral
sand increased with increasing Sr. This law was represented in Figure 11 as the gradual
increase in the slope of the linear segment, which coincided with the law expressed by
Equation (8) (that is, the decreasing trend of qp with increasing Sr was gradually weakened).
It was because increasing Sr weakened the shear strength of coral sand.

(2) Clearly, increasing σ′3 grew the difference in qp between unsaturated and saturated
coral sand. The Sr effect of the shear strength of coral sand was significantly affected
by σ′3. For example, under a low effective confining pressure (σ′3 ≤ 400 kPa), when Sr
decreased from 97.5% to 92.5%, the maximum difference in qp between unsaturated and
saturated coral sand was 63.4 kPa only. In contrast, under high effective confining pressures
(σ′3 = 600 and 800 kPa), when Sr decreased from 97.5% to 92.5%, the maximum differences
in qp between unsaturated and saturated coral sand were 127.6 kPa and 220.8 kPa, respec-
tively. Under a low effective confining pressure (σ′3 ≤ 400 kPa), u in a coral sand sample can
be disregarded in relation to its axial stress. However, increasing σ′3 caused u to increase
significantly, for which the ratio of u to axial stress also increased obviously. In other words,
σ′3 affected the shear strength of a coral sand sample by affecting u in the sample. For this
reason, the shear strength of coral sand samples with different Sr levels uniformly showed
an obvious confining pressure effect.
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3.5. Shear Strength Parameter

According to the Mohr–Coulomb strength theory, the strength of a geomaterial mainly
consists of two parts, frictional and cohesive strength:

τ = c + σtanϕ (9)

where σ is the normal stress applied on the shear plane, ϕ is the internal friction angle, c is
cohesion. The Mohr’s stress circles and shear strength envelope curves of coral sand sam-
ples with different Sr levels can be depicted using Equation (9) and test results (Figure 12).
As shown in Figure 12, for coral sand samples with the same Sr, their shear strength enve-
lope curves are tangent to Mohr’s stress circles under different σ′3 levels. The slopes of shear
strength envelope curves and the intercepts with the τ axis can be utilized to determine the
shear strength parameters of coral sand samples with different Sr levels.
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Figure 13 shows the relationships of the shear strength parameters of coral sand with
Sr. According to the results in Figure 13.
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Figure 13. Relationship between strength parameter and saturation of coral sand: (a) internal friction
angle; (b) cohesion.

(1) Within the σ′3 range of 800 kPa, the ϕ values of coral sand samples with 90–100%
Sr in UU triaxial shear stress state fell within the range of 25–29◦ (Figure 13a). When Sr
increased successively from 90% to 97.5%, the ϕ of coral sand decreased approximately
linearly by 3.77◦. When Sr increased from 97.5% to 100%, ϕ remained almost unchanged.
Classical soil mechanics holds that the ϕ of geomaterials can be expressed as [54,55]:

ϕ = ϕu +ϕd +ϕb (10)

where ϕu is sliding friction angle, ϕd is the friction angle caused by dilation, ϕb is the friction
angle caused by particle breakage and rearrangement. The lubrication effect of pore water
reduces the frictional resistance between coral sand particles in relative motion, causing ϕu
to decrease as Sr increases. Additionally, the lubrication action of pore water intensifies
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the relative motion between coral sand particles, causing particle breakage quantity to rise
with increasing Sr. The intensification of particle breakage weakens the shear strength of
coral sand [40], and ϕb, affected by particle breakage, also decreases with increasing Sr. In
addition, under the combined action of σ′3 and particle breakage, coral sand samples in
testing exhibited a small dilation degree or not at all (Figure 5), indicating that ϕd has a
low weight in ϕ and exerts a small effect. Therefore, ϕ was mainly controlled by ϕu and ϕb,
which both decreased as Sr dropped, resulting in a negative correlation between ϕ and Sr.

(2) Within the σ′3 range of 800 kPa, coral sand samples with 90–100% Sr in UU triaxial
shear stress state possessed a c. c fluctuated within a small range with changing Sr,
but no apparent law of change was observed. c had a range of 280–310 kPa and was
mainly concentrated between 300 and 310 kPa. The maximum difference in c between
coral sand samples with various Sr levels was 25.3 kPa only (Figure 13b). According
to classical soil mechanics, sandy soil has no cohesion. However, there is capillarity
attraction in unsaturated sandy soil, and suitable water content produces an obvious
cohesive action. The cohesion existing in these forms is also called “pseudo cohesion” or
“apparent cohesion” [56]. The change in Sr affects the content and distribution of capillary
water in coral sand, so Sr affects the apparent cohesion of coral sand. Meanwhile, in the τ–σ
stress space, the UU shear strength envelope curves of coral sand samples with different
Sr levels were almost parallel to the σ axis, so the c corresponding to the intercept of coral
sand changed a little.

4. Particle Breakage Analysis
4.1. Effect of Saturation on Particle Breakage Ratio

The particle gradation curves of geomaterials change upon breakage. The particle
breakage degree of a geomaterial can be quantified by the differences in its particle gra-
dation curves before and after testing [57]. Hardin [58] mentioned that geomaterials with
different initial gradations break into powder particles with sizes of less than 0.074 mm
under sufficiently large external loads. On this basis, Hardin proposed a particle breakage
evaluation indicator, i.e., relative breakage ratio (Br):

Br =
Bt

Bp
(11)

where Bt denotes the total breakage, which is the area enclosed by the particle gradation
curves before and after testing and the vertical line of d = 0.074 mm, and Bp denotes
breakage potential, which is the area enclosed by the particle gradation curve before testing
and the vertical line of d = 0.074 mm (Figure 14).

The Br of coral sand under each condition was calculated using Equation (11) and the
results of particle screening tests. Figure 15 shows the relationship between Br and Sr for
coral sand in the UU triaxial shear stress state. As can be seen from Figure 15, Br increase
with increasing Sr, which coincides with the research results of Wu et al. [9]. A coral sand
sample with a higher Sr level has a higher pore water content, producing a lubrication
action in interparticle relative motion. The lubrication action of pore water makes it easier
for coral sand particles to experience rolling and displacement. In contrast, the increase in
the probability of coral sand particles results in fracturing, abrading, or otherwise breaking
them into relative motion, which causes a higher Br.
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Further analysis revealed a good linear relationship between Br and Sr for coral sand,
which could be expressed as:

Br = p1Sr + p2 (12)

where p1 and p2 are fitting parameters, p1 is a positive value that characterizes the degree to
which the Br of coral sand increases with increasing Sr, and p2 characterizes the combined
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effect of other factors (such as compactness, stress level, and particle gradation) on the
Br of coral sand. The Sr effects on coral sand particle breakage disappeared when σ′3 was
sufficiently large. For example, when σ′3 = 200, 400, and 600 kPa, p1 was 0.0012, 0.0012, and
0.0013, respectively, and the fitting curves were parallel to each other. When σ′3 = 800 kPa,
p1 was 0.0004, and Br increased very slightly with increasing Sr. When σ′3 was sufficiently
large, the intensification of particle breakage produced more fine particles that can be used
to fill interparticle spacings. Thus, the presence of these fine particles obstructed the flow of
pore water and further weakened its lubrication action on interparticle relative movement.
This explains why Sr exerts little effect on the particle breakage of coral sand under a high
value of σ′3. In addition, the production of fine particles caused particle breakage to stabilize
by increasing σ′3 gradually, which means that the particle breakage cannot proceed infinitely
with increasing σ′3 [59]. This phenomenon is pronounced at high Sr coral sand (Figure 15).

In the studies of coral sand particle breakage, saturated coral sand was the main target.
In view of this, particle breakage results of coral sand with 100% Sr in this test are selected
to compare with those introduced from other tests [18,25,27–29,33,60]. Figure 16 shows the
particle breakage results of saturated coral sand under different conditions. It can be seen
from Figure 16 that, Br of coral sand is different due to the influence of sand origin, particle
gradation, drained condition, compactness, and so on. Within the σ′3 range of 800 kPa,
Br of coral sand is mainly distributed between 0.01 and 0.12, and Br shows a significant
positive correlation with σ′3. On the whole, Br of coral sand in this test is relatively small,
mainly for the following reasons: (I) The compactness of sand sample undergoes isotropic
compression increases, and Br increases accordingly. While sand sample in this test was
not consolidated, resulting in a decrease of Br. (II) Figure 16 illustrates that Br of coral
sand under drained condition is greater than under undrained condition, and this test was
conducted under undrained condition, so Br is relatively small. (III) Coral sand with finer
particle size has less potential to breakage [17,18]. Coral sand used in this test was medium
size, which is finer than sand in other tests, so Br in the test is smaller.
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Furthermore, Wu et al. [9] measured the particle breakage of coral sand with different
moisture contents based on CD triaxial shear test. Figure 17 shows the particle breakage
results of Wu and this paper. The test result in this paper illustrated that there was a
positive relationship between Br and Sr for coral sand with Sr ≥ 90%. Test results in Wu’
paper showed that there was also a positive relationship between Br and Sr for coral sand
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with Sr ranging from 17 to 69%. Further analysis indicates that Wu’ data and the data in
this paper can be described by the same linear expression with a great fit. In above, in
can be inferred that there is a linear relationship between Br and Sr of coral sand, and the
relationship does not rely on Sr level of coral sand. However, the conditions of Wu’ test are
different from those in this paper (such as particle gradation, drained condition), and this
speculation still needs to be verified by further experiments.
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4.2. Effect of Saturation on Modified Particle Breakage Index

The calculation of Br is based on the condition that the particle breakage limit is
d = 0.074 mm. However, this condition is controversial. Subsequent studies showed that
particles do not completely break into powder particles even when subjected to high
stresses with values of about 689 MPa [61]. Einav [62] claimed that the limit of particle
breakage obeys the following function:

f (d) =
(

d
dM

)3−α

(13)

where f (d) denotes the ultimate particle gradation curve, dM denotes the upper limit of
particle size, and α denotes fractal dimension, set at 2.6 [63]. On this basis, Einav introduced
the modified relative breakage index (B∗r ):

B∗r =
Bt

B∗p
(14)

where Bt denotes total breakage, the value of which is the area enclosed by the initial
particle gradation curve and the current particle gradation curve, and B∗p denotes modified
breakage potential, the value of which is the area enclosed by the initial particle gradation
curve and the ultimate particle gradation curve (Figure 18).

The coral sand B∗r under each condition was calculated according to Equation (14)
and the results of particle screening tests. Figure 19 shows the relationship between B∗r
and Sr for coral sand in UU triaxial shear stress state. Under the same value of σ′3, the B∗r
of coral sand increased linearly with increasing Sr. When σ′3 was sufficiently large, the
growth rate of B∗r with increasing Sr dropped significantly. As particle breakage evaluation
indicators, Br and B∗r were similar in some aspects but different in others [29]. Br and B∗r



J. Mar. Sci. Eng. 2022, 10, 1280 22 of 30

were similar in that they can describe the objective laws governing the particle breakage
of coral sand in the same manner. Br and B∗r both depend on the initial particle gradation
curve and the current particle gradation curve for calculating the actual particle breakage
quantity. The initial particle gradation curve and the current particle gradation curve were
definite values under given test conditions. They were different in that B∗r was always
greater than Br under the same test conditions. A comparison between Equations (11) and
(14) revealed that their main difference was the denominators. Due to the difference in
ultimate gradation, B∗p was always smaller than Bp under the same conditions, which was
the main reason why B∗r was greater.
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4.3. Effect of Saturation on Particle Median Size

Coral sand samples with different Sr levels experienced varying degrees of particle
breakage in the shear process. Since some sand particles would break into finer sand
particles, the median particle size (d50) of samples would change accordingly. After testing,
the d50 values of coral sand samples were calculated and then statistically investigated.
Additionally, box plots were used to present the law of d50 changing with Sr. As seen from
Figure 20, the mean and median d50 values of coral sand both decrease with increasing Sr.
That is, under the same conditions, a sample with a higher Sr level can produce more fine
particles after shear tests, suggesting that a higher Sr level means a larger particle breakage
quantity for coral sand. This result is consistent with the result in Figure 15 (or Figure 19).
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Figure 21 shows the relationships of d50 with Br and B∗r . It can be seen from Figure 21
that d50 decreases with increasing Br and B∗r , with linear fitting degrees of 0.9994 and 0.9989,
respectively. A sample with a large particle breakage degree would produce more particles
in the shear process, and consequently, the particle size corresponding to the cumulative
percentage of particle size contents of 50% would be smaller. Thus, it can be observed that
there is a negative correlation between d50 and particle breakage quantity.
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5. Discussion of Saturation Effect on Shear Strength and Particle Breakage
5.1. Saturation Effect on Shear Strength of Coral Sand

The strength characteristics of coral sand samples with different Sr levels (90, 92.5, 95,
97.5, and 100%) are discussed. It was found that the strength characteristics of coral sand
are basically consistent under 97.5% Sr and 100% Sr (Table 7). Therefore, 97.5% can be taken
as the critical Sr of coral sand from the strength perspective. The mechanical properties of
coral sand become stable after reaching the critical Sr, in that case, further increasing Sr
produces no practical significance. In contrast, the Sr effect of the mechanical properties of
coral sand is significantly below the critical Sr.

Table 7. Comparison in shear behavior between coral sand with 97.5% saturation and 100% saturation.

Shear Behavior
Saturation

Sr = 97.5% Sr = 100%

Shear strength
qp (kPa)

σ′3= 200 kPa 1240.1 1220.9
σ′3= 400 kPa 1639.9 1638.1
σ′3= 600 kPa 1813.2 1806.2
σ′3= 800 kPa 2159.7 2147.1

Internal fiction angle ϕ (◦) 25.16 25.25
cohesion c (kPa) 309.33 303.96

In view of this, Equation (15) was used to calculate the ratio of the difference between
the shear strength of coral sand below the critical Sr and that of coral sand at the critical Sr
as follows:

η =

(
qp
)

i −
(
qp
)

97.5(
qp
)

97.5
× 100% (15)

where η denotes the ratio at which the shear strength of coral sand increases with decreasing
Sr, and (qp)i denotes the qp of coral sand with a specific Sr (where i was set at 90, 92.5, and
95, respectively). Figure 22 shows the relationship between η and Sr. σ′3 was taken as the
threshold to calculate mean η and plot it in the figure. As seen in Figure 22, the η values for
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coral sand with 90% Sr fall within the range of 10–20%. At this point, the shear strength
of the sample, compared with that of coral sand with the critical Sr, is greatly improved,
and can easily cause stress that exceeds the sensor range in the test process. Additionally,
it can be seen that the η values of coral sand with 95% Sr are all less than 5%, suggesting
that the shear strength of the sample with 95% Sr was extremely close to that with the
critical Sr. The mean η value of coral sand with 92.5% Sr was 3.43% under a low effective
confining pressure (σ′3 ≤ 400 kPa), and 8.14% under high effective confining pressures
(σ′3 = 600 and 800 kPa).
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The preparation of saturated coral sand usually requires back pressure saturation to
increase Sr, and B > 0.95 is often used as the criterion for the saturation of coral sand. To that
end, it is often necessary to apply very high back pressure on coral sand [14,25,28,33,59,64].
However, coral sand is a special geomaterial that is susceptible to particle breakage even
under normal stress. Accordingly, excessively high back pressure greatly modifies the
original gradation of coral sand, causing changes in the mechanical properties of coral
sand [65,66]. This study discusses the Sr effect on the strength of coral sand and aims to
find a suitable Sr in an unsaturated region. It was found that the strength characteristics
of coral sand with this Sr are roughly similar to those in the saturated state and that the
applied back pressure on the sample at this point declines considerably (the B value was
even smaller). On the basis of the above analysis, 92.5% Sr can be considered a suitable Sr
value. Under this Sr, the strength of coral sand is close to that of saturated coral sand, and
the B value corresponding to this Sr is 0.27, which is far less than the 0.95 required in the
test code. Taking 92.5% as the Sr value of coral sand available for tests not only avoids the
back pressure effect in the saturation process but also offers an idea for seeking a suitable
saturation method for coral sand.

5.2. Saturation Effect on Particle Breakage of Coral Sand

Section 5.1 proposes a Sr value of coral sand available for tests. This section further
demonstrates this conclusion from the perspective of particle breakage. Particle breakage is
an irreversible physical process of particles splitting into fine particles, affecting geomateri-



J. Mar. Sci. Eng. 2022, 10, 1280 26 of 30

als’ strength, deformation characteristics, and energy absorption [67–70]. According to the
calculation results in Section 4, when σ′3 = 200, 400, 600, and 800 kPa, the particle breakage
quantities of coral sand with 92.5% Sr in the shear process are 0.00538, 0.00224, 0.00439,
and 0.00268 less than that of the coral sand with the critical Sr, respectively. The particle
breakage quantity of coral sand was smaller under a low Sr, in which case particle breakage
exerted an even smaller effect on the strength characteristics of coral sand. Moreover, taking
92.5% as the Sr value of the coral sand available for tests in the preparation of coral sand can
prevent particle breakage caused by the application of back pressure. The above discussion
verifies the reasonableness of taking 92.5% as the Sr value of coral sand available for tests
from the perspective of particle breakage.

6. Conclusions

To ascertain the saturation effect of the shear behavior of coral sand, this study con-
ducted multiple groups of UU triaxial shear tests on coral sand samples with different Sr
levels, and tested the particle breakage quantities of coral sand. The main conclusions of
this study are as follows:

(1) Coral sand samples with different Sr levels all manifested strain softening charac-
teristics. Increasing Sr promoted the development of up1 in coral sand during the initial
shear stage but had no effects on the Ei of coral sand.

(2) The shear strength of coral sand decreased exponentially with increasing Sr. The ϕ
of coral sand decreased by 3.77◦ with the increase of Sr from 90% to 97.5%. However, when
Sr increased from 97.5% to 100%, the ϕ of coral sand remained unchanged. The c of coral
sand in this study fluctuated within the range of 280–310 kPa but was not considerably
affected by Sr.

(3) For σ′3 range of 600 kPa, the particle breakage quantity of coral sand increased
linearly at a slope of 0.12% with increasing Sr. As the σ′3 continued to rise, the linear increase
rate of particle breakage quantity with increasing Sr declined to 0.04%. After testing, the
d50 of coral sand decreased with increasing Sr or particle breakage quantity.

(4) 97.5% could be taken as the critical Sr of coral sand. Above this critical Sr, the
mechanical properties of coral sand were stable. In contrast, below this critical Sr, the
mechanical properties of coral sand were significantly affected by Sr. On the basis of
comparing the strength and particle breakage characteristics of unsaturated coral sand and
coral sand in a critical saturation state, this study suggested that 92.5% should be taken as
the Sr value of coral sand available for tests.

Author Contributions: X.C.: Conceptualization, methodology, and writing—original draft; J.S.:
investigation and project administration; X.W.: formal analysis and writing—original draft; T.Y.:
writing—review and editing; D.X.: writing—review and editing. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Nos.
41772336, 42177151, and 42177154).

Data Availability Statement: Some or all data, models, or codes generated or used during this study
are available from the corresponding author upon request.

Conflicts of Interest: The authors declare on conflict of interest.



J. Mar. Sci. Eng. 2022, 10, 1280 27 of 30

Nomenclature

CS Coral sand
Sr Saturation (Unit: %)
σ′3 Effective confining pressure (Unit: kPa)
UU Unconsolidated–undrained
CD Consolidated–drained
CU Consolidated-undrained
d Particle size (Unit: mm)

d50
Diameter that corresponds to an 50% finer in the particle gradation curve
(Unit: mm)

ρd Dry density (Unit: g/cm3)
e Void ratio
P Mass percentage of particles smaller than a certain size (Unit: %)
Cu Nonuniformity coefficient
Cc Curvature coefficient
Gs Specific gravity
ρdmin Minimum dry density (Unit: g/cm3)
ρdmax Maximum dry density (Unit: g/cm3)
emin Minimum void ratio
emax Maximum void ratio
Dr Relative density (Unit: %)
v Shear rate (Unit: mm/min)
εa Axial strain (Unit: %)
n Porosity
VW Volume of water inside sample (Unit: mm3)
VV Volume of pores inside sample (Unit: mm3)
V Sample volume (Unit: mm3)
q Deviator stress (Unit: kPa)
qp Peak deviator stress (Unit: kPa)
u Pore water stress (Unit: kPa)
up1 Peak pore water stress (Unit: kPa)
σ′1 Effective major principal stress (Unit: kPa)
p’ Mean effective principal stress (Unit: kPa)
Ei Initial elastic modulus (Unit: kPa)
E′i Mean initial elastic modulus (Unit: kPa)
m1, m2, m3 Fitting parameters
τ Shear stress acting on the shear plane (Unit: kPa)
σ Normal stress on the shear plane (Unit: kPa)
ϕ Internal friction angle (Unit: ◦)
c Cohesion (Unit: kPa)
ϕu Sliding friction angle (Unit: ◦)
ϕd Dilatancy friction angle (Unit: ◦)
ϕb Friction angle caused by particle breakage and rearrangement (Unit: ◦)
Br Relative breakage ratio
Bt Total breakage
Bp Breakage potential
p1, p2 Fitting parameters
α Fractal dimension
dM Upper limit of particle size (Unit: mm)
B∗p Modified breakage potential
B∗r Modified relative breakage index
η Shear strength increasing ratio (Unit: %)
B Pore water stress index
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