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Abstract: Underwater target recognition is a research component that is crucial to realizing crewless
underwater detection missions and has significant prospects in both civil and military applications.
This paper provides a comprehensive description of the current stage of deep-learning methods with
respect to raw hydroacoustic data classification, focusing mainly on the variety and recognition of
vessels and environmental noise from raw hydroacoustic data. This work not only aims to describe
the latest research progress in this field but also summarizes three main elements of the current stage
of development: feature extraction in the time and frequency domains, data enhancement by neural
networks, and feature classification based on deep learning. In this paper, we analyze and discuss the
process of hydroacoustic signal processing; demonstrate that the method of feature fusion can be used
in the pre-processing stage in classification and recognition algorithms based on raw hydroacoustic
data, which can significantly improve target recognition accuracy; show that data enhancement
algorithms can be used to improve the efficiency of recognition in complex environments in terms of
deep learning network structure; and further discuss the field’s future development directions.

Keywords: deep learning; spectrum analysis; hydroacoustic target recognition; data augmentation

1. Introduction

Earth observation, changes in the marine environment, and climate change have been
the focus of human attention in recent years, and these areas significantly impact produc-
tive human life [1]. With the growing need for underwater detection, underwater target
recognition has recently become an active research area, and it is widely used in the fields of
the surveying and modeling of the aquatic environment [2], underwater target localization
and identification [3], and ship noise classification [4]. The rapid development of artificial
intelligence technologies such as machine learning and deep learning, the emergence of
supercomputing, the significant increase in arithmetic power, and the explosive growth of
big-data-processing algorithms bring new opportunities for underwater target recognition.
The U.S. has rapidly researched new computing and sensor technologies such as artificial
intelligence, deep learning, machine learning, predictive analytics, high-powered active
sonar transmitters, and new towed-line array sonar telemetry components. The related
researchers are rapidly incorporating the results of research to enhance technology iter-
ations. However, the application of deep learning in underwater target recognition still
faces problems, such as small data volumes, the poor adaptability of traditional visual
network algorithms, and complicated pre-processing process, and the patterns of deep
learning are still too intricate to provide excellent generalizability. We note that acoustic and
various signal-filtering methods are effectively used in detecting pipeline leaks, and various
deep-learning algorithms are also widely used, indicating that deep-learning models have
good generalizability and promise in underwater acoustics [5].

In order to better explore the applicatory potential of deep learning in underwater
target recognition, this paper provides a comprehensive description of underwater signal
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recognition via deep learning based on the advantages of various types of neural networks
and discusses the field’s future development direction. Please refer to Figure 1 for various
methods.
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Figure 1. Classification process and methods.

The following are the main contributions of the article.

1. This paper clarifies and reviews various methods used for signal processing. This pa-
per provides an overview of signal processing according to its developmental history,
i.e., in terms of Fourier transform, short-time Fourier transform (STFT), Hilbert–Yellow
transform, the Meier spectrum (MFCC), and wavelet transform (WT), and explores
the advantages and disadvantages of various signal-processing methods and future
development directions by comparing the structures of practical applications.

2. This paper introduces various neural networks used in hydroacoustic signal recogni-
tion. In addition, unsupervised adaptive methods based on sound signals, such as
migration learning and adversarial learning, are proposed in this paper.

3. This paper also provides an in-depth analysis of the problems of hydroacoustic signal
processing and the corresponding direction of future development by comparing this
method with data enhancement methods.



J. Mar. Sci. Eng. 2023, 11, 3 3 of 20

2. Raw Signal

The raw signals received by hydrophones are generally saved in a WAV format,
as exemplified by the ShipsEar dataset [6], which was released in 2016 and contained
90 hydroacoustic audio tracks representing 11 vessel sounds as marine environmental
noise. This dataset is saved in a WAV format to develop and test hydroacoustic applications.
Therefore, it is one of the keys to retaining the full features and an optimal degree of
denoising when extracting features from a signal for hydroacoustic signal recognition. This
dataset is saved in a WAV format for developing and testing hydroacoustic applications.

2.1. The Fourier Transform

Fourier transform [6] represents the ability to convey a function that satisfies certain
conditions as a linear combination of trigonometric functions (sine and cosine functions) or
their integrals. In audio processing, Fourier transform is used as a method for analyzing a
signal by examining its components and using them to synthesize the signal. In the analysis
of signals, its main application is in processing smooth signals. The Fourier transform
method allows researchers to obtain the general frequency components that a segment of
the signal contains.

An accurate and efficient method for parameter estimation is proposed in [7] using
the fractional order Fourier transform (FFT) method. The algorithm proceeds iteratively,
returning the parameter estimates of the most dominant signal components, and effectively
reducing the computational effort.

However, the moment of appearance of each component is not known. Thus, for
non-smooth signals, the Fourier transform method shows its limitations. Therefore, various
new spectral processing methods have been proposed to address the boundaries of the
Fourier transform method.

2.2. The LOFAR Spectrum

The LOFAR spectrum is a power spectrum obtained by the original signal’s short-time
Fourier transform (STFT). Due to the non-stationary nature of the noise signal, its signal
characteristics will also change significantly with time, so the Fourier transform method
cannot be perfectly adapted to such problems. In order to overcome the issue of the non-
smoothness of the signal, the LOFAR spectrum is widely used in hydroacoustic signal
identification, which can reflect the characteristics of two dimensions of the time domain
and frequency domain.

Chen et al. [8], based on LOFAR spectrum enhancement for underwater target recog-
nition, designed a multi-step decision-algorithm-based enhancement method with which
to recover the breakpoints in the LOFAR spectrum, which showed an excellent recognition
rate in the CNN network. Jin et al. [9] compared standard spectrum maps, such as LOFAR,
Audio, Demon, Histogram, etc.; implemented these spectrograms into the AlexNet net-
work; and found that the LOFAR spectra had the highest recognition rate. From Figure 2,
it can be found that the LOFAR spectrum has more prominent features than the original
audio.

AlexNet [10] is a CNN (Convolutional Neural Networks) network structure designed
by Hinton, the winner of the 2012 ImagNet competition, and his student Alex Krizhevsky,
which will be described in detail below. We believe that although the LOFAR spectrum
has some limitations, subsequent improvements in other spectra can adequately compen-
sate for the shortcomings of the LOFAR spectrum, which leads us to the conjecture of
multidimensional feature fusion. The concept of multidimensional feature fusion will be
mentioned several times.
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2.3. The Wavelet Transform

The wavelet transform (WT) [11] is a development of the short-time Fourier transform,
which inherits and develops the idea of the localization of the short-time Fourier transform
while overcoming the drawback in which the window size does not change with frequency
and can provide a “time–frequency” window that changes with frequency, with a lower
time resolution and higher frequency resolution in the low-frequency part, and a higher
time resolution and lower frequency resolution in the high-frequency part, which is very
suitable for analyzing non-stationary signals and extracting the local features of signals;
thus, the wavelet transform is considered to be a microscope for analyzing and processing
signals.

As early as 1998, Chen et al. [12] introduced the wavelet transform as a feature ex-
tractor for underwater signals. The wavelet transform yielded a significant improvement
in feature recognition compared to the original signal’s average power spectral density
(APSD). In 2013, Li et al. [13] proposed an improved SPIHT algorithm for shortcomings
in hydroacoustic images. Their comparison results showed that the improved adaptive
algorithm offered significant advantages. In 2017, R. Priyadharsini et al. [14] proposed a
wavelet transform-based contrast enhancement method for hydroacoustic images, which
uses a smooth wavelet transform (SWT) to decompose the input image into four compo-
nents, namely, Low–Low, Low–High, High–Low, and High–High components, to obtain a
better compression ratio. The High–Low and High–High components along with the high-
contrast image are reconstructed by applying a smooth inverse transform combining the
enhanced LL components and other subbands. Moreover, in 2021, Qiao et al. [15] similarly
used the local wavelet acoustic model to classify underwater targets, see Figure 3. Thus,
we can see the wide range of wavelet transform-processing methods used in hydroacoustic
signal recognition.

However, the wavelet transform method has its drawbacks. In [16], Michael Weeks
and Magdy Bayoumi identified the drawbacks of various discrete wavelet transform
(DWT) system architectures; in general, the excellent properties of the wavelet transform in
one dimension cannot be extended to two dimensions or higher, and it exhibits a lack of
adaptivity to other modal decomposition methods, e.g., EMD, LMD, VMD, SGMD, etc. Due
to the complexity of the hydroacoustic environment, the one-dimensional feature vector
extracted by the wavelet transform is often insufficient for providing optimal features;
thus, the discovery of method with which to improve the selection of optimal features or
multidimensional features has become a possible direction of development.
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2.4. The Hilbert–Yellow Transform

To cope with the shortcomings of wavelet transform methods in signal analysis, Nor-
den E. Huang of NASA proposed a new data-processing method: the Hilbert–Huang
transform (HHT) [17]. This transform consists of two parts: the empirical-mode decomposi-
tion (EMD) method [18] and the Hilbert transform. The main idea is to first decompose the
original signal to a sum of finite eigenmode functions (IMFs) by using the empirical method
for mode decompositions and then construct the corresponding analytical signal utilizing
the Hilbert transformation, from which the instantaneous amplitude and instantaneous
frequency of the time series are obtained in a second step. Below, we derive the Hilbert
spectrum of the signal.

For a time function x(t), defined with the interval (−∞ < t < +∞), the Hilbert transform
of x(t) and its inverse transform can be defined as follows:

y(t) = H[x(t)] =
1
π

P
∫ ∞

−∞

x(τ)
t − τ

dτ =
1

πt
∗ x(τ) (1)

x(t) = H−1[y(t)] = − 1
π

P
∫ ∞

−∞

y(τ)
t − τ

dτ = − 1
πt

∗ y(τ) (2)

where P denotes the principal Corsi value, t and τ denote time, and the symbols y(t) and
x(t) in the above equation form a pair of Hilbert transform pairs.

Unlike wavelet analysis, the EMD decomposition method performs decomposition via
the signal’s time-scale properties; in contrast, wavelet decomposition requires an a priori
harmonic function and a wavelet function, so the Hilbert–Yellow transform is considerably
superior in terms of objectivity and resolution.

In hydroacoustic signal recognition, the Hilbert–Yellow transform is often used to
extract underwater target features [19]. In 2009, Liu et al. [20] proposed an improved
HHT based on the limitations of the Hilbert–Yellow transform, and in this improved
version, the instantaneous harmonic inversion method is used to calculate the instantaneous
frequency of the eigenmodal function. Their simulation results show that the improved
HHT has greater frequency resolution and more advantages thereof than the original
HHT. In addition, experimental data proved that the improved version is effective for
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hydroacoustic signal detection. In 2013, Wang et al. [21] proposed a time–frequency analysis
method combining Barker wavelet analysis and Hilbert–Yellow transform to address the
effect of environmental noise on recognition accuracy during long-distance detection. First,
Barker wavelet analysis was used to divide the signal into subbands corresponding to
auditory perception. Then, denoising was applied to enhance the analyzed signal; finally,
the Hilbert–Yellow transform was used to extract the transient frequencies and amplitudes.
Based on these transient parameters, various features were constructed and compared.

2.5. The Mel Spectrum

Before introducing the Meier spectrum, we should understand the concept of the
Meier scale. The Mel scale [22] was named by Stanley Smith Stevens, John Volkmann, and
Newman in 1937. Inspired by the reception of high- and low-frequency signals detectable
by the human ear, the part of the Mel scale in the low-frequency band has an almost linear
relationship to the average frequency, while in the high-frequency band, the two show a
logarithmic relationship, which accurately simulates the characteristic wherein the human
ear is more sensitive to the distinction between low-frequency signals and less sensitive to
the distinction between high-frequency signals [23]. Finally, the Mel filter bank is multiplied
by the power spectrum to obtain the Mel spectrum, see Figure 4.
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As mentioned above, the Mel spectrum is more sensitive to low-frequency signals, and
the signal characteristics of marine organisms [13] and ship noise have the same significant
features at the low-frequency end; thus, the Mel spectrum was introduced and widely
used for hydroacoustic signal recognition. Liu et al. [14] constructed 3-D features using the
Mel spectrum, delta and delta–delta features, and an input convolutional recurrent Neural
Network (CRNN) for acoustic target recognition (Figure 5) and achieved a 94.6% correct
recognition rate.

However, the impact of the Mel spectrum is twofold: on the one hand, it preserves the
characteristic frequencies close to the human ear, while on the other hand, it loses resolution
information; the fundamental reason for this is that the Mel coefficients are the energy sum
of a filter band.



J. Mar. Sci. Eng. 2023, 11, 3 7 of 20
J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 7 of 20 
 

 

 
Figure 5. 3-D Meier spectrum-based classification proposed by Liu et al.  

It was verified in the literature [24] that MFCC, first-order differential MFCC, and 
second-order differential MFCC features can all be used as practical features for identify-
ing underwater targets. The feasibility of Mel frequency cepstrum coefficients in ship-
noise feature extraction was similarly verified in [25]. Based on the processing of the Meier 
spectrum, the discovery of a method with which to retain more original features has be-
come one of the developmental directions of hydroacoustic signal recognition. 

2.6. Feature Fusion 
There are many methods for acoustic feature fusion, of which all involve essentially 

two identical features flowing into the network simultaneously, splicing the same frame 
forward and updating both branches simultaneously during backward propagation. The 
standard acoustic feature fusion methods are as follows: (1) splicing based on the acoustic 
feature itself, such as MFCC + pitch [26]; (2) deep feature fusion in offline conditions, for 
example, an early bottleneck feature and MFCC splicing as a tandem feature, first using 
the network to extract the bottleneck feature and then splicing with MFCC to form new 
features for later model training [27]; and (3) feature fusion in online conditions [28]. 

Zhang et al. [29] proposed an integrated neural network using a short-time Fourier 
transform magnitude spectrum and short-time Fourier phase spectrum feature fusion 
learning. Their study showed that the integrated neural network method based on feature 
fusion has a higher recognition rate and noise robustness, see Figure 6. Whereas B. Mis-
hachandar et al. [30] utilized the Meier spectrum, Meier cepstrum, and the LOFAR spec-
trum as multidimensional vector feature inputs; their proposed method can self-learn fea-
tures from the data, eliminating the feature extraction step. 

 

Figure 5. 3-D Meier spectrum-based classification proposed by Liu et al.

We can also obtain another inverse coefficient, the Mel Frequency Cepstrum Coefficient
(MFCC), based on the Meier spectrum. The MFCC is a spectrum that can be used to
represent short-term tones and is based on the principle of a logarithmic spectrum expressed
in a nonlinear Meier scale and its linear cosine transformation. The MFCC is also widely
used to extract audio features.

It was verified in the literature [24] that MFCC, first-order differential MFCC, and
second-order differential MFCC features can all be used as practical features for identifying
underwater targets. The feasibility of Mel frequency cepstrum coefficients in ship-noise
feature extraction was similarly verified in [25]. Based on the processing of the Meier
spectrum, the discovery of a method with which to retain more original features has
become one of the developmental directions of hydroacoustic signal recognition.

2.6. Feature Fusion

There are many methods for acoustic feature fusion, of which all involve essentially
two identical features flowing into the network simultaneously, splicing the same frame
forward and updating both branches simultaneously during backward propagation. The
standard acoustic feature fusion methods are as follows: (1) splicing based on the acoustic
feature itself, such as MFCC + pitch [26]; (2) deep feature fusion in offline conditions, for
example, an early bottleneck feature and MFCC splicing as a tandem feature, first using
the network to extract the bottleneck feature and then splicing with MFCC to form new
features for later model training [27]; and (3) feature fusion in online conditions [28].

Zhang et al. [29] proposed an integrated neural network using a short-time Fourier
transform magnitude spectrum and short-time Fourier phase spectrum feature fusion learn-
ing. Their study showed that the integrated neural network method based on feature fusion
has a higher recognition rate and noise robustness, see Figure 6. Whereas B. Mishachandar
et al. [30] utilized the Meier spectrum, Meier cepstrum, and the LOFAR spectrum as multi-
dimensional vector feature inputs; their proposed method can self-learn features from the
data, eliminating the feature extraction step.

In general, due to each type of spectrum’s shortcomings, the processing of a single
spectrum cannot meet the neural network’s requirements for the extracted features. The
feature fusion approach compensates for the lack of hydroacoustic data sets on the one hand
and improves the network efficiency on the other; we believe that the study of more feature
fusion methods will be one of the developmental directions of hydroacoustic information
processing.
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Since the non-uniformity of a seawater medium can cause the attenuation and dis-
tortion of acoustic signals, while various floating objects and particles can increase the
multipath effect during acoustic wave transmission, it is often difficult to achieve good
recognition-related results using the traditional method for hydroacoustic signal recogni-
tion [31–33]. At the same time, deep learning is based on artificial neural networks and
consists of multiple processing layers with which to study data with different levels of
abstraction. It can be adequately applied to structured and unstructured data, and deep
learning is widely used in new fields such as hydroacoustic signal recognition [34,35].

Deep-learning algorithms can be classified into various forms, such as supervised,
semi-supervised, and unsupervised. Supervised learning methods are based on the training
of models using correctly classified data or labels; supervised algorithms analyze the
training data and produce an inferred function that can be used to map new examples.
An optimal solution would allow the algorithm to correctly determine class labels when
the labels are not visible [36]. Unsupervised learning functions are used for unsupervised
datasets and to solve various problems in pattern recognition based on training samples of
unknown classes in cases where manual labeling is complex [37]. Semi-supervised learning
is a learning method that combines supervised learning with unsupervised learning. Semi-
supervised learning simultaneously uses vast quantities of unlabeled data and labeled data
to perform pattern recognition [38]. Another deep-learning algorithm is migration learning,
which is used to improve a model from another domain by migrating information from a
related domain [39], wherein hydroacoustic data are very scarce, while migration learning
effectively solves the problem of insufficient hydroacoustic data.

Deep learning can also solve the problem of a loss of hydroacoustic detection echo
features. Li et al. [40] proposed a Bidirectional Long- and Short-Term Memory Neural
Network (Bi-LSTM) method based on vector sensors and without using pre-extracted
features and applied it to the field of hydroacoustics for the first time; then, they compared
Bi-LSTM and the difference between LSTM and the support vector machine and the
influence of some parameters on the recognition rate. Afterwards, the method’s robustness
was verified by navigation tests conducted to achieve effective target recognition.

The advantages of deep learning discussed above have led to its widespread appli-
cation in areas such as bracketing images, speech and text recognition, target detection,
pattern recognition, and fault and medical anomaly diagnosis. In hydroacoustic signal
recognition, deep learning shows its superiority over traditional approaches; next, we will
introduce standard deep-learning models and their applications in hydroacoustic signal
recognition.
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3.1. Convolutional Neural Networks (CNN)

Research on convolutional neural networks began in the 1980s and 1990s. Time-delay
networks and LeNet-5 were the first convolutional neural networks to appear [41]. LE-
CUNN was first proposed for image processing in 1998 [42]; since then, the proposed
deep-learning theory and the improvement of numerical computing devices and convo-
lutional neural networks have developed rapidly. Convolutional neural networks are
widely used in computer vision, natural language processing, target recognition, medical
prediction, and other fields.

Since the introduction of the AlexNet network, Figure 7, which was discussed ear-
lier, convolutional neural networks have entered a period of rapid development, and
deep convolutional neural networks have rapidly replaced traditional image classification
and recognition methods over a short period. CNNs consist of a multilayered structure,
including convolutional, nonlinear, pooling, and fully connected layers. Due to their con-
volutional and pooling operations and parameter sharing, which enable deep learning
structures to operate in a variety of devices, CNNs excel in machine learning problems,
especially for applications dealing with image data [43,44].
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In 2009, Wu et al. [45] proposed a convolutional network (ECNet) for the semantic
segmentation of side-scan sonar images that was fast and had few parameters. In 2016,
Valdenegro et al. [46] proposed a model for object detection and recognition in forward-
looking sonar images, which can also be used to detect unlabeled and untrained targets.
In 2018, Hu et al. [47] proposed a new deep-learning method by combining an extreme
learning machine (ELM) with a CNN in which the original acoustic signal multi-metric
convolution is used to extract features in order to avoid feature defects regarding the MFCC
(Mel Frequency Cepstrum Coefficient). Unlike the traditional method, the raw signal is
processed in frames as an input, and the extreme learning machine classifier is chosen for
the use of classifiers to achieve better results in ship-noise analysis. In 2021, Liu et al. [48]
proposed a CNN-based DOA estimation algorithm for hydroacoustic arrays based on
the application of convolutional neural networks in RGB three-channel image processing
and proposed the use of a CNN containing real and imaginary parts of the covariance
matrix of the two channels as the input signal of the CNN to estimate the direction of the
hydroacoustic signal. In the same year, Mishachandar B et al. [30] found that Deep CNN
has high learning capacity and adaptability when used for acoustic classification and that
the Mel spectrum outperforms linear spectrograms in feature extraction; thus, an MFCC
feature extraction technique was used to extract the features of acoustic spectrograms and
eliminate background noise, propose new CNN networks for classification recognition, and
introduce data enhancement mechanisms—we will describe the specific measures of data
enhancement in detail below. In addition, dropout layers were also added to the network
by the authors of [30] to reduce the overfitting of the CNN framework model.
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In 2022, Guo et al. [49] applied acoustic features, Mel Frequency Cepstrum Coefficients
(MFCC), and Gamma Pass Frequency Cepstrum Coefficients (GFCC) to underwater signal
classification and proposed a model combining deterministic and statistical models. The
geometric channel model helps to generate databases for different geometric settings, and
the effectiveness of its systematic framework is verified by comparing it with continuous
wavelet transform (CWT) and short-time Fourier transform (STFT) using a CNN as a
classifier. The hydroacoustic signal recognition model of a CNN as a classifier is verified
to have good performance and generalizability. Consequently, the discovery of a method
with which to solve the inherent problems of the network due to insufficient training data
has become the direction of further improvement.

Underwater targets are difficult to classify due to the influence of grazing angles, range,
natural environment, and latitude and longitude. Khushi et al. (2020) [50] proposed a meta-
heuristic Chimpanzee Optimization Algorithm (ChOA) based on chimpanzees’ hunting
behavior to train artificial neural networks. The algorithm was compared with an Ion
Movement Algorithm (IMA), the Gray Wolf Optimization Algorithm (GWO), and a hybrid
algorithm by comparing the convergence speed, capture localization, and performance of
the different methods. By comparing the convergence speed, the possibility of capturing
local minima, as well as the classification accuracy by other means, it was demonstrated
that the algorithm performs better in most cases. Due to wavelength-dependent light
absorption and scattering, underwater images suffer from severe color distortion and
detail loss, which seriously affect underwater targets’ subsequent detection and recognition.
The latest methods for underwater image enhancement are based on depth models and
focus on ascertaining a mapping function from the subspace of underwater images to the
subspace of ground truth images, but the use of these methods often leads to different
background colors of underwater images as the diversity of underwater conditions are
ignored. Wu et al. (2020) [51] addressed the problem wherein assistance is needed to
achieve higher accuracy after transforming a dataset into an audio spectrum. They used an
improved neural network, LeNet, to fit the spectrally transformed dataset and achieved
higher accuracy than the existing methods, thereby meeting the desired goal of being useful
for practical applications.

3.2. Generative Adversarial Networks (GAN)

Goodfellow et al. [52] first introduced the GAN network, which consists of two main
components, a generative model and the discriminant model, which correspond to the
generator and the discriminator in the network structure. The generator is used to generate
samples with an equivalent probability distribution as the actual training dataset, and the
discriminator is responsible for identifying whether the input is from the actual dataset or
the generator. The generator and discriminator confront each other and continuously adjust
the parameters, with the ultimate goal of rendering the discriminator network incapable
of judging whether the output results of the generative network are authentic. Therefore,
GAN networks are often used for graph generation, data enhancement, etc. Due to the
complexity of the underwater environment, GAN networks have been widely used for
underwater image data enhancement.

In 2017, Juhwan Kim et al. [53] proposed an algorithm for generating genuine sonar
fragments or images. The method consists of two steps: sonar image simulation and
GAN-based image transformation. First, by calculating the transmission and reflection
of acoustic waves, a sonar image simulator based on a ray-tracing technique is used to
simulate an image containing semantic information through simple calculations. Then, the
actual sonar images are transformed into simple images by adding noise or by denoising
and segmentation based on GAN network principles; finally, these simple images are
transformed into authentic sonar images. In 2019, Yu et al. [54] proposed a conditional
generative adversarial network for underwater image recovery that used a Wasserstein
GAN with a gradient penalty term as the backbone network and designed the loss function
as the sum of the loss of the generative adversarial network and the perceptual loss. Unlike



J. Mar. Sci. Eng. 2023, 11, 3 11 of 20

standard GAN networks, the network uses a patchGAN classifier in its discriminator to
learn to recognize structural losses instead of image-level losses or pixel-level losses.

In the field of hydroacoustics, GAN networks have been introduced for hydroacous-
tic signal recognition in order to enhance hydroacoustic data due to the practical factor
that data from hydroacoustic datasets are difficult to obtain. A new framework based on
generative adversarial networks (GAN), Figure 8, is proposed in [55] for addressing the
problem of insufficient samples for hydroacoustic signals. The framework preprocesses
audio samples into grayscale spectral images for feature capture and complexity reduction
by GAN, and then evaluates the GAN-generated samples using an independent classifi-
cation network external to GAN; the results show that the GAN-generated samples can
significantly improve the classification and prediction accuracy of the model.
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However, only conditional generative adversarial networks (CGAN) [56] were used
in [10,55], and no denoising was performed on the original data. Using other GAN-derived
models and denoising the data before transferring them to a spectral-input CNN network
for recognition would probably yield better recognition accuracy.

3.3. Recurrent Neural Networks (RNN)

Recurrent neural networks, first proposed in 1990, are considered a generalization of
recurrent neural networks, which are artificial neural networks with a tree-like hierarchical
structure and network nodes that recursively respond to the input information in the order
of their connections [57]. When each parent node of a recurrent neural network is connected
to only one child node, its structure is equivalent to that of a fully connected recurrent
neural network [58]. Since recurrent neural networks have variable topology and shared
weights, they are used for machine learning tasks that contain structural relationships.
They are widely used in natural language processing (NLP), speech and text recognition,
and sonar recognition systems [59,60].

The authors of [25] used multidimensional features as inputs in hydroacoustic signal
recognition to solve the problem of limited one-dimensional Mayer spectrum data and
used a CRNN recurrent convolutional network as a classifier, which resulted in a surface-
recurrent neural network with better recognition accuracy than CNNs and LSTM [61].
T. Hughes et al. [62] proposed a novel recurrent neural network (RNN) model that can
properly compensate its preference for temporal continuity with acoustic features in each
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frame, thereby reducing the overall speech recognition computation time by 17% while
reducing the word error rate by 1%, which has implications for hydroacoustic signal
recognition.

Doan et al. [63] proposed a method for underwater target recognition using a dense
convolutional neural network with a network architecture designed to cleverly reuse all
previous feature maps to optimize the classification rate under various impaired conditions
while satisfying low computational costs; the method uses the time domain original audio
signal in the time domain as an input, achieving an accuracy of 98.85% at a signal-to-noise
ratio of zero, thereby outperforming conventional machine learning algorithms.

3.4. Transfer Learning

As mentioned above, various types of neural networks are applied in hydroacoustic
signal recognition to solve the problem of difficult access to hydroacoustic data and small
data sets. Another machine learning approach that can cleverly avoid the training of
hydroacoustic data is the migration-learning paradigm, Figure 9, whose goal is to apply
the knowledge or patterns learned on a domain or task to different versions thereof. The
related domains or problems and the migration-learning paradigm are fundamental and
widely accepted approaches to addressing the lack of training data in machine learning [64].
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Ali K. Ibrahim et al. [65] introduced migration learning in grouper sound classification
in which they processed the raw audio into spectrograms and scale maps and fed them into
pre-trained deep neural network models, namely, VGG16, VGG19, Google Net, and Mo-
bileNet, and their results showed that all these pre-trained deep-learning neural networks
yielded good recognition accuracy.

However, pre-training networks’ pre-training weights, such as those of VGG16, are
trained from visual images. Take the publicly available natural sound dataset Google Au-
dioSet [66] as an example, which contains 632 classes of audio categories and 2,084,320 man-
ually labeled sound clips of 10 s each. The audio ontology is identified as a hierarchical
map of event categories, covering a wide range of human and animal sounds, instrument
and music genre sounds, and everyday environmental sounds. In this paper, we argue
that a pre-trained network trained with natural sounds can more effectively improve the
accuracy of hydroacoustic signal recognition and that the migration-learning model is an
efficient and valuable technical approach in case of insufficient hydroacoustic data.
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4. Data Augmentation

In speech recognition, the data augmentation of raw audio is a typical operation whose
essence is to ensure that a limited number of data produce values equivalent to more data
without substantially increasing their numbers. Data augmentation has been introduced
into hydroacoustic signal recognition due to the hard-to-acquire matching nature of hy-
droacoustic datasets and the lack of data. Next, we will introduce the traditional audio
data enhancement approach and the neural network-based data enhancement approach.

4.1. Traditional Data Enhancement Based on Original Audio

Data augmentation is a prevalent technique in deep learning and is mainly used to
enhance the training dataset such that the dataset possesses as much diversity as possible.
Since hydroacoustic signals inherently face serious problems, such as a lack of data samples
and insufficient sample completeness, data enhancement methods can help improve the
target classification results. Data enhancement can be performed in both spectrograms and
time domain signals. In the spectrogram, the enhancement problem of the acoustic signal
is transformed into a more visual problem for processing, and the enhancement of the
spectrogram is achieved by spatiotemporal interference and random masking techniques.
This method can better cope with the distortion in the time direction and the partial
loss of frequency information. Of course, the effect of spatial distortion is ignored here.
In 2013, Das et al. [67] extracted spectral features and cepstrum coefficients based on
spectral analysis to enhance an existing feature set. In [68], a one-and-a-half-dimensional
spectrum based on a half-dimensional spectrum analyzed via the principal component
analysis (PCA) method was introduced to extract ship-radiation noise. In 2016, Zhang
et al. [15] extracted Mel frequency cepstrum coefficients (MFCC), first-order differential
MFCC, and second-order differential MFCC features and concluded after a study that
these features are the most effective with respect to acoustic target recognition regarding
underwater targets’ standard features. In the same year, Santos et al. [6] developed a
hull classifier based on cepstrum coefficients and the Gaussian mixture model. Meng
et al. [69,70] proposed zero cross-entropy features and inter-peak amplitude features to
describe propeller rotation. However, their performance is significantly reduced in noisy,
shallow waters. Azimi-Sadjadi [71] studied wavelet decomposition techniques. Wei [72]
used wavelet features to classify underwater acoustic targets. However, it is difficult to
determine the wavelet decomposition sequence using this method due to the lack of a
priori knowledge. Recently, a feature extraction auditory model concerning the human
auditory system has been widely adopted. Yang [73] proposed auditory features based on
an evaluation of heterogeneity. However, the frequency resolution of the hydroacoustic
noise they analyzed was too low to describe the details of the spectrum. Tuma and Yang
et al. [74,75] fused multi-domain features of ship-radiation noise and implemented an
integrated recognition system by designing a support vector machine using such extracted
features. Siddagangaiah et al. [76] investigated a multi-scale, entropy-based detection
method for hydroacoustic target recognition.

Since the sampling rate of acoustic signals is usually high and the time-domain signals
contain limited information, manually extracted spectrograms are usually used as the input
data of the network, and the recognition of hydroacoustic signals is achieved by combining
manual feature extraction and deep network models. The reference VGG network is used
as the base model, and some parameters in its network layers are modified to adapt to the
classification task of hydroacoustic signals. The network consists of eight convolutional
layers, in which each one convolves the output of the previous convolutional layer with
a set of filters to capture local information in the feature map. Finally, classification is
achieved by outputting the probabilities of different target classes through fully connected
layers and classifiers. The deep neural network automatically extracts feature information
in the acoustic spectrogram through a multilayer structure. It obtains high-level statistical
features of the data through a combination of supervised linear and nonlinear data, thereby
reducing manual involvement and achieving a data-driven process.
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4.2. Neural Network Data Enhancement

The target signal in water is converted from an acoustic signal to an electrical signal or
from an electrical signal to an acoustic signal by a hydroacoustic transducer. The former is
the hydrophone. It is the basic device used for target detection and acquisition in water and
is the basis for hydroacoustic communication, target detection, tracking, and identification.
After the hydrophone acquires the signal, it is converted and saved by amplifying the
analog filter.

If the acoustic signal data are collected directly via sonar to extract features and then
used for classification and identification, the environmental factors affecting the signal will
impact its features and the process will not achieve the desired effect. Therefore, it is necessary
to pre-process the data to increase the prominence of the information in the sample data and
reduce the impact on feature extraction. The main method for this is to employ pre-emphasis,
a frame addition window, amplitude regularization, and the time–frequency mixing class
enhancement of the hydroacoustic signal data before processing.

Firstly, pre-emphasis is adopted to reduce the attenuation of the hydroacoustic sig-
nal during high-frequency propagation, followed by frame splitting and windowing to
increase the data sample size and amplitude regularization to remove DC signals so as to
facilitate the subsequent feature extraction process. Due to the step involving the addition
of windows in the first frame, the degree of amplitude regularization will not be normal-
ized solely according to the maximum value of the overall signal sequence data, and the
relatively small amplitude of the signal will not be changed, which plays a certain role
in regularizing the hydroacoustic data in each frame. Finally, the use of time–frequency
mixing class enhancement of the hydroacoustic data to expand the training model and
avoid problems pertaining to the training of the model caused by an insufficient sample
size leads to inadequate results, while also adding noise to the signal data to improve the
robustness of the model.

If the hydrophone is compared to the human ear, the magnitude of the signal ampli-
tude reflects the loudness information of the sound source. Since the intensity of sound in
the propagation process is attenuated with distance, the “loudness” information is affected
by the distance of the sound source from the hydrophone and less so by the characteristics
of the target itself. However, the signal contains more information in the proportion of
each frequency component of the information, indicating the relative magnitude of each
frequency amplitude; thus, one can employ amplitude regulation to eliminate the influ-
ence of the source’s distance to the characteristics of the impact. Amplitude regulation
means that the signal amplitude is limited. Since the distance of the ship target from the
hydrophone in the data set is variable, it is necessary to eliminate the influence of loudness
on the characteristics.

5. Discussion

In deep learning, feature selection and extraction play an increasingly important role,
and a good feature is sometimes even more critical than a good model. Low-level features
contain more information on the original data but have undergone fewer operations and
provide noisier information; high-level information contains less noise but may have lost a
great deal of key information in the extraction process. The fusion of features at different
scales is a new idea for feature extraction. Feature fusion methods are currently divided
into two stages, i.e., fusion before the training model and fusion after the training model.
Pre-training model fusion can be considered to be the parallel or serial splicing of features
to increase the features’ dimensions or form them into a complex variable. Then, the fused
features are trained as classifiers. For example, the ParseNet model and HyperNet are
designed via the serial splicing of features, and Hypercolumns use the idea of the parallel
splicing of features. The process of fusion after the training of the model requires the
operator to start predicting only partially fused layers before their final fusion and to then
fuse the results according to the results obtained.
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After the pre-processing of the data, feature extraction, and feature fusion, the selection
and design of the classifier need to be performed. A convolutional neural network model
is extracted and trained with respect to a two-dimensional matrix, leading to the design
of a model applicable to the current hydroacoustic target recognition task. At the same
time, the current hot migration-learning method is introduced into hydroacoustics, and
the recognition and classification of hydroacoustic features with respect to the current
dataset are performed with the help of model design ideas and structural parameters that
have performed well in other fields. Based on the original hydroacoustic information and
the fused features of the simulated human ear’s Meer spectrum, the model is output to
recognize and classify the targets in the hydroacoustic data.

6. Conclusions

The advent of deep-learning networks has dramatically improved the efficiency and
accuracy of hydroacoustic signal recognition. With the development of network structures
such as LSTM, CNN, and GAN, recognition accuracy and efficiency have been greatly
improved. The latest transformer model applied in the field of NLP has shown powerful
efficiency with respect to human voice recognition. Various neural networks and signal-
processing approaches have been applied to hydroacoustic signal recognition, which
has further improved its recognition accuracy. However, these methods still have many
drawbacks that need to be improved upon. Xie et al. estimated a missing dimension in
side-scan sonar using a typical residual neural network, ResNet, and a UNet network
to estimate water depth contours. For the underwater targeting of the problem of a
small target dataset, Jin et al. [9] applied LOFAR spectra for preprocessing to retain critical
features and used generative adversarial networks (GAN) to extend the samples to improve
performance classification. The experimental results showed that the generated samples
had high quality and could significantly improve the classification accuracy of the neural
model. The application of deep-learning models such as convolutional neural networks
to hydroacoustic target recognition can significantly improve classification accuracy and
constitutes a new research direction in hydroacoustic detection.

In summary, hydroacoustic target recognition technology will develop in terms of
intelligence, autonomy, high accuracy, robustness, and real-time acquisition, and will play
a more significant role in military and civilian fields; meanwhile, artificial intelligence
and array-signal-processing technology for complex environmental motion parameter
estimation, multi-target recognition tracking, and the improvement of array directivity are
the promising directions and development trends of future research.

This paper summarizes the latest research progress regarding underwater acoustic
target recognition and compares the accuracy of the various methods proposed in the
references in an effort to ascertain the developmental directions of underwater acoustic
target-recognition technology, see Figure 10.

In this paper, the following suggestions are made for hydroacoustic signal classification.

(1) The development of a signal to preprocess feature extraction is crucial, Table 1. Al-
though short-time Fourier, Meier, Hilbert–Yellow, and other processing methods
have been proposed to solve part of signal feature extraction; however, due to the
shortcomings of the various algorithms, single signal-processing feature extraction
can no longer improve the efficiency of the classifier. Therefore, multi-spectrum
feature fusion will be one of the directions of development of hydroacoustic signal
recognition.
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Table 1. Preprocessing methods.

Method Strengths/Features Limitations

Short-time Fourier transform
(STFT)

Obtains the signal power spectrum at different
moments
Creates a time–frequency analysis chart of
hydroacoustic signals
Includes multimodal fusion features
Highly distinguishable

Lack of time- and frequency-locating
functions
Low time–frequency resolution of
hydroacoustic signals

The Wavelet Transform

Features multiple resolutions
Reduces high-frequency interference components
Provides significant noise reduction effect towards
hydroacoustic signals
Widely used in hydroacoustic field

Lack of adaptivity compared to other
modal decomposition methods

The Hilbert Yellow Transform
Analyzes nonlinear non-smooth signals and is
applicable to hydroacoustic signals
Suitable for mutational signals

Theoretical framework is difficult to
establish
Endpoint effect problem exists

Mel-Frequency Analysis

High resolution in the low-frequency section of the
hydroacoustic signal
Good recognition performance even when
signal-to-noise ratio is reduced
Widely used in speech recognition

The dimensionality reduction process
leads to the loss of some of the original
data

Mel Frequency Cepstrum
Coefficient (MFCC)

Combination of dynamic and static features
High hydroacoustic signal recognition capability
Widely used in speech recognition

High-frequency part is not sensitive

Feature fusion

Compensates for the missing features of individual
spectrum features
More features can be extracted from a small
number of training data
High efficiency regarding deep-learning networks

After the feature dimension reaches a
certain size, the performance of the
model will decrease
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(2) The improvement of classifier neural networks is necessary, Table 2. In the back-end,
the efficiency of the classifier network determines the accuracy and speed of recogni-
tion. In hydroacoustic signal recognition, the back-end decision algorithms commonly
used in computer vision such as random forest can be introduced. Improving the
neural network’s efficiency will be a critical issue.

Table 2. Deep-learning methods.

Method Strengths/Features Limitations

Convolutional Neural Network
(CNN)

Convolution layer enables feature
extraction for easy feature extraction of
spectrograms
Handles high-dimensional data
Highly versatile

A great deal of valuable information will be
lost
Large number of labeled training data are
required
Contradictory to the lack of hydroacoustic data

Generative Adversarial Network
(GAN)

High unsupervised learning ability
Suitable for small data sets

Generate single data
Low network ubiquitousness

Recurrent Neural Network (RNN)
Widely used in text and speech analysis
The mathematical basis can be considered
as Markov chains with memory capacity

Unable to support long sequences
Cannot distinguish between ambient noise and
ship noise

Transfer learning High learning capability
No reliance on large data sets

Reliant on pre-trained networks
Less hydroacoustic data leads to inadequate
pre-trained network

Temporal Convolutional Network
(TCN)

Training is applied directly through the
original audio
Has applications in speech recognition

Unable to handle noise in an aquatic
environment
Low accuracy in recognition of hydroacoustic
targets

(3) Hydroacoustic data enhancement is essential, Table 3. Due to the complexity of the marine
environment, marine environmental noise varies significantly in different sea conditions,
different sea areas, and at different times. Improving classification models’ generalization
via data enhancement is a problem to be solved.

Table 3. Data augmentation methods.

Method Strengths/Features Limitations

Traditional data augmentation methods
(audio editing and synthesis, etc.) Simple operation Highly dependent on original audio

data

Neural Network data augmentation

Ability to handle unrelated features
Suitable for processing samples with missing
attributes
Compensates for lack of hydroacoustic data

Ignores correlation between data

(4) The small sample problem must be solved. Notably, the application of deep-learning
models such as convolutional neural networks to hydroacoustic target recognition can
significantly improve classification accuracy and constitutes a new research direction
in the field of hydroacoustic detection, which will lead to the improvement of perfor-
mance with respect to faint signal detection as well as underwater target identification
and localization. However, the computational complexity of these algorithms needs
further attention. On the other hand, hydroacoustic targets usually combat divers,
underwater crewless vehicles, submarines, etc., which have a certain degree of con-
cealment and confidentiality. Thus, it is more difficult to obtain their target database.
While data-driven deep-learning based on a large number of data samples is required
for training, the small sample problem also needs to be addressed.
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