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Abstract: It is well known that sail-assisted propulsion works under gradient wind conditions in the
atmospheric boundary layer, and is an energy-saving device for fuel consumption. In order to study
the aerodynamic characteristics of a wingsail in the atmospheric boundary layer above sea level, a
transition SST turbulence model was used for numerical simulation of the wingsail with uniform and
gradient wind conditions. We concluded that gradient wind conditions can delay the stall caused
by an increased angle of attack. This is because the airflow on the suction surface of the wingsail
in the spanwise direction exerts an acceleration towards the top of the wingsail. At the same time,
supplementary airflow compresses the separated vortex, thus delaying the stall of the two-element
wingsail. Under gradient wind conditions, the flow separation of the wingsail develops rapidly in
the stall angles. Once a flat separation vortex is formed at the trailing edge of the wingsail, with
the slow increase of flap deflection angle, flow separation rapidly expands and a deep stall occurs.
Therefore, a small change of the flap deflection angle in the near-stall angles may lead to a deep stall
of the wingsail, which should be avoided in engineering applications. Finally, the influence of the
average speed of the gradient wind on the aerodynamic performance of the two-element wingsail
was analyzed.

Keywords: two-element wingsail; energy-saving device; gradient wind; numerical simulation

1. Introduction

In the past two years, due to the impact of the COVID-19 epidemic and the turbulent in-
ternational situation, international crude oil prices have been rising and the operating costs
of shipping companies have been increasing, which has prompted sail-assisted navigation
technology to be further studied in many countries to reduce fuel consumption. Among
them, wingsail-assisted propulsion technology has been favored by researchers due to its
non-energy consumption, a wide range of available wind directions, and energy-saving
effect. In 2017, AYRO of France designed Oceanwings [1], which has been proven to reduce
fuel consumption of cargo ships by up to 45%, by incorporating a two-element wingsail
on the BMW Oracle fleet, as shown in Figure 1. In 2018, China National Shipbuilding
Group [2] delivered the world’s first VLCC “Kaili,” as shown in Figure 2, with wingsails,
and the test results showed a considerable energy-saving effect.

In 2021 Michelin’s R & D department and two Swiss inventors jointly launched the
Wing Sail Mobility (WISAMO) system [3], shown in Figure 3, featuring an inflatable
wingsail technology. In July 2021, Meimura Shipbuilding in Japan, together with Japanese
shipowner NS United Shipping, announced another joint development of a sail-powered
energy-saving system for a 183,000 dwt Cape-size bulk carrier [4], as shown in Figure 4,
which presented excellent performance in the utilization of wind energy.
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As seen above, wing sails mostly work within the atmospheric boundary layer with a
thickness of 0–100 m above sea level. As the wind flows over the sea surface, the airflow
status is influenced by the viscous resistance of the sea surface and results in a pressure
gradient within the atmospheric layer [5], in which the lower interface is mobile and
involves various mechanisms of interaction between wind and wind waves. Much offshore
empirical data (e.g., the results of large offshore tests such as AMTEX) have indicated the
existence of significant gradient wind phenomena within a few tens of meters above the
sea surface [6].
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Researchers consider the wind gradient effects in the atmospheric boundary layer
when studying the aerodynamic response and load characteristics of high-rise buildings [7],
large bridges [8], wind machines [9], and unmanned aircraft gliding [10]. While sail-design
enthusiasts, such as Daniel [11], Blakeley [12], Vincent Chapin [13], and Alessandro [14],
have not considered the effect of gradient wind conditions when studying the aerodynamic
characteristics of multi-element wingsails, Wenrong Hu [15] and Ian Mortimer [16] analyzed
the aerodynamic performance of conventional sails under real gradient wind conditions.
However, the aerodynamic load distribution and flow field of wingsails under gradient
wind conditions have not been fully studied.

Usually, a linear mathematical model is used to describe the wind gradient in the
atmospheric boundary layer. Thuillier and Lappe [17] introduced a roughness factor to
describe the wind gradient profile. Then, Ricardo Bencatel [18] optimized a logarithmic
mathematical model of wind gradient through experiments. Stevenson [19] proposed
the parabolic law to describe the wind gradient profile, but it is not applicable to the
atmospheric boundary layer below 10 m. Holmes [20] successfully verified the law of wind
speed variation along the thickness of the atmospheric boundary layer with the help of an
exponential mathematical model.

Meanwhile, some scholars have conducted in-depth studies on mathematical models
of wind gradient at sea level. HW Tieleman [21] provided prediction methods for param-
eters such as rough elements, friction velocity, and wind gradient characteristics for the
atmospheric boundary layer by wind simulation experiments based on rough element data
at sea level. Bower [22] developed a wind gradient model of the sea atmospheric boundary
layer and determined the gliding characteristics of a fixed-wing UAV in the wind gradient
field. Li [23] established a wind gradient model for the sea surface atmospheric boundary
layer and conducted a detailed study on the influence of sea surface atmospheric boundary
layer and sea-air interactions.

In this study, we introduce a mathematical model of wind gradient at sea level, and
analyze the aerodynamic performance and flow field of a wingsail under uniform wind
and gradient wind conditions, considering the changing of angle of attack, flap deflection
angle and average wind speed. The result could provide a reference for studying the effect
of wind gradient on the stall of the wingsail.

2. Mathematical Model of Wind Gradient at Sea Level

Using the North-East Earth (NED) coordinate system as a standard [10], the sea-level
wind field at a location ri = [xi, yi, zi]

T and time t is specified as the wind speed vector Ui
and gradient matrix JUi :

Ui =

 Uix(xi, yi, zi, t)
Uiy(xi, yi, zi, t)
Uiz(xi, yi, zi, t)

 (1)

JUi =


δUix
δxi

δUix
δyi

δUix
δzi

δUiy
δxi

δUiy
δyi

δUiy
δzi

δUiz
δxi

δUiz
δyi

δUiz
δzi

 (2)

It is assumed that the direction of wind speed in the sea level wind field points to the
positive direction of the xi axis, i.e., Uix > 0, and the remaining components Uiy = 0, Uiz = 0.
Therefore, the wind speed can be expressed by U, and its magnitude is distributed in a
gradient at sea level.

2.1. Logarithmic Mathematical Model of Wind Gradient [24]

The wind speed at the sea surface is influenced by the atmospheric boundary layer
and is distributed in a gradient along the spanwise height, which is influenced by two
main factors: first, the frictional drag brought by the roughness of the sea level, which
directly reduces the wind speed near the sea surface, and second, the vertical stability of
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the atmospheric boundary layer disturbed by the thermal effect of the airflow. The strong
and perturbing effects of the airflow gradually decrease with height, and the variation law
of this wind speed obeys the empirical theoretical formula in Prandtl turbulence.

U =
U0

K
ln(

h
h0

) (3)

U0 =

√
τ0

ρ
(4)

where U is the wind speed at height h, and K is the Karman coefficient, which is about 0.4.
U0 is the friction velocity and τ0 is the shear stress of the sea surface. h0 is the roughness
length parameter or roughness factor, whose value is mainly affected by factors such as
wave height; the value range is generally 0.0001 m–0.01 m, and 0.001 m can be taken for
moderate wind waves.

Derived from Equation (3):

U = UR
ln h − ln h0

ln hR − ln h0
(5)

where U is the speed at height h, and UR is the speed at the altitude hR.
The gradient of wind speed relative to height can be expressed as:

δU
δh

=
UR

h ln(hR/h0)
(6)

The reference wind speed can be selected according to the reference height hR to define
the wind profile’s overall gradient and average speed value. Generally, the wind speed at
10 m is selected as the reference wind speed, as shown in Figure 5. The mathematical model
of wind gradient is shown, whose roughness factor h0 changes with surface roughness and
other factors, as in Figure 6.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 5 of 22 
 

 

 

Figure 5. Mathematical model of wind gradient under different reference wind speeds ( Rh  = 10 m, 

0h  = 0.001 m). 

 

Figure 6. Mathematical model of wind gradient under different roughness factors ( Rh  = 10 m, 
RU  

= 10 m/s). 

2.2. Logarithmic Mathematical Model of Wind Gradient [25] 

The mathematical model of wind gradient at the sea surface can also be expressed by 

an exponential function: 

p

R

R

h
U U

h

 
=  

 
 (7) 

1p

R

R R

UU h
p

h h h





−

 
=  

 
 (8) 

where wind speed U is a function of height h. The reference wind speed 
RU  can be se-

lected according to the reference height 
Rh , which defines the wind profile’s overall gra-

dient and average speed value. Generally, the wind speed at 10 m is selected as the refer-

ence wind speed, as shown in Figure 7. 

Figure 5. Mathematical model of wind gradient under different reference wind speeds (hR = 10 m,
h0 = 0.001 m).

2.2. Logarithmic Mathematical Model of Wind Gradient [25]

The mathematical model of wind gradient at the sea surface can also be expressed by
an exponential function:

U = UR

(
h

hR

)p
(7)

δU
δh

= p
UR
hR

(
h

hR

)p−1
(8)
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where wind speed U is a function of height h. The reference wind speed UR can be selected
according to the reference height hR, which defines the wind profile’s overall gradient and
average speed value. Generally, the wind speed at 10 m is selected as the reference wind
speed, as shown in Figure 7.
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Dietert [25] and Sachs [26] used the 1/7 law (p = 0.143) to describe the mathematical
model of wind gradient at sea level. Of course, the value of p is not constant, and varies
with roughness and other factors. The distribution of wind gradient along the spanwise
height is shown in Figure 8.

2.3. Comparison of the Mathematical Models of Wind Gradient

It can be seen from Figures 5 and 7 that both mathematical models of wind gradient
consider the distribution of wind speed and wind gradient along the spanwise direction,
the wind gradient is larger at low altitudes, and the wind gradient changes more obviously
with the increase of wind speed. It can be seen from Figures 6 and 8 that the wind gradient
increases significantly at low altitudes with the increase of roughness factor and exponential
factor. Therefore, the roughness factor and exponential factor can be considered as the key
factors affecting the distribution characteristics of wind gradient.
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In this paper, the characteristic parameters of p = 1/7 and h0 = 0.001 m were selected
to compare the curves of the two wind gradient mathematical models at a wind speed
of 10 m/s at a height of 10 m, as shown in Figure 9. It can be seen that the curves of the
two mathematical models are relatively close to each other, and the wind speed values are
slightly different with the increase of the spanwise height. However, there is no evidence
that the wind gradient mathematical model is more suitable than the other to describe the
wind speed in the atmospheric boundary layer. Therefore, these two mathematical models
were chosen as the wind gradient mathematical models for the numerical experiments.
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According to Figure 9, the average speed of the wind calculation formula of the
logarithmic mathematical model of wind gradient is derived as follows:

v =

∫ h2
h1

UR
ln h−ln h0

ln hR−ln h0
dh

h2−h1
(9)

Take hR = 10 m, UR = 10 m/s as an example, take h0 = 0.001 m, and substitute
Formula (9):

v =

∫ h2
h1

1.086 ln(h) + 7.5dh

h2−h1
(10)

v =

∫ h2
h1

UR

(
h

hR

)p
dh

h2−h1
(11)
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Take p = 0.143 and substitute it into Equation (11):

v =

∫ h2
h1

7.194(h)0.143dh

h2−h1
(12)

It is calculated that the average speed of the two models of wind gradient is 10 m/s at
hR = 10 m and UR = 10 m/s. Therefore, we chose the logarithmic mathematical model of
wind gradient as the wind field entrance condition for a follow-up study.

3. Model and Numerical Method
3.1. Model of Wingsail

Drawing on the geometric parameters of wingsails designed by Li [2] for reference,
three-dimensional modeling of the wingsail was carried out, and the wingsail layout on the
ship is shown in Figure 10. The height from the bottom edge of the wingsail to the deck of
the ship is 7 m to ensure aerodynamic forces. In the wingsail model, the position of the flap
rotation axis is 90%c1, the relative width of the gap is taken as 2.4%c1, the ratio of the flap
to total chord length is taken as 0.4, the total chord length is 3.5 m, and the aspect ratio is
taken as 2. The flap deflection angle rotates within the range of 0◦–25◦. When the incoming
wind speed is 10 m/s, its Reynolds number is

Re =
ρURc

µ
= 2.4 × 106 (13)
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3.2. Computing Domain and Grid

Based on the operating characteristics of the two-element wingsail, the computational
domain rectangular (32c × 30c × 10c) is determined as shown in Figure 11. Considering
that the stall problem of the wingsail in the wind gradient state is discussed in this paper,
the boundary conditions on the bottom surface of the computational domain are set to the
standard no-slip solid wall. The inlet, left and right boundaries and upper boundary of the
computational domain are set to the velocity inlet. The curve of the inlet velocity along
the height by UDF is customized. The outlet boundary condition is set to a pressure outlet
with a pressure magnitude equal to the far field pressure, and the wingsail surface is set to
a no-slip solid wall.
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Figure 11. Calculation domain of a two-elements wingsail.

An unstructured grid was used to mesh the computational domain model by ANSYS
ICEM. To control the total amount of the grid, the grid of the area near the two-element
wingsail is encrypted, while the far region uses a larger grid size. Figure 12 shows the mesh
details of the wingsail surface. Three different grid sizes (coarse grid, finer grid, and thinnest
grid) are chosen to evaluate the grid sensitivity of the wingsail, which are shown in Table 1.
The thinnest grid size of the wingsail surface is set to 0.25%c. The growth rate of the boundary
layer grid is 1.05, and the number of boundary layers is 15. The y value is calculated as
1.5 × 10−5c to ensure that the y+ value is less than 1, which is shown in Figure 13.
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Table 1. Setting of wingsail surface grid parameters.

Grid Type Grid Size of Wingsail Surface Total Number of Grids

Coarse grid 0.8%c 1.045 × 107

Finer grid 0.4%c 1.453 × 107

Thinnest grid 0.25%c 1.883 × 107
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To ensure that the number of grids have no effect on the performance of the two-
element wingsail, the grid sensitivity is estimated for three grid models with different grid
sizes at Reynolds number Re = 2.4 × 106. The lift-drag characteristics are shown in Table 2.
The lift and drag coefficient curves show monotonic convergence (0 < RG < 1) during the
numerical calculation.

Table 2. Grid sensitivity analysis at α = 6◦.

Type ID CL Error (%) CD Error (%)

Thinnest grid ϕ1 1.8210 — 0.1516 —
Finer grid ϕ2 1.8216 0.033 0.1513 −0.1979

Coarse grid ϕ3 1.8193 −0.093 0.1522 0.3958
RG — 0.2826 — 0.3113 —

Finally, the grid convergence index (GCI) method is used to evaluate the three grid
dispersion errors [27]. As can be seen from Table 3, the results of the solutions for CL and
CD are 0.669% and 0.362%, respectively. The increase in the number of grids makes the
variation in the lift-drag characteristics of the two-element wingsail small when a finer
grid size is chosen. The thinnest grid types enable a more accurate calculation but with an
increased computational cost. Therefore, when discussing the wingsail grid model, it is
more appropriate to choose a finer mesh size (14.53 million) for the numerical simulation
solution from the perspective of aerodynamic reliability.

Table 3. The calculated value of the dispersion error of CL and CD.

Parameter CL CD

r32 2.05 2.05
r21 1.63 1.63
ϕ1 1.8210 0.1516
ϕ2 1.8216 0.1513
ϕ3 1.8193 0.1522
ϕ4 1.8185 0.1525
p 2.531 3.3679

ϕext
21 0.2742 0.1408

ea
21 0.528% 0.453%

eext
21 0.613% 0.227%

GCIfine
21 0.669% 0.362%

3.3. Verification of Numerical Methods

Since our research concerned the complex three-dimensional radial flow on the surface
of a two-element wingsail at low and medium Reynolds numbers, the research results of
Fiumara [14] on the AC72 airfoil were chosen for comparison. The transition SST turbulence
model with correction was used to analyze the accuracy of our numerical method in terms
of the performance of the three-dimensional model of a two-element wingsail and the
prediction of the flow field.

The AC72 was the sail used in the 35th America’s Cup. Fiumara et al. conducted
experiments on a 1/20-scale model of the AC72 sail in an open return wind tunnel at the
University of Toulouse, France, in 2015, and obtained more detailed experimental data,
including the lift-drag characteristic curves and flow field. The design framework and
experimental model of the wind tunnel experiments are shown in Figure 14. The duct
has an elliptical shape of 3 m × 2 m. Pressure ports have been set on three sections of the
main element (respectively) located at 25, 50 and 75% of the wingspan. The experimental
Reynolds number of this model is low, and there is also a more obvious slot jet phenomenon
on the sail surface, so this used by us for the calibration of numerical calculation; its design
parameters are shown in Table 4. To ensure the accuracy of the numerical calculation
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method, the grid division of the computational domain of the AC72 was the same as that
of the two-element wingsail model in the paper. The numerical schemes used SIMPLE,
and the degree of accuracy of the numerical schemes used the second order upwind. The
calculation software was ANSYS FLUENT.
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Figure 14. Design framework and experimental model of the AC72 wingsail wind tunnel experiment.
(a) Design Framework of the AC72 wingsail experiment. (b) AC72 wingsail experimental model.

Table 4. Design parameters of AC72 wingsail model.

Height 1.8 m

Total chord length of blade root 0.5 m
Reynolds number of blade root 6.4 × 105

Reynolds number of the blade tip 2.9 × 105

Gap width 6 mm
Flap rotation axis position 95%c1

Flap deflection angle 0–25◦

Angle of attack 0–16◦

The maximum speed in the duct 42 m/s
The airfoil of the main wing NACA0025

The airfoil of the flap NACA0012

The pressure coefficient of the different sections of AC72 is shown at a flap deflection
angle of 15◦, and an angle of attack of 0◦, as shown Figure 15. It can be seen that the
simulation and test results of the pressure load distribution of the main wing are relatively
consistent in sections of z/h = 0.5 and z/h = 0.75.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 11 of 22 
 

 

Figure 14. Design framework and experimental model of the AC72 wingsail wind tunnel experi-

ment. (a) Design Framework of the AC72 wingsail experiment. (b) AC72 wingsail experimental 

model. 

Table 4. Design parameters of AC72 wingsail model. 

Height 1.8 m 

Total chord length of blade root 0.5 m 

Reynolds number of blade root 6.4 × 105 

Reynolds number of the blade tip 2.9 × 105 

Gap width 6 mm 

Flap rotation axis position 95%c1 

Flap deflection angle 0–25° 

Angle of attack 0–16° 

The maximum speed in the duct 42 m/s 

The airfoil of the main wing NACA0025 

The airfoil of the flap NACA0012 

The pressure coefficient of the different sections of AC72 is shown at a flap deflection 

angle of 15°, and an angle of attack of 0°, as shown Figure 15. It can be seen that the sim-

ulation and test results of the pressure load distribution of the main wing are relatively 

consistent in sections of z/h = 0.5 and z/h = 0.75. 

  
(a) (b) 

Figure 15. Pressure coefficient of main wing in different sections of the AC72 wingsail. (a) z/h = 0.5, 

(b) z/h = 0.75. 

The transition positions and separation bubble lengths of the suction surface of AC72 

are listed in Table 5. It can be seen that the transition positions and separation bubble 

lengths for the AC72 predicted by the numerical simulation method are basically within 

15% error compared to the experimental results. This indicates that it is feasible to use the 

transition SST turbulence model to predict the flow field of the 3D wingsail, and the re-

sults by numerical simulation method are acceptable. 

Table 5. Transition position and separation bubble length of suction surface of AC72. 

 
Separation Position of Separation Bubble(/%c1) Length of Separation Bubble (/%c1) 

CFD TEST Error CFD TEST Error 

z/h = 0.25 34 39.5 −13.92% 14 12.5 12% 

z/h = 0.5 30 32 −6.25% 18 16 12.5% 

z/h = 0.75 31 36 −13.89% 17 15 13.33% 

  

Figure 15. Pressure coefficient of main wing in different sections of the AC72 wingsail. (a) z/h = 0.5,
(b) z/h = 0.75.

The transition positions and separation bubble lengths of the suction surface of AC72
are listed in Table 5. It can be seen that the transition positions and separation bubble
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lengths for the AC72 predicted by the numerical simulation method are basically within
15% error compared to the experimental results. This indicates that it is feasible to use the
transition SST turbulence model to predict the flow field of the 3D wingsail, and the results
by numerical simulation method are acceptable.

Table 5. Transition position and separation bubble length of suction surface of AC72.

Separation Position of Separation Bubble(/%c1) Length of Separation Bubble (/%c1)

CFD TEST Error CFD TEST Error

z/h = 0.25 34 39.5 −13.92% 14 12.5 12%
z/h = 0.5 30 32 −6.25% 18 16 12.5%

z/h = 0.75 31 36 −13.89% 17 15 13.33%

4. Result
4.1. Effect of Angle of Attack on the Aerodynamic Characteristics of the Wingsail

Figure 16 shows the lift-drag characteristic curves of the two-element wingsail for
uniform wind and logarithmic gradient wind conditions. From Figure 16, it can be seen that
the stall angle of the two-element wingsail is increased and the maximum lift coefficient is
increased by 8.6% compared with the uniform wind condition, while the drag coefficient is
reduced. This indicates that the stall delay phenomenon occurs in the two-element wingsail
under the effect of gradient wind and the maximum lift coefficient is increased. It is helpful
to maintain the stability of the aerodynamic performance of the two-element wingsail
under the gradient wind condition.
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Figure 16. Lift-drag characteristic of the wingsail under mean wind and gradient wind conditions.

Figure 17 shows the limiting streamline of the wingsail in the near-stall angles under
uniform wind and gradient wind conditions. From Figure 17, it can be seen that at an angle
of attack of 16◦, there is no flow separation on the suction surface of the wingsail in both
uniform and gradient winds. At an angle of attack of 18◦, two separating vortices appear
on the suction surface of the main wing under the uniform wind condition, and cause a
large-scale backflow on the suction surface of the flap, which causes a deep stall of the
wingsail, while the suction surface of the main wing under the gradient wind condition
only shows a small-scale flow separation, which causes a light stall of the wingsail while
maintaining a high lift coefficient. This effectively verifies the delayed stall phenomenon
under the gradient wind condition.
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Figure 17. Wall limiting streamline of the wingsail under uniform wind and gradient wind conditions.
(a) Uniform wind at α = 16◦. (b) Gradient wind at α = 16◦. (c) Uniform wind at α = 18◦. (d) Gradient
wind at α = 18◦.

Figure 18 shows the velocity cloud of the wingsail at near-stall angles. It can be seen
from Figure 18a that a low-velocity zone exists in the middle of the suction surface of the
wingsail under uniform wind conditions at the angle of attack of 18◦, which is caused
by flow separation, while the flow velocity distribution of the main wing suction surface
in Figure 18b is uniform, and there is no low-pressure zone under the gradient wind
conditions. With the increase of the angle of attack, the low-velocity region in the main
wing suction surface expands under the uniform wind condition, as seen in Figure 18c.
The low-velocity zone also appears in the middle of the suction surface of the main wing
under the gradient wind condition, and the stall of the wingsail develops faster, as shown
in Figure 18d.



J. Mar. Sci. Eng. 2023, 11, 134 13 of 21

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 13 of 22 
 

 

  
(c) (d) 

Figure 17. Wall limiting streamline of the wingsail under uniform wind and gradient wind condi-

tions. (a) Uniform wind at α = 16°. (b) Gradient wind at α = 16°. (c) Uniform wind at α = 18°. (d) 

Gradient wind at α = 18°. 

Figure 18 shows the velocity cloud of the wingsail at near-stall angles. It can be seen 

from Figure 18a that a low-velocity zone exists in the middle of the suction surface of the 

wingsail under uniform wind conditions at the angle of attack of 18°, which is caused by 

flow separation, while the flow velocity distribution of the main wing suction surface in 

Figure 18b is uniform, and there is no low-pressure zone under the gradient wind condi-

tions. With the increase of the angle of attack, the low-velocity region in the main wing 

suction surface expands under the uniform wind condition, as seen in Figure 18c. The 

low-velocity zone also appears in the middle of the suction surface of the main wing under 

the gradient wind condition, and the stall of the wingsail develops faster, as shown in 

Figure 18d. 

 

    
(a)  (b)  (c)  (d)  

Figure 18. Velocity distribution of a two-element wingsail under uniform wind and gradient wind 

conditions. (a) Case 3 with uniform wind at α = 18°. (b) Case 3 with gradient wind at α = 18°. (c) 

Case 3 with uniform wind at α = 20°. (d) Case 3 with gradient wind at α = 20°. 

Figure 18. Velocity distribution of a two-element wingsail under uniform wind and gradient wind
conditions. (a) Case 3 with uniform wind at α = 18◦. (b) Case 3 with gradient wind at α = 18◦. (c) Case
3 with uniform wind at α = 20◦. (d) Case 3 with gradient wind at α = 20◦.

To verify the analysis in Figure 16, the three-dimensional streamline of the wingsail at
the angle of attack of 18◦ and 20◦ was also drawn, as shown in Figure 19. From Figure 19a,
it can be seen that there is a large-scale separation vortex in the middle of the main wing
suction surface under the uniform wind condition at an angle of attack of 18◦, which is
mainly caused by the return flow of the airflow through the gap. However, in Figure 19b,
the flow separation on the suction surface of the main wing is not obvious. This is because,
under the effect of wind gradient, the spanwise velocity along the height of the wingsail
gradually increases, which produces an acceleration pointing to the direction of the top
of the blade on the suction side of the wingsail. At this time, external airflow comes to
supplement the airflow flowing toward the top of the blade, which makes the separation
vortex that should exist under uniform wind conditions compressed, delaying the stall
of the wingsail. In Figure 19c, as the angle of attack increases under the uniform wind,
the separation vortex on the suction surface of the main wing expands and forms two
basically symmetrical vortices. The large-scale flow separation also occurs in the wingsail
in Figure 19d. Although the scale of its vortex is smaller than that of the vortex in Figure 19c,
the stall develops faster under the gradient wind condition. This indicates that whether it
is a uniform wind condition or a gradient wind condition, a small fluctuation in the angle
of attack in the near-stall angles may cause a deep stall, which leads to a rapid reduction in
the lift, which should be avoided in engineering applications.

4.2. Effect of Flap Deflection Angle on Aerodynamic Characteristics of Wing Sails

The mechanism of the effect of flap deflection angle on the stall of the wingsail was
analyzed under gradient wind conditions. Figure 20 shows the curve of the lift/drag
coefficient of the wingsail with the flap deflection angle at an angle of attack of 16◦. From
Figure 20, it can be seen that in the near-stall angles, the lift coefficient increases slowly and
then decreases sharply as the flap deflection angle increases, reaching a maximum value at
the flap deflection angle of 23◦, when the drag coefficient is also the maximum. This shows
that a small change with the flap deflection angle in the near-stall angles may trigger a stall
of the wingsail and cause a sharp drop in the lift, which is more obvious under uniform
wind conditions.
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(c) Case 3 with uniform wind at α = 20◦. (d) Case 3 with gradient wind at α = 20◦.
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Figure 20. Curve of lift/drag coefficient vs. flap deflection angle in stall angles.

Figure 21 shows the two-dimensional streamline of the wingsail at flap deflection
angles of 19◦, 23◦, 25◦, and 27◦, which demonstrate the flow separation process on the
surface of the two-element wingsail under the gradient wind condition. From Figure 21,
in the section of 0.9h, the flow separation at the trailing edge of the flap occurs at a flap
deflection angle of 23◦, and the separation vortex at the trailing edge of the flap is also
relatively small at the flap deflection angle of 27◦. However, in the section of 0.65h, the
flow separation of the flap surface at a flap deflection angle of 25◦ extends to the leading
edge, while the flow separation of the main wing surface is smaller. It is not until the flap
deflection angle increases to 27◦ that a clear separation vortex is seen at the trailing edge
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of the main wing, but it appears very flat compared to the large-scale vortex of the flap
surface. In the section of 0.5h, at flap deflection angles of 19◦, 23◦and 25◦, the vortex at the
surface of the wingsail is similar to that in the section of 0.65h, and the light stall of the main
wing ensures that the lift coefficient of the wingsail does not decrease significantly. When
the flap deflection angle increases to 27◦, a deep stall occurs in the main wing, resulting in
a significant reduction in the lift coefficient. Overall, the flow separation of the wingsail
under gradient wind conditions develops relatively quickly in the near-stall angles. Once a
flat vortex is formed at the trailing edge of the wingsail, with the slow increase of the flap
deflection angle, the flow separation rapidly extends to the entire surface of the wingsail
and enters the deep stall state.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 16 of 22 
 

 

 

   

(a) 

   
(b) 

   
(c) 

   
(d) 

Figure 21. Streamline of the two-element wingsail under different flap deflection angles. (a) δ = 19°. 

(b) δ = 23°. (c) δ = 25°. (d) δ = 27°. 

Figure 22 shows the three-dimensional streamlines of the two-element wingsail suc-

tion surface at an angle of attack of 16°. At flap deflection angles of 19° and 23°, the flow 

on the surface of the wingsail is an attaching flow, which is consistent with the streamline 

on the two-dimensional section. When the flap deflection angle increases to 25°, the flow 

enters the slight stall zone, which is separated at the trailing edge of the main wing above 

1/3 of the height of the wingsail under the action of the wind gradient. Part of the stream-

line flows towards the top of the blade after entering the separation area of the main wing, 

showing three-dimensional flow characteristics. At this time, the vortex on the flap suc-

tion surface is obviously inclined to the middle and upper part of the wingsail, squeezed 

by the lower low-speed wind. As the flap deflection angle continues to increase, the vortex 

in the middle of the trailing edge of the main wing expands, and the large-scale vortex on 

the surface of the flap is also squeezed, which promotes the further development of stall. 

The section of 0.9h 

The section of 0.9h 

 

The section of 0.9h 

 

The section of 0.9h 

 

The section of 0.65h 

 

The section of 0.65h 

 

The section of 0.65h 

 

The section of 0.65h 

 

The section of 0.5h 

 

The section of 0.5h 

 

The section of 0.5h 

 

The section of 0.5h 

 

Figure 21. Streamline of the two-element wingsail under different flap deflection angles. (a) δ = 19◦.
(b) δ = 23◦. (c) δ = 25◦. (d) δ = 27◦.

Figure 22 shows the three-dimensional streamlines of the two-element wingsail suction
surface at an angle of attack of 16◦. At flap deflection angles of 19◦ and 23◦, the flow on the
surface of the wingsail is an attaching flow, which is consistent with the streamline on the
two-dimensional section. When the flap deflection angle increases to 25◦, the flow enters
the slight stall zone, which is separated at the trailing edge of the main wing above 1/3
of the height of the wingsail under the action of the wind gradient. Part of the streamline
flows towards the top of the blade after entering the separation area of the main wing,
showing three-dimensional flow characteristics. At this time, the vortex on the flap suction
surface is obviously inclined to the middle and upper part of the wingsail, squeezed by the
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lower low-speed wind. As the flap deflection angle continues to increase, the vortex in the
middle of the trailing edge of the main wing expands, and the large-scale vortex on the
surface of the flap is also squeezed, which promotes the further development of stall.
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To further analyze the three-dimensional flow characteristics of the wingsail in the near-
stall angles at high flap deflection angles, a three-dimensional flow line passing through the
wingsail surface is shown as Figure 23 with an average wind speed of 10 m/s, an angle of
attack of 16◦, and a flap deflection angle of 25◦ under the gradient wind conditions.

The flow line starts from point A at the leading edge of the main wing and flows along
the suction side of the main wing, and then flows backward the leading edge of the main
wing at point B. At the same time, point B is also the turning point when the flow changes
from a chordal direction to a spanwise direction. This is because when the air flows from
point A to point B, due to the limited spanwise pressure brought by the gradient wind, it is
not enough to resist the horizontal velocity to change the flow direction. However, at point
B, the horizontal velocity of the air is zero, while the spanwise velocity is affected by the
wind gradient. According to the law of mass conservation, it is easy to deflect the flow line
from a horizontal direction to a spanwise direction under the action of spanwise pressure.
Between point B and point C, the velocity component of the flow line in the horizontal
direction points from the trailing edge of the main wing to the leading edge and enters
the zone of the separated vortex. As the spanwise height increases, the spanwise pressure
under the action of the wind gradient always exists. At the same time, under the action
of horizontal velocity, the flow line flows spirally between points B-C-D at the top of the
wingsail, and finally enters the leading edge of the flap at point D, flowing out from the
vortex. The flow line between B-C-D is similar to the streamline under Coriolis force in the
three-dimensional rotation effect and is also related to the actual flow situation.
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Figure 23. A three-dimensional streamline with flap deflection angle of 25◦ under gradient wind conditions.

4.3. Effect of Wind Speed on the Stall of the Two-Element Wingsail

The stall process of the wingsail was analyzed when the average wind speed increased
from 6 m/s to 18 m/s under gradient wind conditions at the flap deflection angle of 25◦

and an angle of attack of 6◦–14◦. The wind speed distribution is shown in Figure 24, which
shows that as the wind speed increases, the spanwise wind gradient increases with the
increase of height.
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Figure 24. Mathematical models of wind gradient under different wind speeds (hR = 10 m, h0 = 0.001 m).

Figure 25 shows the curves of the lift coefficient of the two-element wingsail with an
average wind speed under gradient wind and uniform wind conditions. From Figure 25a,
it can be seen that at the angle of attack of 8◦, the lift coefficient first increases and then
decreases as the wind speed increases, where the lift coefficient with an average wind speed
of 18 m/s decreases sharply, indicating that the wingsail has seriously stalled at this time.
As the angle of attack increases, the lift coefficient with average wind speeds of 6, 10, and
14 m/s also increases and then decreases, and reaches a maximum at an angle of attack of
10◦. By comparing the lift coefficients with the uniform wind condition in Figure 25b, it
can be seen that the lift coefficient in the gradient wind condition is higher at the range of
8◦−12◦, and the lift coefficients decrease less after the stall occurs, which indicates that the
gradient wind improves the stall phenomenon of the two-element wingsail.
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Figure 25. Curve of lift coefficient with wind average speed under different conditions. (a) Conditions
of gradient wind. (b) Conditions of gradient wind and uniform wind.

The following is an analysis of the flow field of the wingsail at different average
wind speeds, taking an angle of attack of 10◦ as an example; Figure 26 shows the limiting
streamline at different average wind speeds. From Figure 26, it can be seen that when
the average wind speed is 6 m/s, due to the small spanwise wind gradient, it can be
regarded as a uniform wind, and there are two symmetrically separated vortex structures
in the middle of the flap suction surface. Although the flap has stalled at this time, the
overall lift coefficient of the wingsail is kept at a high position because the streamline of
the main wing suction surface is not separated. As the average wind speed increases to
10 m/s, the symmetrical vortex in the middle of the flap suction surface is squeezed, and
the pressure distribution at the trailing edge of the main wing is more uniform. Therefore,
the stall is suppressed, and the lift coefficient is improved. As the average wind speed
further increases to 14 m/s, the separation vortex of the flap increases again. Since the
spanwise wind gradient is also increasing at this time (see Figure 26), according to the
delayed stall principle of gradient wind (see Figure 25), the lift coefficient of the wingsail is
still increasing at this time. Until the average wind speed increases to 18 m/s, due to the
flap suction surface appearing with multiple separation vortexes, the flap has a deep stall
and the lift coefficient of the wingsail is significantly reduced.
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Figure 27 shows the speed cloud of the wingsail under different average wind speeds
in the near-stall angles. It can be seen from Figure 27 that when the average wind speed
is 6 m/s, there is a low-speed zone with a wide distribution on the flap suction surface,
and it expands toward the wake direction. With the average wind speed increasing, the
low-speed zones are gradually squeezed into two low-speed zones. When the average wind
speed reaches 14 m/s, the low-speed zone becomes very flat and gradually disappears in
the wake, while the lift coefficient is at its highest. This indicates that the increase in the
average speed of the gradient wind delays stall and improves the lift coefficient to a certain
extent. However, when the average wind speed increases to 18 m/s, the flaps have long
been severely stalled, which requires strict control of the available wind speed range to
ensure the reliability of its wind load.
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Figure 27. Speed cloud of wingsail at different average wind speeds at α = 10◦. (a) v = 6 m/s.
(b) v = 10 m/s. (c) v = 14 m/s. (d) v = 18 m/s.

5. Conclusions

It is very important that sails for ship-assisted propulsion work well under gradient
wind conditions in the atmospheric boundary layer. In order to study the aerodynamic
characteristics of the wingsail in the atmospheric boundary layer above sea level, a transi-
tion SST turbulence model is used for numerical simulation of the wingsail model with
uniform wind and gradient wind conditions, and the following conclusions are drawn.

1. The wind gradient can delay the stall caused by the increased angle of attack.
This is because the airflow on the suction surface of the wingsail in the spanwise wind
direction exerts an acceleration towards the top of the wingsail. At the same time, the
supplementary airflow compresses the separated vortex, thus delaying the stall of the
two-element wingsail.

2. Under gradient wind conditions, the flow separation of the wingsail develops
rapidly in the near-stall angles. Once a flat separation vortex is formed at the trailing edge
of the wingsail, with the slow increase in the flap deflection angle, the flow separation
rapidly expands to the entire surface of the wingsail and a deep stall occurs. Therefore, the
small change of the flap deflection angle in the near-stall angles may lead to stall of the
wingsail, which should be avoided in engineering applications.

3. The increase in the average speed of gradient wind delays stall and improves the
lift coefficient to a certain extent. However, when the average wind speed increases to 18
m/s, the flaps have already seriously stalled, which requires strict control of the available
wind speed range to ensure the reliability of its wind load.
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Nomenclature

Re Reynolds number [-]
α Angle of attack of the wingsail (AOA) [◦]
c Total chord of the wingsail [m]
c1 Chord of the main wing [m]
CD Drag coefficient [-]
CL Lift coefficient [-]
δ Flap deflection angle [◦]
g non-dimensional slot width (g/c1) [-]
y+ Non-dimensional wall distance [-]
ρ The density of the air [kg/m3]
z The height of wingsail in the vertical direction [m]
h Wingsail height [m]
L Lift force [N]
D Drag force [N]
v The velocity of inflow [m/s]
h0 The roughness factor [m]
p The exponential factor [-]
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