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Abstract: In this paper, we study the variations of holograms of a moving source in an inhomogeneous
ocean waveguide. It is assumed that intense internal waves (internal solitons) are the reason for the
inhomogeneities of the shallow water waveguide. The results of 3D modeling of the sound field
considering horizontal refraction by internal waves are presented. In the context of 3D modeling,
the interferogram (sound intensity distributions in frequency–time coordinates) and hologram (2D
Fourier transform of the interferogram) of moving sources are analyzed. The hologram consists of
two disjoint regions corresponding to the unperturbed field and the field perturbed by internal waves.
This structure of the hologram allows for the reconstruction of the interferogram of the unperturbed
field in a waveguide in the absence of intense internal waves. The error in the reconstruction of the
unperturbed interferogram is estimated.

Keywords: internal waves; interferogram; hologram; horizontal refraction; shallow water

1. Introduction

Currently, there is a great scientific interest in interferometric signal processing in
underwater acoustics. The interferometric signal processing (ISP) is based on stable features
of the interference structure (pattern) of the broadband sound field in the shallow water
waveguide [1,2]. We refer the interested reader to the main work [3–5] on ISP methods.
In papers [6,7], ISP is developed for estimating invariant parameters of waveguides. In
work [8], ISP is applied to estimate invariant parameters for weak signals due to ampli-
fication of signal levels by array beamforming. In work [9], the ISP is used to classify
the seabed based on the passing ship signals. In work [10], the ISP is offered to estimate
the source range in shallow water. The ISP is used in work [11] for a range-independent
invariant estimation. The ISP approach is used in paper [12] to explain interference fringes
by eigenray arrival times. The ISP is developed in papers [13,14] for deep-sea passive sonar.

One of the most advantageous approaches of ISP is holographic signal processing
(HSP) [15,16]. The physical and mathematical principles of hologram formation were
first described in [15]. In HSP, the quasi-coherent accumulation of the sound intensity
distribution in frequency–time coordinates (interferogram I(ω, t)) occurs [16]. A 2D Fourier
transform (2D-FT) is applied to the accumulated sound intensity of the interferogram I(ω, t).
The 2D-FT of the interferogram I(ω, t) is called a Fourier hologram (hologram) F(τ, ν̃). The
hologram F(τ, ν̃) allows one to concentrate the sound intensity of the interferogram I(ω, t)
due to the interference of the different modes in focal spots.
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In the development of HSP, it was assumed that waveguide parameters are constant in
space and time coordinates. However, in many cases, acoustic signals propagate in waveg-
uides with hydrodynamic perturbations. The HSP was first considered for non-moving
source experimentally in paper [17]. It was shown that the hydrodynamic perturbations of
the waveguide leads to a distortion of the interferogram I(ω, t) and an increase of the focal
spots in the hologram F(τ, ν̃). In an inhomogeneous waveguide, the hologram F(τ, ν̃) is
represented as a superposition of two hologram components. These components consist of
a hologram component related to the source in the unperturbed waveguide and a hologram
component due to the waveguide perturbation. In [17], the HSP in inhomogeneous waveg-
uides was applied to analyze the experimental data obtained in the SWARM’95 (1995)
experiment [18,19]. The waveguide inhomogeneities during the SWARM’95 experiment
are due to intense internal waves (IIWs) [19–22]. IIWs are a hydrodynamic phenomenon,
which is widespread in the oceanic environment [20–22]. The presence of IIWs causes
significant horizontal refraction of the sound field, which arises at a small angle to the
wavefront of the IIWs [23].

The aim of this work is to present the results of theoretical analysis and numerical
modeling of HSP for a moving source and a non-moving receiver in the presence of IIWs
causing significant horizontal refraction. The IIWs influence on the error of the source
parameters estimations (range, velocity, and movement direction) are analyzed.

Our research is based on numerical modeling of the sound field in three-dimensional
(3D) inhomogeneous waveguides. Three-dimensional inhomogeneities of the propagation
medium can significantly affect the structure of the sound field due to horizontal reflection,
refraction, scattering, and diffraction. Numerical modeling of a broadband sound field in a
3D inhomogeneous waveguide is indeed a complex task and requires significant computa-
tional resources. To achieve accurate and realistic simulations of the sound field structure,
advanced numerical techniques and high-performance computer systems are often re-
quired. The numerical algorithms for sound field modeling in inhomogeneous waveguides
can be divided into four main groups [24]: 3D Helmholtz equation (3DHE) models [25–27];
3D parabolic equation (3DPE) models [28–32]; vertical modes and 2D modal parabolic
equations (VMMPE) models [23,33–36]; and 3D ray (3DR) models [37–39]. In the context of
our study, we consider a low-frequency sound field (∆ f1 = 100–120 Hz; ∆ f2 = 300–320 Hz).
IIWs are assumed to be the reason for the inhomogeneities of the shallow water waveguide.
We assume that the wavefront of IIWs is aligned along the acoustic track (source–receiver).
In this case, the IIWs cause significant horizontal refraction of the acoustic waves, which are
at a small angle to the wavefront of the IIWs. To account for the horizontal refraction of a
low-frequency sound field in a shallow water waveguide, VMMPE is the most appropriate
of the four models noted above. In the context of numerical modeling, the VMMPE model
enables the solution of two important problems. The VMMPE sound field model accounts
for the conditions at the boundaries of the shallow water waveguide and the horizon-
tal refraction of the vertical modes. Unlike VMMPE, the 3DR model is not suitable for
low-frequency sound fields in shallow-water waveguides. Due to its approximate nature,
ray-tracing theory is more suitable at high frequencies. Compared to VMMPE, the 3DHE
and 3DPE models are too complex for the case of a shallow water waveguide with IIWs
considered in our work. They require extensive computational resources. For this reason,
the numerical simulation in our work is based on the VMMPE model.

In our simulation, the shallow water waveguide with spatially and temporally varying
parameters due to IIWs is used. The main assumption of our simulation is the following.
The propagation velocity of sound waves (∼1500 m/s) from the source to the receiver is
much larger than the source motion velocity (∼0.5–5 m/s) and the propagation velocity
of IIWs (∼0.5–1 m/s). Therefore, we use the “frozen propagation environment” assump-
tion [39,40]: the propagation environment is not changed during the time interval of
propagation of sound waves from the source to the receiver.
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The numerical implementation of the VMMPE model used in the work was developed
in MATLAB [23]. The numerical implementation of the VMMPE model was verified using
experimental data from SWARM’95 [41].

The paper consists of six sections. After the introduction in Section 1, we describe in
Section 2 the 3D model of a shallow water waveguide in the presence of IIWs. Next, we
derive the mathematical models of the interferogram I(ω, t) in Section 3 and the hologram
F(τ, ν̃) in Section 4 of a moving source in a shallow water waveguide in the presence of
the IIWs. The algorithm of the numerical calculation of the interferogram and hologram
of moving source is developed. It is based on VMMPE model. The proposed algorithm
allows us to take into account the horizontal refraction of the sound field caused by IIWs
propagating across the acoustic track (source–receiver). The results of the numerical
modeling of the interferogram I(ω, t) and hologram F(τ, ν̃) of the broadband sound source
in the shallow water waveguide in the presence of IIWs causing horizontal refraction
are analyzed in Section 5. Within the numerical modeling, the influence of IIWs on the
interferogram I(ω, t) and hologram F(τ, ν̃) of the source sound field is considered for two
different cases of source parameters. The first case is a stationary acoustic track source–
receiver (non-moving source). The second case is a non-stationary acoustic trace (moving
source). In order to compare the numerical modeling results for both cases in the presence
of IIWs, the initial data for the simulation are chosen to be the same. The IIWs influence on
the error of the source parameters estimates (range, velocity) are analyzed. In Section 6, the
presented results are summarized.

2. Shallow Water Waveguide Model

In this section, we describe the 3D model of the shallow water waveguide used in our
research (Figure 1). The waveguide in coordinate system (X, Y, Z) is represented as a water
layer with a sound velocity c(r, z, t) and a density ρ(r, z, t). Here, r = (x, y) is the radius
vector in the horizontal plane. The water layer is confined in depth by a free surface (z = 0)
and the sea bottom (z = H).

 

source 

receiver 

Z 

X 
Y 

Figure 1. Shallow water model in the presence of internal waves.

The bottom density and refractive index are denoted by nb(1 + iκ), ρb [39,40], where
κ = χcb/54.6 f . Here, χ is a bottom loss coefficient, cb is the bottom sound speed, and f is
the sound frequency. The space–time dependence of the sound velocity in the water can be
represented in the following form:

c(r, z, t) = c(z) + δc(r, z, t), (1)

where c(z) is the velocity profile in the waveguide in the absence of the IIWs, and δc(r, z, t)
is the sound speed variations due to the IIWs. According to Equation (1), the squared
refractive index in the water layer is

n2(r, zq, t) = n̄2(z) + ñ2(r, z, t), (2)
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where n̄2(z) corresponds to the unperturbed waveguide, and ñ2(r, z, t) is due to IIWs.
According to [22,23], we have

ñ2(r, z, t) = −2QN2(z) ζ(r, z, t). (3)

Here, Q ≈ 2.4 s2/m is a physical constant of water; N(z) = (gρ−1dρ/dz)1/2 is the buoyancy
frequency, and ζ(r, z, t) are the vertical displacements in the water layer due to IIWs.
According to the first gravity mode predominance [20–22], ζ(r, z, t) can be expressed
as follows:

ζ(r, z, t) = Φ1(z) ζ0(r, t), (4)

where Φ1(z) denotes the eigenfunction of the first gravity mode, normalized at depth z0:
Φ1(z0) = 1; and ζ0(x, y, t) are vertical displacements in the waveguide water layer due to
IIWs at depth z0.

According to [20–22], we can represent IIWs as the sequence of internal solitons (IS—
soliton-like solution of KdV-equation). Given the chosen problem geometry (Figure 2), the
vertical displacements in the water layer of the waveguide ζ0(r, t) can be described as

ζ0(r, t) =
N

∑
n=1
−Bn sech2[(y− Dn − unt)/ηn

]
, (5)

where N is the count of the IS in train, Bn is the IS amplitude, un is the IS velocity, Dn is the
IS shift in horizontal plane, and ηn is the IS width.

 

receiver moving source 

propagation of the internal 
waves crests 

X 

Y 

Figure 2. Problem geometry. Acoustic track (source–receiver) orientation relative to IIWs.

IIWs are widespread phenomenon in the ocean. They are trains of short-period vertical
displacements of water layers. They are described as trains of IS that propagate to the
shelf coast. The reason for the IIWs are internal tides [20–22]. According to experimental
data [18–22], the parameters of IIWs are the following:

• Train length: ∼ 3–5 km (N ∼ 4–7);
• ζ has quasi-sinusoidality form (narrow spatial spectrum);
• ζ are synchronized in depth (dominance of the Φ1(z));
• Propagation velocity: un ∼ 0.5–1 m/s;
• IS amplitude: Bn ∼ 10–30 m;
• IS width: ηn ∼ 100–200 m;
• Interval between IS: ∼ 300–500 m;
• Curvature radius of IS front in horizontal plane ∼ 15–25 km.

These parameters lead to specific acoustic phenomena due to IIWs. In [23,41], it is
shown that the presence of IIWs causes significant horizontal refraction of sound waves,
which are at a small angle to the wavefront of the IIWs. As a result, the dynamic waveg-
uides in the horizontal plane are approximately parallel to the fronts of the IIWs. The sound
intensity is periodically focused and defocused along the IIW front. This leads to signif-
icant variations in sound intensity (∼4–5 dB) at the receiver [23,41]. Within the VMMPE
model [23,33–36], it is shown that horizontal dynamic waveguides have selective character
for vertical modes. The horizontal structure of the sound field is different for different
vertical modes. It is shown that the horizontal structure of the sound field of sound modes
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also depends on the frequency [23]. This frequency dependence of horizontal refraction
has a resonance-like form and is evident in the propagation of broadband sound signals.

3. Moving Source Interferogram

In the framework of the VMMPE approach, the complex field in the waveguide in the
presence of the IIW Equations (1)–(5) can be written in the following way [23,39,40,42]:

p(r, z, ω, t) =
M

∑
m=0

Pm(r, ω, t) φm(z, ω) exp
[
i(h̄m + iγ̄m)x

]
, (6)

where r = (x, y) is the radius vector of the source in the horizontal plane, Pm is the mode
amplitude, h̄m + iγ̄m is the complex horizontal wavenumber of the mth acoustic mode,
and φm(z, ω) is the corresponding acoustic mode in the waveguide without IIWs. In
Equation (6), the summation is performed up to M, the total number of acoustic modes
to be considered. Consequently, the acoustic pressure depends on the acoustic frequency
ω = 2π f .

The φm(r, ω, t) are the eigenfunctions (acoustic modes), and hm(r, ω, t) and γm(r, ω, t)
are the real/imaginary parts of horizontal wavenumbers ξm(ω) = hm(r, ω, t) + iγm(r, ω, t),
calculated by solving the Sturm–Liouville problem under conditions for free surface and
bottom [39,40]. The horizontal wavenumber hm(x, z, t) of the mth acoustic mode in the
presence of IIWs can be written as the sum of the unperturbed component (h̄m(ω)) and the
perturbation h̃m(r, ω, t) due to IIWs:

hm(r, ω, t) = h̄m(ω) + h̃m(r, ω, t). (7)

The linear correction in (7) in the framework of perturbation theory [17] is determined by

h̃m(r, ω, t) =
k2

2h̄m

∫ H

0
φ2

m(z, ω) ñ2(r, z, ω, t) dz. (8)

Here, k = ω/c0 is the sound wavenumber, and c0 is the sound speed at depth z0. Consi-
dering Equation (3), we obtain for h̃m(r, ω, t) the expression:

h̃m(r, ω, t) = −qm(ω)ζ(r, t), (9)

where the coefficient qm(ω) is given by

qm(ω) =
Qk2

h̄m

∫ H

0
φ2

m(z) N2(z)Φ1(z) dz. (10)

From Equation (10), it follows that the horizontal structures depend on the acoustic mode
numbers and on the frequency [23]. It also follows from Equation (10) that the frequency
dependence of horizontal refraction has a resonance-like form and manifests itself for
broadband acoustic signal propagation.

The mode amplitude Pm(r, ω, t) is determined as the solution of the parabolic equation:

∂Pm

∂x
=

i
2h̄m

∂2Pm

∂y2 +
ih̄m

2
(
n2

m(r, ω, t)− 1
)

Pm, (11)

where nm(r, ω, t) is the horizontal refractive index of the mth acoustic mode in waveguide
in presence of the IIWs:

nm(r, ω, t) = hm(r, ω, t)/h̄m. (12)

The numerical solution of Equation (12) is performed using the “Split Step Fourier”
(SSF) algorithm [42–44]:
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Pm(x + ∆x, y, ω, t)

= exp
[
−ih̄m∆xUm(x, y, ω, t)

]
× FFT−1

{
exp

[
ih̄m∆xTm(h)

]
× FFT

[
P∗m(x, y, ω, t)

]∗}. (13)

Here, FFT is the forward fast Fourier transformation operator, FFT−1 is the backward fast
Fourier transformation operator, Tm(h) = 0.5(h/h̄m)2 is the operator in the Fourier space of
wavenumbers h̄m, and Um(x, y, ω, t) = −0.5

(
n2

m(x, y, ω, t)− 1
)

is the operator in the space
of coordinates (x, y) in the horizontal plane.

In the framework of the VMMPE model in Equation (6), the interferogram I(ω, t) of
the moving source in the frequency–time domain (ω, t) can be written as:

I(ω, t) = ∑
m

∑
n

Pm(ω, t) P∗n (ω, t) exp
[
ih̄mn(ω)(x0 −−− vt)

]
= ∑

m
∑
n

Imn(ω, t), m 6= n,
(14)

where h̄mn(ω) = h̄m(ω) − h̄n(ω). Here, Imn(ω, t) is the partial interferogram due to
interference of mth and nth modes, Pm(ω, t) is the amplitude of the mth acoustic mode, x0
is the initial source coordinate at time t0 = 0, t is the current time, and v is the velocity of
the moving source. The superscript “*” denotes the complex conjugate value. The mode
attenuation, the source depth zs, and receiver depth zq are taken into account by the mode
amplitude Pm(ω, t). The condition m 6= n means that the mean value has been removed
from the interferogram I(ω, t).

4. Moving Source Hologram

Let us consider a hologram of the moving sound source in the presence of the IIWs. We
apply a 2D-FT to the interferogram I(ω, t) (Equation (14)) in the frequency–time domain
(ω, t). The result is the following hologram F(τ, ν̃) given by

F(τ, ν̃) = ∑
m

∑
n

∫ ∆t

0

∫ ω2

ω1

Imn(ω, t) exp
[
i(ν̃t−ωτ)

]
dt dω

= ∑
m

∑
n

Fmn(τ, ν̃),
(15)

where τ and ν̃ = 2πν are the time and circular frequency in the hologram domain, Fmn(τ, ν̃)
is the partial hologram due to interference of mth and nth modes, ω1 = ω0 − (∆ω/2),
ω2 = ω0 + (∆ω/2) are the integral limits, ∆ω is the frequency band, ω0 is the reference
frequency, and ∆t is the observation time.

Next, we consider the linear approximation of the waveguide dispersion:

h̄m(ω) = h̄m(ω0) +
dh̄m(ω0)

dω
(ω−ω0). (16)

It is assumed that the sound field spectrum and mode amplitude Pm as a function of
frequency ω are slow compared to the fast oscillation of exp[ihm(ω)(x0 + vt)]. Under this
assumption, the partial hologram Equation (15) reads:

Fmn(τ, ν̃) = Pm(ω0)P∗n (ω0)∆ω∆t exp[iΦmn(τ, ν̃)]×

×
sin
{[

x0
dhmn(ω0)

dω − τ
]∆ω

2

}
sin
{[

vhmn(ω0) + ν̃
]∆t

2

}
[
x0

dhmn(ω0)
dω − τ

]∆ω
2
[
vhmn(ω0) + ν̃

]∆t
2

, (17)

where Φmn(τ, ν̃) is the phase of the Fmn(τ, ν̃)—partial hologram.

Φmn(τ, ν̃) =
( ν̃∆t

2
− τω0

)
+ hmn(ω0)

(∆t
2

v + x0

)
. (18)
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We note that in Equation (17), the approximation x0 � v∆t is used.
The hologram distribution F(τ, ν̃) in domain (τ, ν̃) is localized in two narrow areas as

focal spots. They are located as follows:

1. In quadrants I and III, when the source moves to the receiver (v < 0);
2. In quadrants II and IV, when the source moves away from the receiver (v > 0).

The hologram distribution F(τ, ν̃) contains (M − 1) focal spots with coordinates
(τµ, ν̃µ) lying on the straight line ν̃ = ε̃τ. Here, µ = 1, M− 1 is the focal spot counts. In the
focal spot with coordinates (τµ, ν̃µ), the maxima of (M− µ) partial holograms accumulate.

The angular coefficient ε̃ = 2πε can be represented in the form ε̃ = −δω/δt, where
δω is the frequency shift of the interference maximum during the observation time δt. The
dimensions of the focal spots δτ, δν̃ along τ, ν̃ do not depend on the number of focal spots
and are the same: δτ = 4π/δω, δν̃ = 4π/δt.

In the hologram, the spectral density is mainly concentrated in the band between the
straight lines [16].

ν̃ = ε̃τ + δν̃, ν̃ = ε̃τ − δν̃. (19)

Outside this band, the spectral density practically vanishes. This band between these
straight lines is used as a 2D filter of the sound field in the hologram domain.

For the first focal spot closest to the origin, the radial velocity and initial distance are
given as [16]:

v̇ = −kvν̃1, ẋ0 = kxτ1, (20)

where

kv = (M− 1)
(

h1M(ω0)
)−1

, kx = (M− 1)
(

dh1M(ω0)/dω
)−1

. (21)

In contrast to the true values, the estimated source parameters are marked by a dot
at the top. The holographic method of signal processing is realized in the following
way. During the observation time ∆t, in the frequency band ∆ω, J independent signal
realizations of duration t1 with a time interval t2 are quasi-coherently accumulated along
the interference fringes:

J = ∆t/(t1 + t2). (22)

Signal realizations are independent if t2 > 2π/∆ω. In this way, the interferogram I(ω, t) is
formed and the 2D-FT is applied to it. As result, the hologram F(τ, ν̃) of the moving source
in waveguide is obtained.

In general, the structures of the interferogram I(ω, t) and the hologram F(τ, ν̃) are
very different. However, a hologram F(τ, ν̃) is a unique representation of an interferogram
I(ω, t). Thus, the inversion of the hologram F(τ, ν̃) (using the inverse 2D-FT transform)
allows for the reconstruction of the original interferogram I(ω, t).

5. Numerical Results

The results of numerical modeling of the interferogram I(ω, t) and hologram F(τ, ν̃)
of the broadband sound source in the shallow water waveguide in the presence of IIWs
causing horizontal refraction are analyzed in Section 5. Within the numerical modeling, the
influence of IIWs on the interferogram and hologram of the source sound field is considered
for two different cases of source parameters. The first case is a stationary acoustic track
source–receiver (non-moving source). The second case is a non-stationary acoustic trace
(moving source). In order to compare the numerical modeling results for both cases in the
presence of IIWs, the initial data for the simulation are chosen to be the same.

Section 5 consists of three parts. The shallow water waveguide and source parameters
are described in Section 5.1. The numerical modeling results for stationary acoustic trace
source–receiver (non-moving source) are presented in Section 5.2. The numerical modeling
results for non-stationary acoustic track source–receivers (moving source) are analyzed in
Section 5.3.
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5.1. Waveguide Parameters

Consider a waveguide with parameters related to the SWARM’95 (1995) experiment
on the New Jersey coast [18,19]. In numerical simulation, it is assumed that the sound
velocity profile c(z) corresponds to data obtained from 18:00 to 20:00 GMT on 4 August
1995 in the experimental region [18].

The following two frequency ranges are considered:

1. ∆ f1 = 100–120 Hz;
Bottom refractive index nb = 0.84 (1 + i 0.03);
Bottom density ρb = 1.8 g/cm3;
Modes count M = 4.

2. ∆ f2 = 300–320 Hz;
Bottom refractive index nb = 0.84 (1 + i 0.05);
Bottom density ρb = 1.8 g/cm3;
Modes count M = 10.

The wavenumbers of the modes hm(ω0) and their derivatives dhm(ω0)/dω at mid-range
frequencies are given in Table 1 ( f01 = 110 Hz) and Table 2 ( f02 = 310 Hz).

Table 1. Modes parameters. Frequency ∆ f1 = 100–120 Hz.

mth Mode 1 2 3 4

hm, m−1 0.4635 0.4557 0.4450 0.4310
(dhm/dω)104, (m/s)−1 6.762 6.808 6.901 7.091

Table 2. Modes parameters. Frequency ∆ f1 = 300–320 Hz.

mth Mode 1 2 3 4 5 6 7 8 9 10

hm, m−1 1.312 1.307 1.300 1.292 1.282 1.273 1.263 1.252 1.240 1.225
(dhm/dω)104, (m/s)−1 6.751 6.761 6.781 6.797 6.808 6.815 6.831 6.875 6.970 7.057

The problem geometry: acoustic track (source–receiver), IIWs propagation direction,
and source motion direction are shown in Figure 2. An IIW train Equation (5) consists of
three identical IS (N = 3). The IS parameters are as follows:

• Amplitude Bn = 20 m;
• Width ηn = 200 m;
• Velocity un = 0.7 m/s;
• Distance between IS Λ = 250 m;
• Straight wavefront in horizontal plane.

5.2. Non-Moving Source (v = 0 m/s)

Let us consider the results of numerical modeling for a non-moving source (v = 0 m/s).
The source–receiver range x0 = 10 km. The source depth is zs = 20 m. The receiver depth
zq = 45 m. The source spectrum is uniform. The sound pulses are recorded periodically
with interval 5 s. The sampling frequency is 0.25 Hz. The observation time is T = 20 min.
The two frequency bands ∆ f1 = 100–120 Hz (Table 1) and ∆ f2 = 300–320 Hz (Table 2)
are considered.

The results of the numerical modeling are shown in Figures 3–10. Figures 3 and 4
show the interferogram I( f , t) and the hologram F(τ, ν̃) for the case of the absence of
IIWs. Figure 3 corresponds to ∆ f1 = 100–120 Hz and Figure 4 to ∆ f2 = 300–320 Hz. The
interferograms I( f , t) consist of localized vertical fringes. The hologram F(τ, ν̃) consists of
focal spots on the horizontal axis. This is the result of a non-moving source. The irregularity
of the interferogram I( f , t) and the number of focal spots in the hologram F(τ, ν̃) increase
with frequency. This is explained by the increase in the number of acoustic modes in the
sound field.
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Figure 3. Normalized interferogram I( f , t) (a) and hologram F(τ, ν̃) (b). Frequency range
∆ f1 = 100-120 Hz. Non-moving source (v = 0 m/s). IIWs are absent.

(a)

-0.5  0  0.5

, s

-0.005

 

0

 

0.005
, 

H
z

0 0.5 1

(b)

Figure 4. Normalized interferogram I( f , t) (a) and hologram F(τ, ν̃) (b). Frequency range
∆ f2 = 300-320 Hz. Non-moving source (v = 0 m/s). IIWs are absent.

Figures 5 and 6 show the interferogram I( f , t) and the hologram F(τ, ν̃) in the
case of the presence of IIWs. Figure 5 corresponds to ∆ f1 = 100–120 Hz and Figure 6
to ∆ f2 = 300–320 Hz. When the acoustic track is located between the IS crests (horizontal
spatial period Λ = 250 m), the interferogram I( f , t) contains horizontal fringes with the
width ∆t = 5.9 min. In this case, the sound field of the source is focused along the acoustic
track due to the horizontal refraction caused by IIWs. Such structure of the interferogram
I( f , t) with horizontal fringes leads to the formation of a periodic structure of focal spots in
the hologram F(τ, ν̃).

The estimates for the focal spot sizes δ f , δt, and periodicity intervals L f and Lt read:

1. ∆ f1 = 100–120 Hz;
δ f1 = 2.5 Hz, δt1 = 1.3 min;
L f1 = 9.2 Hz, Lt1 = 8 min.

2. ∆ f2 = 300–320 Hz;
δ f2 = 3.5 Hz, δt2 = 1.3 min;
L f2 = 5.5 Hz, Lt2 = 8 min.

Under natural conditions, the IIW train consists of different ISs with different parameters.
This leads to a blurring of the pronounced periodic structure of interferogram I( f , t) and
hologram F(τ, ν̃).
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Figure 5. Normalized interferogram I( f , t) (a) and hologram F(τ, ν̃) (b). Frequency range
∆ f1 = 100-120 Hz. Non-moving source (v = 0 m/s). IIWs are present (Bn = 15 m, un = 0.7 m/s).

(a) (b)

Figure 6. Normalized interferogram I( f , t) (a) and hologram F(τ, ν̃) (b). Frequency range
∆ f2 = 300-320 Hz. Non-moving source (v = 0 m/s). IIWs are present (Bn = 15 m, un = 0.7 m/s).

The structure of the focal spot arrangement in the hologram F(τ, ν̃) allows for the
separation of the component corresponding to the waveguide without IIWs and the sound
field component related to the perturbation by IIWs.

The results of filtering the hologram focal spots located mainly on the horizontal axis
in Figures 5 and 6 and their inverse 2D FT (interferogram) are shown in Figures 7 and 9.
The reconstructed interferograms and holograms in Figures 7 and 9 correspond to the
interferograms and holograms without IIWs in Figures 3 and 4. It can be seen that the
focal spots on the reconstructed and the initial hologram are the same. The closeness of
the initial and reconstructed interferograms is shown in Figure 10. Figure 10 shows the 1D
interferograms for t0 = 0min. Red curve – IIWs are absent. Blue curve – IIWs are present.

The interferogram reconstruction error is estimated by the dimensionless quantity:

d =
∑J

j=1

∣∣I1( f j)− I2( f j)
∣∣

∑J
j=1

∣∣I1( f j)
∣∣ , (23)

where I1( f ), I2( f ) are initial and reconstructed 1D interferograms, respectively.

1. ∆ f1 = 100–120 Hz;
d1 = 0.117, J = 80.

2. ∆ f2 = 300–320 Hz;
d2 = 0.096, J = 80.
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Figure 7. Normalized filtered hologram F(τ, ν̃) (a) and filtered interferogram I( f , t) (b). Fre-
quency range ∆ f1 = 100-120 Hz. Non-moving source (v = 0 m/s). IIWs are present
(Bn = 15 m, un = 0.7 m/s).
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Figure 8. Normalized filtered hologram F(τ, ν̃) (a) and filtered interferogram I( f , t) (b). Fre-
quency range ∆ f2 = 300-320 Hz. Non-moving source (v = 0 m/s). IIWs are present (Bn = 15 m,
un = 0.7 m/s).

I 
^

100 110 120

f , Hz

-1

 

0

 

1

(a)

I 
^

300 310 320

f , Hz

-1

 

0

 

1

(b)

Figure 9. Reconstructed 1D interferogram I( f ) (a) ∆ f1 = 100-120 Hz and (b) ∆ f2 = 300-320 Hz.
Non-moving source (v = 0 m/s). Red curve – IIWs are absent. Blue curve – IIWs are present.

The numerical modeling results for the frequency range ∆ f2 = 300–320 Hz are identical
to those for the range ∆ f1 = 100–120 Hz. From the presented results, it follows that the
described method allows one to separate the sound field component corresponding to the
waveguide without IIWs and the sound field component related to the interference by IIWs.
Thus, the interferogram of the waveguide without IIWs can be reconstructed for the case of
the non-moving source in the presence of IIWs.
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5.3. Moving Source (v = 1 m/s)

Let us consider the results of numerical modeling for a moving source (v = 1 m/s).
At the initial time t0 = 0, the source–receiver range is x0 = 10 km. The source depth
is zs = 20 m. The receiver depth is zq = 45 m. The source moves along the horizontal
axis X to the receiver. The velocity of the source is v = 1 m/s. The source spectrum is
uniform. The sound field pulses have duration t1 = 4 s (sampling frequency 0.25 Hz).
The interval between the end of the previous and the beginning of the next pulse t2 = 1 s.
Therefore, time interval between pulses t∗ = 5 s, (t∗ = t1 + t2). The time observation is
∆t = 20 min. The two frequency bands ∆ f1 = 100–120 Hz (Table 1) and ∆ f2 = 300–320 Hz
(Table 2) are considered.

The results of the numerical modeling are shown in Figures 11–16. The dashed lines
on the holograms show the band where the focal spots of the sound field of the moving
source are concentrated in the waveguide without IIWs. It can be seen that the linear size
of the band: δτ ≈ 0.15 s, δν ≈ 0.002 Hz corresponds to the theoretical estimates of the focal
spots sizes δτ = 0.1 s, δν = 0.0017 Hz.

Figure 11 and Figure 12 show the interferogram I( f , t) and the hologram F(τ, ν̃)
of the moving source for the case where there are no IIWs. Figure 11 corresponds to
∆ f1 = 100–120 Hz and Figure 12 to δ f2 = 300–320 Hz. The interferograms I( f , t) consist
of localized angled fringes. The hologram F(τ, ν̃) consists of focal spots in the dotted line
band. This is the result of the movement of the source. The irregularity of the interferogram
I( f , t) and the number of focal spots in the hologram F(τ, ν̃) increase with frequency, as
they do for a non-moving source.

(a) (b)

Figure 10. Normalized interferogram I( f , t) (a) and hologram F(τ, ν̃) (b). Frequency range
∆ f1 = 100-120 Hz. Moving source (v = 1 m/s). IIWs are absent.

The estimates of the interferogram and hologram parameters are as follows:

1. ∆ f1 = 100–120 Hz;
Interference fringes angular coefficients: δ f /δt ≈ −0.015 s−2;
First focal spot coordinates τ1 = 1.30 · 10−1 s, v1 = 1.79 · 10−3 Hz;
Source parameters (range and velocity): v̇ = 1.0 m/s, ẋ0 = 11.8 km.

2. ∆ f2 = 300–320 Hz;
Interference fringes angular coefficients: δ f /δt ≈ −0.04 s−2;
First focal spot coordinates τ1 = 4.08 · 10−1 s, v1 = 1.54 · 10−3 Hz;
Source parameters (range and velocity): v̇ = 1.0 m/s, ẋ0 = 12.0 km.

Figures 13 and Figure 14 show the interferogram I( f , t) and the hologram F(τ, ν̃) of
the moving source in the case of IIW presence. Figure 13 corresponds to ∆ f1 = 100–120 Hz
and Figure 14 to ∆ f2= 300–320 Hz. When the acoustic track is located between the crests of
the IS (horizontal spatial period Λ = 250 m), the interferogram I( f , t) contains horizontal
fringes with the width ∆t = 5.8 min. In this case, the field of the source is focused along
the acoustic track due to the horizontal refraction caused by IIWs. Such a structure of the
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interferogram I( f , t) with horizontal fringes leads to the formation of a periodic structure
of focal spots in the hologram F(τ, ν̃).

(a) (b)

Figure 11. Normalized interferogram I( f , t) (a) and hologram F(τ, ν̃) (b). Frequency range
∆ f2 = 300-320 Hz. Moving source (v = 1 m/s). IIWs are absent.

(a) (b)

Figure 12. Normalized interferogram I( f , t) (a) and hologram F(τ, ν̃) (b). Frequency range
∆ f1 = 100-120 Hz. Moving source (v = 1 m/s). IIWs are present (Bn = 15 m, un = 0.7 m/s).

(a) (b)

Figure 13. Normalized interferogram I( f , t) (a) and hologram F(τ, ν̃) (b). Frequency range
∆ f2 = 300-320 Hz. Moving source (v = 1 m/s). IIWs are present (Bn = 15 m, un = 0.7 m/s).

The estimates for the focal spots sizes δ f , δt, and periodicity intervals L f and Lt read:

1. ∆ f1 = 100–120 Hz;
δ f1 = 2.4 Hz, δt1 = 1.1 min;
L f1 = 5.6 Hz, Lt1 = 8.3 min.
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2. ∆ f2 = 300–320 Hz;
δ f2 = 2.8 Hz, δt2 = 1.1 min;
L f2 = 6.8 Hz, Lt2 = 8.1 min.

The structure of the arrangement of focal spots in the hologram F(τ, ν̃) of the moving
source allows one to separate the sound field component corresponding to the waveguide
without IIWs and the sound field component related to the disturbance by IIWs.

The results of the filtration of the hologram focal spots are shown in the dotted lines of
Figures 13 and 14, and their inverse 2D FT (interferogram) are shown in Figures 15 and 16.
The reconstructed interferograms and holograms in Figures 15 and 16 correspond to the
interferograms and holograms without IIWs in Figures 11 and 12. It can be seen that the
focal spots on the reconstructed and the initial hologram are close to each other.

The estimates of the filtered interferogram and filtered hologram parameters read:

1. ∆ f1 = 100–120 Hz;
First focal spot coordinates τ1 = 1.5 · 10−1 s, v1 = 2.05 · 10−3 Hz;
Source parameters (range and velocity): v̇ = 1.2 m/s, ẋ0 = 13.7 km.

2. ∆ f2 = 300–320 Hz;
First focal spot coordinates τ1 = 4.08 · 10−1 s, v1 = 1.54 · 10−3 Hz;
Source parameters (range and velocity): v̇ = 1.0 m/s, ẋ0 = 12.0 km.
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Figure 14. Normalized filtered hologram F(τ, ν̃) (a) and filtered interferogram I( f , t) (b). Frequency
range ∆ f1 = 100-120 Hz. Moving source (v = 1 m/s). IIWs are present (Bn = 15 m, un = 0.7 m/s).
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Figure 15. Normalized filtered hologram F(τ, ν̃) (a) and filtered interferogram I( f , t) (b). Frequency
range ∆ f2 = 300-320 Hz. Moving source (v = 1 m/s). IIWs are present (Bn = 15 m, un = 0.7 m/s).

It can be seen that the focal spots on the reconstructed and initial holograms of the
moving source are the same. The proximity of the initial and reconstructed interferograms
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of the moving source is shown in Figure 16. Figure 16 shows the 1D interferograms for
t0 = 0 min. Red curve –IIWs are not present. Blue curve – IIWs are present.

The error of the interferogram reconstruction is estimated by the dimensionless quan-
tity Equation (23):

1. ∆ f1 = 100–120 Hz;
d1 = 0.45, J = 80.

2. ∆ f2 = 300–320 Hz;
d2 = 0.60, J = 80.
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Figure 16. Reconstructed 1D interferogram I( f ) (a) ∆ f1 = 100–120 Hz and (b) ∆ f2 = 300–320 Hz.
Moving source (v = 1 m/s). Red curve – IIWs are absent. Blue curve –IIWs are present.

Compared to the non-moving source, the error for the frequency ranges ∆ f1 = 100–120 Hz
and ∆ f2 = 300–320 Hz has increased by a factor of 3.7 and 6.2, respectively. It can be seen
that the interferogram of the waveguide without IIWs is reconstructed less accurately for
a moving source. This difference in the error values is due to difference in variation of
the propagation conditions. In the case of the non-moving source, there is waveguide
variability due to IIWs only. In the case of the moving source, there is waveguide variability
due to IIWs and due to movement of the source.

6. Conclusions

The stability of the HSP method in the case of the moving broadband acoustic source
source in presence of IIWs is analyzed. IIWs are assumed to propagate across the acoustic
track (source–receiver). In this case, IIWs cause significant horizontal refraction of the
sound field. As a result, the dynamic horizontal waveguides are approximately parallel to
the IIW fronts in the horizontal plane.

The sound intensity is periodically focused and defocused along the IIW front direction.
This results in significant variations in sound intensity (∼4–5 dB) at the receiver point.
However, HSP allows the received signal in shallow water waveguides to be freed from
such a significant obstacle caused by IIWs. The stability of HSP is based on the hologram
structure of the moving source in presence of IIWs. The hologram of the moving source
consists of two disjoint components. The first is the sound field component corresponding
to the waveguide without IIWs. The second component is the perturbation of the field by
the IIWs causing horizontal refraction. Such a hologram structure allows the separation
of the sound field components. It is possible to filter the first component with minimal
distortion. The filtered hologram component is used to reconstruct the interferogram
of a moving source in waveguide in absence of IIWs. The reconstructed sound field
interferograms in presence of IIWs and interferograms in waveguide without IIWs differ
in contrast.

The interferogram reconstruction error is d1 = 0.117 (∆ f1 = 100–120 Hz), d2 = 0.096
(∆ f2 = 300–320 Hz) for the non-moving source and d1 = 0.45 (∆ f1 = 100–120 Hz),
d2 = 0.60 (∆ f2 = 300–320 Hz) for the moving source. However, the angular coefficients of
interferogram fringes are the same.
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Thus, in presence of IIWs, it is possible to estimate the parameters of the source
(range, velocity, direction, etc.) from the reconstructed sound field component. The error in
estimating the source parameters decreases with an increase of frequency.

Author Contributions: Supervision and project administration, M.E. and S.P.; conceptualization and
methodology, V.K. and S.P.; software, S.T., P.R. and N.L.; validation, M.E. and V.K.; formal analysis,
M.E. and S.P.; writing—original draft preparation, M.E. and S.P.; writing—review and editing, M.E.
and S.P. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by grant from the Russian Science Foundation No. 23-61-10024,
https://rscf.ru/project/23-61-10024/ (accessed on 13 July 2023).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Weston, D.; Stevens, K. Interference of wide-band sound in shallow water. J. Sound Vibr. 1972, 21, 57–64. [CrossRef]
2. Chuprov, S. Interference structure of a sound field in a layered ocean. Ocean Acoust. Curr. State 1982, 71–91.
3. Ianniello, J. Recent developments in sonar signal processing. IEEE Signal Proc. Mag. 1998, 15, 27–40.
4. Thode, A.M. Source ranging with minimal environmental information using a virtual receiver and waveguide invariant theory. J.

Acoust. Soc. Am. 2000, 108, 1582–1594. [CrossRef]
5. Kuperman, W.A.; D’Spain, G.L. Ocean Acoustic Interference Phenomena and Signal Processing; AIP conference proceedings, No. 621;

American Institute of Physics: College Park, MD, USA, 2002.
6. Rouseff, D.; Spindel, R.C. Modeling the waveguide invariant as a distribution. AIP Conf. Proc. Am. Inst. Phys. 2002, 621, 137–150.
7. Baggeroer, A.B. Estimation of the distribution of the interference invariant with seismic streamers. AIP Conf. Proc. Am. Inst. Phys.

2002, 621, 151–170.
8. Yang, T. Beam intensity striations and applications. J. Acoust. Soc. Am. 2003, 113, 1342–1352. [CrossRef] [PubMed]
9. Heaney, K.D. Rapid geoacoustic characterization using a surface ship of opportunity. IEEE J. Oceanic Engrg. 2004, 29, 88–99.

[CrossRef]
10. Cockrell, K.L.; Schmidt, H. Robust passive range estimation using the waveguide invariant. J. Acoust. Soc. Am. 2010, 127,

2780–2789. [CrossRef]
11. Rouseff, D.; Zurk, L.M. Striation-based beam forming for estimating the waveguide invariant with passive sonar. J. Acoust. Soc.

Am. Express Lett. 2011, 130, 76–81. [CrossRef]
12. Harrison, C.H. The relation between the waveguide invariant, multipath impulse response, and ray cycles. J. Acoust. Soc. Am.

2011, 129, 2863–2877. [CrossRef] [PubMed]
13. Emmetiere, R.; Bonnel, J.; Gehant, M.; Cristol, X.; Chonavel, T.h. Understanding deep-water striation patterns and predicting the

waveguide invariant as a distribution depending on range and depth. J. Acoust. Soc. Am. 2018, 143, 3444–3454. [CrossRef]
14. Emmetiere, R.; Bonnel, J.; Cristol, X.; Gehant, M.; Chonavel, T. Passive source depth discrimination in deep-water. IEEE J. Select.

Top. Signal Process. 2019, 13, 185–197. [CrossRef]
15. Kuznetsov, G.N.; Kuzkin, V.M.; Pereselkov, S.A. Spectrogram and localization of a sound source in a shallow sea. Acoust. Phys.

2017, 63, 449–461. [CrossRef]
16. Ehrhardt, M.; Pereselkov, S.A.; Kuz’kin, V.M.; Kaznacheev, I.; Rybyanets, P. Experimental observation and theoretical analysis of

the low-frequency source interferogram and hologram in shallow water. J. Sound Vibr. 2023, 544, 117388. [CrossRef]
17. Kuz’kin, V.M.; Pereselkov, S.A.; Zvyagin, V.G.; Malykhin AYu Prosovetskiy, D.Y.u. Intense internal waves and their manifestation

in interference patters of received signals on oceanic shelf. Phys. Wave Phenom. 2018, 26, 160–167. [CrossRef]
18. Badiey, M.; SWARM’95 Group. Ocean Acoustic Experiments in Support of Shallow Water Acoustic Remote Measurements (SWARM);

Cruise Report; University of Delaware: Newark, NJ, USA , 1995; p. 72.
19. Apel, J.R.; Badiey, M.; Chiu, C.-S.; Finette, S.; Headrick, R.H.; Kemp, J.; Lynch, J.F.; Newhall, A.E.; Orr, M.H.; Pasewark, B.H.; et al.

An overview of the SWARM 1995 shallow-water internal wave acoustic scattering experiment. IEEE J. Ocean. Engrg. 1997, 22,
465–500. [CrossRef]

20. Serebryany, A.N. Manifestation of the properties of solitons in internal waves on the shelf. Izv. Acad. Sci. USSR Phys. Atmos.
Ocean 1993, 29, 285–293.

21. Ostrovsky, L.A.; Stepanyants, Y.u.A. Do internal solitons exist in the ocean? Rev. Geophys. 1989, 27, 293–310. [CrossRef]
22. Konyaev, K.V.; Sabinin, K.D. Waves Inside the Ocean; Gidromet Publ.: St. Petersburg, Russia, 1992; 271p.

https://rscf.ru/project/23-61-10024/
http://doi.org/10.1016/0022-460X(72)90205-2
http://dx.doi.org/10.1121/1.1289409
http://dx.doi.org/10.1121/1.1534604
http://www.ncbi.nlm.nih.gov/pubmed/12656369
http://dx.doi.org/10.1109/JOE.2003.823286
http://dx.doi.org/10.1121/1.3337223
http://dx.doi.org/10.1121/1.3606571
http://dx.doi.org/10.1121/1.3569701
http://www.ncbi.nlm.nih.gov/pubmed/21568390
http://dx.doi.org/10.1121/1.5040982
http://dx.doi.org/10.1109/JSTSP.2019.2899968
http://dx.doi.org/10.1134/S1063771017040078
http://dx.doi.org/10.1016/j.jsv.2022.117388
http://dx.doi.org/10.3103/S1541308X18020103
http://dx.doi.org/10.1109/48.611138
http://dx.doi.org/10.1029/RG027i003p00293


J. Mar. Sci. Eng. 2023, 11, 1922 17 of 17

23. Katsnelson, B.G.; Pereselkov, S.A. Low-frequency horizontal acoustic refraction caused by internal wave solitons in a shallow sea.
Acoust. Phys. 2000, 46, 684–691. [CrossRef]

24. Lin, Y.-T.; Porter, M.B.; Sturm, F.; Isakson, M.J.; Chiu, C.-S. Introduction to the special issue on three-dimensional underwater
acoustics. J. Acoust. Soc. Am. 2019, 146, 1855–1857. [CrossRef] [PubMed]

25. Liu, W.; Zhang, L.; Wang, W.; Wang, Y.; Ma, S.; Cheng, X.; Xiao, W. A three-dimensional finite difference model for ocean acoustic
propagation and benchmarking for topographic effects. J. Acoust. Soc. Am. 2021, 150, 1140–1156. [CrossRef] [PubMed]

26. Tu, H.; Wang, Y.; Liu, W.; Yang, C.; Qin, J.; Ma, S.; Wang, X. Application of a Spectral Method to Simulate Quasi-Three-Dimensional
Underwater Acoustic Fields. J. Sound Vibr. 2023, 545, 117421. [CrossRef]

27. Larsson, E.; Abrahamsson, L. Helmholtz and parabolic equation solutions to a benchmark problem in ocean acoustics. J. Acoust.
Soc. Am. 2003, 113, 2446–2454. [CrossRef] [PubMed]

28. Lin, Y.-T. Three-dimensional boundary fitted parabolic-equation model of underwater sound propagation. J. Acoust. Soc. Am.
2019, 146, 2058–2067. [CrossRef] [PubMed]

29. Heaney, K.D.; Campbell, R.L. Three-dimensional parabolic equation modeling of mesoscale eddy deflection. J. Acoust. Soc. Am.
2016, 139, 918–926. [CrossRef]

30. Ivansson, S. Local accuracy of cross-term corrections of three-dimensional parabolic-equation models. J. Acoust. Soc. Am. 2019,
146, 2030–2040. [CrossRef]

31. Lee, K.; Seong, W.; Na, Y. Three-dimensional Cartesian parabolic equation model with higher-order cross-terms using operator
splitting, rational filtering, and split-step Padé algorithm. J. Acoust. Soc. Am. 2019, 146, 2030–2040. [CrossRef]

32. Lee, K.; Seong, W.; Na, Y. Split-step Padé solver for three dimensional Cartesian acoustic parabolic equation in stair-step
representation of ocean environment. J. Acoust. Soc. Am. 2019, 146, 2050–2057. [CrossRef]

33. Katsnelson, B.G.; Petrov, P.S. Whispering gallery waves localized near circular isobaths in shallow water. J. Acoust. Soc. Am. 2019,
146, 1968–1981. [CrossRef]

34. Trofimov, M.Y.; Kozitskiy, S.; Zakharenko, A. A mode parabolic equation method in the case of the resonant mode interaction.
Wave Motion 2015, 58, 42–52. [CrossRef]

35. Petrov, P.S.; Sturm, F. An explicit analytical solution for sound propagation in a three-dimensional penetrable wedge with small
apex angle. J. Acoust. Soc. Am. 2016, 139, 1343–1352. [CrossRef] [PubMed]

36. Petrov, P.N.; Petrov, P.S. Asymptotic solution for the problem of sound propagation in a shallow sea with the bathymetry described
by a parametric quadratic function. J. Acoust. Soc. Am. 2019, 146, 1946–1955. [CrossRef] [PubMed]

37. Porter, M.B. Beam tracing for two- and three-dimensional problems in ocean acoustics. J. Acoust. Soc. Am. 2019, 146, 2016–2029.
[CrossRef] [PubMed]

38. Porter, M.B. Bellhop3d User Guide; Heat, Light, and Sound Research, Inc.: La Jolla, CA, USA, 2016.
39. Jensen, F.B.; Kuperman, W.A.; Porter, M.B.; Schmidt, H.; Tolstoy, A. Computational Ocean Acoustics; Springer: Berlin/Heidelberg,

Germany, 2011.
40. Brekhovskikh, L.M.; Lysanov, Y.P. Fundamentals of Ocean Acoustics; Springer: Berlin/Heidelberg, Germany, 2013.
41. Badiey, M.; Katsnelson, B.; Lynch, J.; Pereselkov, S.; Siegmann, W. Measurement and modeling of three-dimensional sound

intensity variations due to shallow-water internal waves. J. Acoust. Soc. Am. 2005, 117, 613–625. [CrossRef]
42. Collins, M.D. The adiabatic mode parabolic equation. J. Acoust. Soc. Am. 1993, 94, 2269–2278. [CrossRef]
43. Smith, K.B.; Tappert, F.D. UMPE: The University of Miami Parabolic Equation Model; Version 1.1; MPL Technical Memorandum;

Marine Physical Laboratory: San Diego, CA, USA, 1993; Volume 432, p. 96.
44. Tappert, F.D. The parabolic approximation method. In Wave Propagation and Underwater Acoustics; Chapter 5; Keller, J.B., Papadakis,

J.S., Eds.; Lecture Notes in Physics; Springer: New York, NY, USA, 1977; Volume 70, pp. 224–287.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1134/1.1326723
http://dx.doi.org/10.1121/1.5126013
http://www.ncbi.nlm.nih.gov/pubmed/31590534
http://dx.doi.org/10.1121/10.0005853
http://www.ncbi.nlm.nih.gov/pubmed/34470258
http://dx.doi.org/10.1016/j.jsv.2022.117421
http://dx.doi.org/10.1121/1.1565071
http://www.ncbi.nlm.nih.gov/pubmed/12765364
http://dx.doi.org/10.1121/1.5126011
http://www.ncbi.nlm.nih.gov/pubmed/31590529
http://dx.doi.org/10.1121/1.4942112
http://dx.doi.org/10.1121/1.5125425
http://dx.doi.org/10.1121/1.5125428
http://dx.doi.org/10.1121/1.5125592
http://dx.doi.org/10.1121/1.5125419
http://dx.doi.org/10.1016/j.wavemoti.2015.06.003
http://dx.doi.org/10.1121/1.4944692
http://www.ncbi.nlm.nih.gov/pubmed/27036271
http://dx.doi.org/10.1121/1.5125593
http://www.ncbi.nlm.nih.gov/pubmed/31590495
http://dx.doi.org/10.1121/1.5125262
http://www.ncbi.nlm.nih.gov/pubmed/31590567
http://dx.doi.org/10.1121/1.1828571
http://dx.doi.org/10.1121/1.407498

	Introduction
	Shallow Water Waveguide Model
	 Moving Source Interferogram
	Moving Source Hologram
	Numerical Results
	Waveguide Parameters
	Non-Moving Source (v=0m/s)
	Moving Source (v=1m/s)

	Conclusions
	References

