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Abstract: A sea-rail automated container terminal (SRACT) plays a crucial role in the global logistics
network, combining the benefits of sea and railway transportation. However, addressing the chal-
lenges of multi-equipment cooperative scheduling in terminal and railway operation areas is essential
to ensure efficient container transportation. For the first time, this study addresses the cooperative
scheduling challenges among railway gantry cranes, yard cranes, and automated guided vehicles
(AGVs) under the loading and unloading mode in SRACTs, ensuring efficient container transporta-
tion. This requires the development of a practical scheduling model and algorithm. In this study, a
mixed integer programming model was established for the first time to study the multi-equipment
cooperative scheduling problem of a SRACT under the loading and unloading mode. A self-adaptive
chaotic genetic algorithm was designed to solve the model, and the practicability and effectiveness
of the model and algorithm were verified by simulation experiments. Furthermore, this study also
proposes an AGV number adjustment strategy to accommodate changes in vessel arrival delays and
train container types. Simulation experiments demonstrated that this strategy significantly reduces
loading and unloading time, decreases equipment energy consumption, and improves the utilization
rate of AGVs. This research provides valuable guidance for ongoing SRACT projects and advances
and methodological approaches in multi-equipment co-operative scheduling for such terminals.

Keywords: sea-rail automated container terminal; multi-equipment cooperative scheduling;
equipment rationing; self-adaptive chaotic genetic algorithm

1. Introduction

According to data released by the United Nations Conference on Trade and Devel-
opment, over 80% of global trade is transported by ships [1]. Implementing automated
container terminals has become an inevitable trend in transforming ports worldwide, ow-
ing to their efficiency, safety, and reduced reliance on manual labor [2]. As reported in the
Alphaliner report for 2021, all of the top 10 container terminals have either operational
or under-construction automated container terminals [3]. Using the sea-rail mode can
yield cost savings of 10–30% compared to the single sea mode, primarily due to enhanced
efficiency and lower transport costs associated with this mode [4]. Several studies, such
as [5–10], have analyzed the advantages and disadvantages of integrating rail transport
with other modes and have highlighted the sea-rail mode as a future development trend
that requires urgent attention.

To build an efficient sea-rail automated container terminal (SRACT), in addition to
solving the problem of industrial IoT [11–13], there is also a need to solve the problem of
coordinated scheduling of multiple equipment between the two sides. In a SRACT, the
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interface between the yard crane (YC) and the quay crane (QC) within the terminal is not
the only consideration; it also involves coupling with the railway track crane. Consequently,
a SRACT encompasses the container and traffic flow between the ship and the yard and
the container and traffic flow between the rail-mounted gantry cranes (RGCs) and the YC,
and between the RGCs and the QC. Traffic flow is always an important research object
in the field of traffic [14]. The arrival of vessels at the port may be delayed due to factors
such as inclement weather and port congestion, which can significantly disrupt the loading
and unloading schedule of a SRACT. In this study, we delve into the integrated scheduling
challenge faced by RGCs, YCs, and automated guided vehicles (AGVs) during the processes
of loading and unloading at SRACTs, with the objective of optimizing container transport
efficiency. The contributions of this paper are as follows:

(1) This study is the first to investigate the collaborative scheduling problem under the
loading and unloading mode in SRACTs, filling a research gap in this domain and
holding immense practical significance for the construction and operation of SRACTs.

(2) Six container flows and seven AGV flows under the loading and unloading mode
are proposed, offering clear operational guidance and a classification system for
collaborative scheduling within SRACTs.

(3) Based on the flow classification, a mathematical model for multi-device cooperative
scheduling under the loading and unloading mode in SRACTs is established, and a
heuristic algorithm is devised to obtain approximate optimal solutions for the model
without pursuing the exact optimal solution.

(4) In the face of common real-world scenarios such as delayed arrival of ships and
variations in the types of containers on trains, AGV adjustment strategies are de-
signed to meet the actual scheduling needs of SRACTs, enhancing the practicality of
the research.

The significance of this study is many fold, addressing both theoretical and practical
aspects of operations within SRACTs. Theoretically, this research provides a foundational
framework for the operation of SRACTs with the layout as shown in Figure 1, extending
its implications for sea-rail intermodal automated container terminals with various other
layouts. This new methodological framework enriches the existing body of knowledge in
the field of sea-rail intermodal terminals and is poised to serve as a significant reference for
subsequent related research. Practically, the introduction of the proposed flow classification,
mathematical models, and solving algorithms enables more efficient collaborative schedul-
ing of equipment within SRACTs, substantially enhancing the overall operational efficiency
of the terminal. Furthermore, the studied AGV adjustment strategies hold substantial
application value for addressing real-world scenarios such as delayed ship arrivals and
variations in container types on trains, offering effective solutions to practical problems
encountered in terminal operations.

The remainder of this paper is as follows: Section 2 provides a review of the corre-
sponding references. Section 3 analyzes the operation flow of the SRACT based on the
loading and unloading mode and proposes a collaborative scheduling model for multiple
equipment. Section 4 designs a suitable algorithm for the model. Section 5 conducts nu-
merical experiments and performs an equipment rationing analysis. Conclusions are given
in Section 6.
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Figure 1. Layout for the SRACT. 

The remainder of this paper is as follows: Section 2 provides a review of the corre-
sponding references. Section 3 analyzes the operation flow of the SRACT based on the 
loading and unloading mode and proposes a collaborative scheduling model for multiple 
equipment. Section 4 designs a suitable algorithm for the model. Section 5 conducts nu-
merical experiments and performs an equipment rationing analysis. Conclusions are 
given in Section 6. 
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for this study. 
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Zhou et al. [16] and Iris et al. [17] reviewed AGV use in green ports. Several studies 
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studies [24–26] have investigated YC scheduling rules and travel paths. In addition, re-
search efforts [27–30] have explored the scheduling problem of multiple YCs, considering 
mutual interference and safety distance between YCs. 

While the above studies address individual equipment aspects of AGVs and YCs, an 
automated container terminal is a complex system where each operation link impacts oth-
ers. Therefore, studying the synergistic scheduling of AGVs and YCs is crucial for enhanc-
ing port production efficiency. 

Zhang et al. [31] considered yard buffer capacity constraint and the interference prob-
lem of dual YCs and developed a cooperative dispatching model for AGVs and YCs in the 
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2. Literature Review

In the global logistics field, sea-rail intermodal transportation of containers has
emerged as a significant development trend, leading to increased attention on the multi-
equipment cooperative scheduling problem in SRACTs. This chapter aims to review rele-
vant research on equipment scheduling in automated container terminals and equipment
scheduling in sea-rail intermodal terminals, providing valuable references and guidance
for this study.

2.1. Scheduling Study of AGVs and YCs in Automated Container Terminals

One area of current research that has focused on scheduling equipment in automated
container terminals is scheduling AGVs and YCs. The AGVs transport containers within
the horizontal transport zone between the terminal front and the yard [15]. The YC is
strategically positioned in the yard to handle container loading and unloading from the
AGV and external trucks and manage container space in the yard.

Zhou et al. [16] and Iris et al. [17] reviewed AGV use in green ports. Several stud-
ies [18–23] have focused on reducing the operation time and waiting time of AGVs. Other
studies [24–26] have investigated YC scheduling rules and travel paths. In addition, re-
search efforts [27–30] have explored the scheduling problem of multiple YCs, considering
mutual interference and safety distance between YCs.

While the above studies address individual equipment aspects of AGVs and YCs,
an automated container terminal is a complex system where each operation link impacts
others. Therefore, studying the synergistic scheduling of AGVs and YCs is crucial for
enhancing port production efficiency.

Zhang et al. [31] considered yard buffer capacity constraint and the interference
problem of dual YCs and developed a cooperative dispatching model for AGVs and YCs in
the YC relay mode. Yang and Jiang et al. [32] described a scenario involving interior yard
entry with the assistance of ground trolleys to operate cooperatively with the YC. Chen
et al. [33] addressed the integrated scheduling problem of YCs and AGVs as a multi-robot
coordinated scheduling problem, proposing a multi-commodity network flow model with
two sets of flow balance constraints. Hsu et al. [34] employed four heuristic algorithms to
tackle the cooperative scheduling problem of the YC and trucks and showed that the hybrid
algorithm outperformed others. Zhou et al. [35] conducted a pioneering study of vehicles
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on both sides of the container area during YC operations in automated container terminals
and described the YC motion process of side loading and unloading. Furthermore, studies
by [36–38] utilized simulation approaches to examine the effects of terminal layout and
equipment configuration on energy consumption. Iris et al. [39] optimized the energy
consumption of equipment at ports.

In summary, scholars have conducted comprehensive research on the collaborative
scheduling of AGVs and YCs, and have proposed numerous effective scheduling optimiza-
tion methods that strongly support the investigation of automated container terminals for
sea-rail transportation. However, the majority of studies have primarily focused on the
operational or waiting times of individual equipment. These isolated investigations do not
adequately address the integrated nature of port systems where various operational pro-
cesses are interdependent. Consequently, even though some studies, such as [23–26], have
taken into consideration coordinated scheduling, there appears to be a lack of comprehen-
sive exploration into the actual benefits and challenges of implementing such collaborations.
Furthermore, research concerning AGVs and YCs seems to overlook discussions on simul-
taneously ensuring environmental sustainability and energy efficiency, indicating that a
multi-device, bi-objective study is a direction that warrants special consideration.

2.2. Equipment Scheduling at Sea-Rail Terminals

Due to differing operational procedures and rules between railway operation areas and
automated container terminals, relevant research findings from automated container termi-
nals cannot be directly applied to railway operation areas of automated container terminals
in SRACT. Some scholars have conducted detailed research on railway operation areas.

Ballis and Golias [40] provided insights into the layout of railway operation areas,
enhancing researchers’ understanding of equipment scheduling problems in this context.
Boysen et al. [6] delved into the operations research perspective and analyzed fundamental
decision problems related to traditional railway–road and modern railway–railway transfer
yards when handling containers. Wang and Zhu [9] optimized the operation sequence
of RGCs during loading and unloading to minimize the RGC idling time. Li et al. [41]
focused on single-machine scheduling of RGCs and introduced the moving time window
constraint, laying the foundation for addressing the scheduling problem of multiple RGCs.
Li et al. [10] and Ren et al. [42] studied the collaborative optimization problem of multiple
RGCs and internal trucks and proposed reduced interactions between two RGCs through
internal truck transportation to minimize the long-distance full-load movement of RGCs.

However, most of these studies solely considered equipment scheduling within the
railway operation area and overlooked the need for cooperation between equipment in the
railway operation area and the terminal. Some scholars have examined multi-equipment
synergistic scheduling issues in non-automated terminals for sea-rail intermodal transport.
Yan et al. [43] investigated the collaborative scheduling problem of RGCs, internal collector
trucks, and stacker cranes and validated the effectiveness of the developed model using
different algorithms. Chang et al. [44] explored container storage rules in a railway station
during train unloading to reduce the overturning operation of RGCs. However, these
studies have primarily focused on export containers and have neglected the container flow
of imported containers and containers transported to the yard.

In SRACTs, Li et al. [8] proposed a cluster scheduling method for multi-IGVs between
terminal yards and railway yards by grouping RGCs, AGVs, and YCs and performed cluster
scheduling while considering non-crossing and safety distance constraints. Although
this cluster dispatching method somewhat reduced dispatching complexity, it sacrificed
vehicle flexibility. Additionally, their study needed to address the coupling of loading and
unloading tasks between trains and ships, necessitating further investigation. Yang et al. [7]
investigated the synergistic relationship between RGCs and AGVs in an automated sea-rail
container terminal and explored the impact of the number of RGCs and AGVs on total
equipment energy consumption. However, their study only considered export container
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operation mode and overlooked import container cases. Furthermore, the study needed to
account for the operation time of the YC, which still has limitations.

However, most of the aforementioned studies on sea-rail terminals have tended to
treat railway operations and container terminal operations as two distinct entities. This
situation implies a significant research gap, namely, how to coordinate the scheduling of
various equipment in an automated SRACTs environment. While the study by Ballis and
Golias [35] proposed a clustering scheduling method, it compromised the flexibility of
vehicles. In practical operations, the ability to swiftly adapt to changes and uncertainties
is paramount. Moreover, the research by Li et al. [36], although it addressed the synergy
between RGCs and AGVs, overlooked the operating patterns of inbound containers, which
are crucial for ensuring overall efficiency and fluidity.

2.3. Research Overview

Upon review of the literature, while existing research has explored the multi-device
scheduling of SRACTs from perspectives such as constraint conditions, modeling tech-
niques, and algorithmic thinking, it has provided useful references for this paper’s research
but still has the following limitations:

(1) Most research has been focused on single scenarios of automated terminals or railway
operation areas, failing to fully reflect the strong coupling between port operations
and railway operations. There is a need to investigate the interrelations between
multiple devices involved in SRACTs, with a focus on the flow direction of containers
and vehicles.

(2) Existing studies on sea-rail intermodal collaborative scheduling have only consid-
ered train unloading modes, lacking research on loading modes, thereby failing to
comprehensively reflect the operation process at SRACTs. Thus, it is necessary to
consider both unloading and loading operations of trains in the multi-device collabo-
rative scheduling method for SRACTs, given complex container and vehicle flows, to
enhance the overall production efficiency of these terminals.

Aiming at the above problems, this paper first analyzes the container flow and vehicle
flow involved in the loading and unloading mode of a SRACT. Then, for the first time, a
multi-equipment integrated cooperative scheduling model of the SRACT under the loading
and unloading mode is established, and the self-adaptive chaotic genetic algorithm is
designed to solve the model. Moreover, this paper investigates the adjustment strategy of
AGVs under the loading and unloading mode, particularly when ship arrivals are delayed
or train container types are changed. The ultimate objective is to enhance the efficiency
and capacity of port operations by offering invaluable insights for effectively tackling the
practical challenges associated with multi-equipment cooperative scheduling in SRACTs.

3. Model Establishment
3.1. Analysis of the Operation Process of the SRACT

This study investigates a SRACT characterized by a vertical railway approach and a
shared yard that serves both the railway and the terminal. In this terminal layout, railway
tracks are arranged vertically to the shoreline on one side of the port, facilitating the entry
and exit of trains while reducing conflict with other vehicles. In addition to being stored in
the port yard, containers can also be temporarily placed in the railway operation area, with
the storage location determined by the attributes of the container. A detailed layout of this
port is shown in Figure 1.

At SRACTs, a simultaneous loading and unloading method is adopted to enhance
terminal efficiency and AGV utilization, and is described as follows: After an AGV delivers
a container to the QC for loading onto a ship, it proceeds to another QC to pick up an
unloaded container. Once an AGV has delivered a container to the yard, it goes to another
yard to collect a container. After an AGV has taken a container to the RGC for loading onto
a train, it proceeds to another RGC to collect a container.
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Because the stability of a ship is mainly determined by the ship’s stowage, therefore,
containers on the train can be loaded directly onto the ship. However, each train car can
only accommodate one container; if the center of gravity of any container is shifted, the
train may overturn when turning. Therefore, containers from ships cannot be directly
loaded onto trains. The containers must be transferred to the yard first, inspected, and then
permitted for loading. Hence, this paper does not consider the flow of containers between
ships and trains.

In summary, there are six types of container flows within the SRACT under the loading
and unloading mode, namely “train–ship”, “train–rail temporary storage area”, “rail
temporary storage area–ship”, “ship–yard”, “train–yard”, and “yard–train”. To transport
containers in these six flow directions between RGCs, YCs, and QCs, the AGVs operate
in seven flow directions: 1© “RGC-QC”, 2© “QC-QC”, 3© “QC-YC”, 4© “YC-YC”, 5© “YC-
RGC”, 6© “RGC-RGC”, and 7© “RGC-YC”, as illustrated in Figure 2. Based on the above
container flow and AGV flow, the SRACT multi-equipment cooperative scheduling model
under the loading and unloading mode is established as described below.
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3.2. Collaborative Scheduling Optimization Model for Multiple Equipment

This section aims to construct a mixed-integer optimization model to minimize both
the total time spent on loading and unloading and the operational energy consumption of
RGCs and AGVs. The goal is to find the loading and unloading sequence for RGCs and
AGVs that balances efficiency and energy consumption.

3.2.1. Basic Assumptions

Without loss of generality, the following assumptions can be made:

1. All the containers discussed are standard 40-foot containers.
2. The AGVs, YCs, and RGCs can and should only handle one task at a time.
3. The travel speed and energy consumption of the AGVs, as well as the movement

speed of the RGCs’ gantry and spreader, are assumed to be constant.
4. The transit time for the RGCs’ spreader to travel vertically between the top and bottom

is considered to be a fixed value.
5. The capacity of the YCs’ buffering brackets is set to be a consistent value.
6. The operation time of AGVs under the QC and the time taken for the lifting gears of

YCs and RGCs to pick up and place containers from the AGVs are not counted.

3.2.2. Symbol Description

To facilitate modelling, the following sets, parameters, non 0–1 Variables, and
0–1 Variables are defined firstly.
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Set

R Set of RGCs, R = {1, 2, · · · , r}
V Set of AGVs, V = {1, 2, · · · , v}
Q Set of QCs, Q = {1, 2, · · · , q}
Z Set of Ycs, Z = {1, 2, · · · , z}
B Set of train wagons, B = {1, 2, · · · , b}
E1 Set of Train-Ship tasks, E1 = {1, 2, · · · , i, j}
E2 Set of Train-Yard tasks, E2 = {1, 2, · · · , i, j}
E Set of unloading tasks, E = E1 ∪ E2 ∪ P

P Set of containers requiring temporary storage, P =

{
0, 1, · · · , ∑

b∈B
Qpb

αi
r

}
I Set of Yard-Train tasks, I = {1, 2, · · · , i, j}
N Set of train tasks, N = E ∪ I
0 Virtual start task of the train,
F Virtual end task of the train,
N0 N0 = N ∪ {0}
NF NF = N ∪ {F}
K Set of Ship-Yard tasks, K = {1, 2, · · · , k}

ϕ
Set of tasks that cannot be operated by RGCs simultaneously,

ϕ =
{
(i, j)|i, j ∈ N,

∣∣∣lj − li
∣∣∣ ≤ lsa f

}
Parameters

C1 Energy consumption of one RGC’s gantry, unit: kWh/h
C2 Energy consumption of one RGC’s spreader, unit: kWh/h
C3 Energy consumption of one RGC’s waiting, unit: kWh/h
C4 Energy consumption of one AGV under loaded condition, unit: kWh/h
C5 Energy consumption of one AGV under unloaded condition, unit: kWh/h
C6 Energy consumption of one AGV’s waiting, unit: kWh/h
CER Total energy consumption of RGCs
CEV Total energy consumption of AGVs
SR Moving speed of RGC’s spreader
SAE Unloaded moving speed of AGVs
SAH Loaded moving speed of AGVs
τ1 Time for RGC’s spreader to move one wagon bay
τ2 Average operation time for RGCs to place containers from temporary storage to AGVs
τ3 Average operation time for Ycs to handle one container
τ4 Time for the RGC’s spreader to rise/fall
ρ Capacity of yard buffer stands
xi Loading and unloading line position of task i
yi Bay position of the wagon for task i

dri
g

Moving distance of RGC r’s spreader from the loading/unloading line of task i to the
AGV operating lane above

dip
r

Distance for RGC r to move from the loading/unloading line of task i to the temporary
storage area

lsa f Safety distance of RGC
M An infinitely large integer
ω1 Weight coefficient of completion time of loading/unloading
ω1 Weight coefficient of total energy consumption of equipment
Tship Ship’s arrival time

TEi
vz

The earliest time AGV v can pick up/drop off task i at the buffer stand under the
container area of YC z

TLi
vz

The latest time AGV v can pick up/drop off task i at the buffer stand under the container
area of YC z

Dij Distance from equipment i to equipment j
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Non 0–1 Variables

TSi
r

Time when RGC r starts task i
TPi

r
Time when RGC r’s spreader moves to the AGV operating lane above task i

TIi
r

Time when RGC r starts interacting with AGV for task i

TFi
r

Time when RGC r completes task i, i.e., time when RGC r loads task i onto the AGV
or time when RGC r loads task i onto the train

TYi
v

Time when AGV v arrives under YC during task i
TRi

v
Time when AGV v arrives under RGC during task i

TQi
v

Time when AGV v arrives under QC during task i

TEi
vz

The earliest time AGV v can pick up/drop off task i at the buffer stand under the
container area of YC z

TLi
vz

The latest time AGV v can pick up/drop off task i at the buffer stand under the
container area of YC z

TFi
v

Time when AGV v completes task i

Qpb
αi

r

Number of containers stored in temporary storage area bay b when RGC r is
operating task i

ti
ro

Transversal movement time of RGC r’s spreader during task i
ti
v f

Loaded time of AGV v during task i

tij
v0

Empty time of AGV v after task i and before task
ti
wr

v
Time for RGC r to wait for AGV v during task i

ti
wz

v
Time for YC z to wait for AGV v during task i

ti
wv

r
Time for AGV v to wait for RGC r during task i

ti
wv

z
Time for AGV v to wait for YC z during task i

ti
vrz

Time for AGV v to transport task i from RGC r to YC z/Time for AGV v to transport
task i from YC z to RGC r

ti
vrq Time for AGV v to transport task i from RGC r to QC q

ti
vqz Time for AGV v to transport task i from QC q to YC z

ti,j
v q1q2

Time for AGV v to travel to QC q to pick up task i after completing task i at QC q

ti,j
v zr Time for AGV v to travel to RGC r to pick up task j after completing task i at YC z

ti,j
v r1r2

Time for AGV v to travel to RGC r to pick up task j after completing task i at RGC r
η Utilization rate of AGV
Tuse f ul Total loaded time of AGV
Ttotal Total operating time of AGV

0–1 Variables

αi
r When RGC r operates task i, αi

r = 1, otherwise αi
r = 0

βi
v When AGV v operates task i, βi

v = 1, otherwise βi
v = 0

wij
r When RGC r operates task i and continues to task j, wij

r = 1, otherwise wij
r = 0

wij
v When AGV v operates tasks i and j consecutively, wij

v = 1, otherwise wij
v = 0

wij
z When YC z operates tasks i and j consecutively, wij

z = 1, otherwise wij
z = 0

λi
rv When task i is operated by RGC r and AGV v, λi

rv = 1, otherwise λi
rv = 0

µi
vz When task i is operated by AGV v and YC z, µi

vz = 1, otherwise µi
vz = 0

γi
vq When task i is operated by AGV v and QC q, γi

vq = 1, otherwise γi
vq = 0

ψi When RGC r operates task i in the temporary storage area, ψi = 1, otherwise ψi = 0

3.3. Cooperative Scheduling Model of RGCs, AGVs, and YCs

min f = ω1· f1 + ω1·(CER + CEV) (1)

f1 = max
r∈R

TFi
r , ∀i ∈ N (2)
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CER = ∑
r∈R

∑
i∈N

C1αi
rti

ro + ∑
r∈R

∑
i,j∈N

C2wij
r
∣∣yj − yi

∣∣τ1 + ∑
r,r′∈R

∑
v∈V

∑
i,j∈N

C3λi
rvti

wr
v

(3)

CEV = ∑
v∈V

∑
i∈N

C4βi
vti

v f
+ ∑

v∈V
∑

i,j∈N
C5wij

v tij
v0 + ∑

v∈V
∑
i∈N

∑
z∈Z

C6(λ
i
rvti

wv
r
+ µi

vzti
wv

z
) (4)

Equation (1) represents the objective function, which is the sum of the weighted value
of the maximum completion time and the operational energy consumption of the RGCs and
AGVs. Equation (2) represents the maximum completion time. Equation (3) calculates the
total operational energy consumption of the RGCs, including the loading and unloading
energy consumption of the YCs’ gantry and spreader, the movement energy consumption
of the gantry, and the RGC waiting for the AGV. Equation (4) calculates the total operational
energy consumption of AGVs, which includes the energy consumed under heavy load, no
load, and during the waiting period under the RGCs and YCs.

∑
r∈R

αi
r = 1, ∀i ∈ N (5)

∑
i∈N

αi
r = 1, ∀r ∈ R (6)

∑
i∈NF

w0i
r = 1, ∀r ∈ R (7)

∑
i∈N0

wiF
r = 1, ∀r ∈ R (8)

∑
j∈NF ,j 6=i

wij
r − ∑

j∈N0,j 6=i
wji

r = 0, ∀r ∈ R, i ∈ R (9)

∑
v∈V

βi
v = 1, ∀i ∈ N ∪ K (10)

∑
i∈N∪K

βi
v = 1, ∀v ∈ V (11)

∑
i∈NF∪K,j 6=i

w0i
r = 1, ∀v ∈ V (12)

∑
i∈N0∪K,j 6=i

wiF
r = 1, ∀v ∈ V (13)

∑
j∈NF∪K,j 6=i

wij
v − ∑

j∈N0∪K,j 6=i
wji

v = 0, ∀v ∈ V, i ∈ R (14)

Equations (5)–(14) denote the uniqueness constraints for equipment operation. Specif-
ically, Equation (5) signifies that each task is handled by one and only one RGC, while
Equation (6) ensures that each RGC can operate on one task, and only one task, at any
given time. Equations (7)–(9) are set up to ensure that a singular predecessor and successor
task is associated with each RGC. Similarly, Equation (11) dictates that each task is serviced
by exactly one AGV. In contrast, Equation (12) ensures that an AGV is assigned a single
task and no more. Finally, from Equations (13) to (15), it is stipulated that an unbroken
chain of predecessor and successor tasks is maintained for every AGV.

T
Sj

r′
> TFi

r
+ lsa f ·τ1, ∀r, r′ ∈ R, (i, j) ∈ ϕ (15)



J. Mar. Sci. Eng. 2023, 11, 1975 10 of 26

TSi
r
+ 2τ4 + dri

g
/SR ≤ TPi

r
+ (1− αi

r)M, ∀r ∈ R, i ∈ N (16)

tj
ro =

 wij
r (3τ4 + dri

g
/SR ), ∀i ∈ E, j ∈ I, r ∈ R

wij
r (4τ4 +

∣∣xi − xj
∣∣/υ + dri

g
/SR ), ∀i ∈ I, j ∈ E, r ∈ R

(17)

TPi
r
+ τ4 ≤ TIi

r
+ (1− αi

r)M, ∀r ∈ R, i ∈ N (18)

TFi
r
= TIi

r
+ (1− αi

r)M, ∀r ∈ R, i ∈ N (19)

Qpb
αi

r
=

{
Qpb

αi
r
+ 1, if TSi

r
< Tship

Qpb
αi

r
, else

, ∀i ∈ E1, r ∈ R, b ∈ B (20)

TFi
r
+ τ4 +

∣∣yi − yj
∣∣·τ1 ≤ T

Sj
r
+ (1− wij

r )M, ∀i ∈ E, j ∈ I, r ∈ R (21)

TFi
r
+ τ4 +

[
ψid

ip
r + (1− ψi)

∣∣xi − xj
∣∣]·υ +

∣∣yi − yj
∣∣·τ1 ≤ T

Sj
r
+ (1− wij

r )M
∀i ∈ I, j ∈ E, r ∈ R

(22)

Equation (15) stipulates a constraint that the distance between any two adjacent RGCs,
at any given time, must exceed the safety distance. Equation (16) establishes the relationship
between the moment RGC r starts operating the task i and the moment the spreader of
RGC r moves above the AGV operation lane. Equation (17) calculates the time taken by
the spreader of RGC r to operate task i. Equation (18) establishes the relationship between
the moment when the spreader of RGC r moves above the AGV operation lane and when
RGC r starts interacting with the AGV in the operation task i. Equation (19) represents
the end moment of task i. Equation (20) corresponds to the scenario when a ship’s arrival
is delayed, requiring temporary storage of the train–ship task i in the corresponding bay
b of the temporary storage area. Equation (21) represents the relationship between the
completion moment of the previous unloading task i operated by RGC r and the start
moment of the next loading task j. Equation (22) represents the relationship between the
completion moment of the previous loading task i operated by RGC r and the start moment
of the next unloading task j.

ti
vrz = Drz/SAH , ∀i ∈ E2 ∪ I, r ∈ R, v ∈ V, z ∈ Z (23)

ti
vrq = Drq/SAH , ∀i ∈ E1 ∪ P, r ∈ R, v ∈ V, q ∈ Q (24)

ti
vqz = Dqz/SAH , ∀i ∈ k, v ∈ V, z ∈ Z, q ∈ Q (25)

ti
v f

=


ti
vrz, ∀i ∈ E2 ∪ I, r ∈ R, v ∈ V, z ∈ Z

ti
vrq, ∀i ∈ E1 ∪ P, r ∈ R, v ∈ V, q ∈ Q

ti
vqz, ∀i ∈ k, v ∈ V, z ∈ Z, q ∈ Q

(26)

ti,j
v q1q2 = Dq1q2 /SAE , ∀i ∈ E1, j ∈ K, v ∈ V, q1 ∈ Q,q2 ∈ Q (27)

ti,j
v zr = Dzr/SAE , ∀i ∈ E2 ∪ K, j ∈ I, v ∈ V, z ∈ Z, r ∈ R (28)

ti,j
v r1r2 = Dr1r2 /SAE , ∀i ∈ I, j ∈ E, v ∈ V, r1 ∈ R, r2 ∈ R (29)
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tij
v0 =


ti,j
v q1q2 , ∀i ∈ E1, j ∈ K, v ∈ V, q1 ∈ Q,q2 ∈ Q

ti,j
v zr, ∀i ∈ E2 ∪ K, j ∈ I, v ∈ V, z ∈ Z, r ∈ R

ti,j
v r1r2 , ∀i ∈ I, j ∈ E, v ∈ V, r1 ∈ R, r2 ∈ R

(30)

Equation (23) outlines the duration for AGV v to transport the “train–yard” and “yard–
train” tasks i between the RGC and YC. Equation (24) represents the time it takes for AGV
v to handle the “train–ship” task i between the RGC and QC. Equation (25) illustrates the
time duration during which AGV v transports the “ship–yard” task i from the QC to the
YC. Equation (26) specifies the laden travel time of the AGV. Equation (27) calculates the
duration for AGV v to travel unladen from one QC to another. Equation (28) specifies
the time it takes for AGV v to travel unladen from the YC to the RGC. Equation (29)
determines the unladen travel time for AGV v from one RGC to another. Finally, Equation
(30) represents the unladen travel time of the AGV.

TEi
vz
= TFi

v
+

{
ti
vrz, ∀i ∈ E2 ∪ I, r ∈ R, v ∈ V, z ∈ Z

ti
vqz, ∀i ∈ k, v ∈ V, z ∈ Z, q ∈ Q

(31)

TLi
vz
= TEi

vz
+ ρτ3, ∀i ∈ I, z ∈ Z, v ∈ V (32)

ti
wz

v
= max

{
TYi

v
− TLi

vz
, 0
}

, ∀i ∈ E2 ∪ I ∪ K, z ∈ Z, v ∈ V (33)

ti
wv

z
= max

{
TEi

vz
− TYi

v
, 0
}

, ∀i ∈ E2 ∪ I ∪ K, z ∈ Z, v ∈ V (34)

TIi
r
+ ti

v f
≤ TQi

v
+ (1− γi

vq)M, ∀i ∈ E1 ∪ P, r ∈ R, q ∈ Q, v ∈ V (35)

TQi
v
+ ti

v f
≤ TYi

v
+ (1− µi

vz)M, ∀i ∈ K, v ∈ V (36)

TIi
r
+ ti

v f
≤ TYi

v
+ (1− µi

vz)M, ∀i ∈ E2, r ∈ R, v ∈ V (37)

max
{

TYi
v
, TEi

vz

}
+ ti

v f
≤ TRi

v
+ (1− λi

rv)M, ∀i ∈ I, r ∈ R, z ∈ Z, v ∈ V (38)

TFi
v
+ tij

v0 + ti
v f
≤ T

Y j
v
+ (1− wij

v )M, ∀i ∈ E1, j ∈ K, v ∈ V (39)

TFi
v
+ tij

v0 + ti
v f
≤ T

Rj
v
+ (1− wij

v )M, ∀i ∈ E2 ∪ K, j ∈ I, v ∈ V (40)

TFi
v
+ tij

v0 + ti
v f
≤ T

Qj
v
+ (1− wij

v )M, ∀i ∈ I, j ∈ E1 ∪ P, v ∈ V (41)

TIi
r
= max

{
TPi

r
, TRi

v

}
, ∀i ∈ N, r ∈ R, v ∈ V (42)

ti
wr

v
= max

{
TRi

v
− TPi

r
, 0
}

, ∀i ∈ E, r ∈ R, v ∈ V (43)

ti
wv

r
= max

{
TPi

r
− TRi

v
, 0
}

, ∀i ∈ N, r ∈ R, v ∈ V (44)

TFi
v
=


TQi

v
, ∀i ∈ E1 ∪ P, v ∈ V

TYi
v
, ∀i ∈ E2 ∪ K, v ∈ V

TRi
v
, ∀i ∈ I, v ∈ V

(45)
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Equation (31) represents the earliest moment when AGV v can pick up/drop task
i at the buffer bracket under the container area where YC z is operating. Equation (32)
represents the latest moment when AGV v can pick up/drop task i at the buffer bracket
under the block area where YC z operates. Equation (33) calculates the time YC z waits
for AGV v while operating task. Equation (34) calculates the time AGV v waits for YC
z while operating task i. Equation (35) represents the relationship between the moment
AGV v interacts with the RGC while operating the train–ship task i and the moment it
arrives under the QC. Equation (36) represents the relationship between the moment AGV
v interacts with the QC while operating the ship–yard task i and the moment it arrives
under YC z. Equation (37) represents the relationship between the moment AGV v interacts
with RGC r while operating the train–yard task i and the moment it arrives under YC z.
Equation (38) represents the relationship between the moment AGV v interacts with YC z
while operating the yard–train task i and the moment it arrives under RGC r. Equation
(39) represents the relationship between the moment AGV v completes previous task i and
the moment it arrives under YC z to operate the next task j. Equation (40) represents the
relationship between the moment AGV v completes previous task i and the moment it
arrives under RGC r to operate the next task j. Equation (41) represents the relationship
between the moment AGV v completes previous task i and the moment it arrives under
the QC to operate the next task j. Equation (42) represents the moment when RGC r starts
interacting with AGV v in the operation task i. Equation (43) calculates the time RGC r
waits for AGV v while operating task i. Equation (44) calculates the time AGV v waits for
RGC r while operating task i. Equation (45) represents the moment when AGV v completes
task i.

η =
Tuse f ul

Ttotal
(46)

Tuse f ul = ∑
v∈V

∑
i∈N∪K

βi
vti

v f
(47)

Ttotal = ∑
v∈V

∑
i∈N∪K

βi
vti

v f
+ ∑

v∈V
∑

i,j∈N∪K
wij

v tij
v0 + ∑

v∈V
∑

i,j∈N∪K
wij

v (ti
wv

r
+ tj

wv
c
) (48)

TSi
r
, TPi

r
, TIi

r
, TFi

r
, TYi

v
, TRi

v
, TQi

v
, TEi

vz
, TLi

vz
, TFi

v
≥ 0

∀r ∈ R, z ∈ Z, v ∈ V, i ∈ N
(49)

Equations (46)–(48) represent the utilization rate of AGVs, defined as the proportion
of the AGVs’ loading time to the total running time. Equation (49) determines the range of
values for parameters.

4. Self-Adaptive Chaotic Genetic Algorithm

Heuristic algorithms are widely used in the field of terminal equipment schedul-
ing [45]. Genetic algorithms have a stable mathematical model and theoretical foundation.
Studies have shown that fixed crossover and mutation probability fail to maintain the diver-
sity of populations and the convergence of genetic algorithms [4,46]. Adaptive strategies
can broaden the search range of genetic algorithms by dynamically adjusting crossover
and variation operators (Bao et al. [47]). Furthermore, chaotic motion, being stochastic and
ergodic, can help genetic algorithms to escape local optimal solutions [48,49]. Chaos opti-
mization involves mapping chaotic variables to the problem state space and transforming
the search process for optimal solutions into the traversal process of chaotic trajectories;
thus it prevents the algorithm from getting stuck in local minima [50–52].

To enhance the efficiency of algorithmic solutions, we have designed task allocation
rules for RGCs, AGVs, and YCs based on the actual operational conditions of a SRACT,
as illustrated in Figure 3. Once the loading and unloading sequence of tasks in the chro-
mosome is known, these rules can assist in assigning appropriate devices for each of the
following tasks:
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Figure 3. Task allocation process of the RGC, AGV, and YC. Figure 3. Task allocation process of the RGC, AGV, and YC.

RGC task assignment: This involves considering the task attributes of the RGC,
including its previous task’s operational status, completion time, location, and quantity.
Tasks are assigned sequentially to YC in good condition, starting with the earliest available
time, closest proximity to the task, and smallest number. In simultaneous loading and
unloading at the same bay, unloading takes priority before loading.

AGV task assignment: The task attributes of the AGV, such as operational status,
completion time, and previous tasks, are considered. Tasks are assigned sequentially to
AGVs in good condition based on the earliest available time and the smallest number.

YC task assignment: The YC’s task attributes, including its previous task’s completion
time, remaining buffer bracket capacity, and number, are considered. Tasks are assigned
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sequentially to the YC with the earliest available time, largest remaining buffer capacity,
and smallest number.

The SCGA for the cooperative scheduling of multiple equipment in the SRACT in-
volves calculating the fitness value of the chromosome population after task assignment
according to the abovementioned rules. The adaptive cross-variation probability method is
then employed to enhance population diversity during later stages of evolution. Addition-
ally, characteristics of chaotic sequences, such as ergodicity and fuzzy relations, address the
genetic algorithm’s limitations in local search ability, enabling it to escape local optimal
solutions. The flow of the SCGA is illustrated in Figure 4.
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4.1. Encoding and Decoding

This section provides an example using two RGC, ten AGV, and four YC operations,
eight unloading containers, and eight loading containers. The first row of the chromosome
represents a randomly generated task sequence, with each gene corresponding to a con-
tainer task. Positive values indicate loading containers, while negative values indicate
unloading containers. The second, third, and fourth rows represent RGCs, AGVs, and YCs
assigned to perform the tasks based on the assignment mentioned above rules. Since the
assignment rules determine the RGC, the AGV, and the YC, the operation sequence must
be optimized in subsequent crossover and variation operations. The objective function
f aims to minimize the maximum loading and unloading completion time and the total
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operational energy consumption. The adaptation function is denoted as F(xt
i ) = 1/ f (xt

i )
when xt

i represents the i-th individual of the t-th generation. Chromosomes and their
operational sequences are presented in Figure 5.
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4.2. Select Operation

A binary tournament approach is employed for chromosome selection. This method
is easy to implement and prevents falling into local optimum conditions, enabling a more
efficient search of the entire solution space. This approach eliminates operation sequences
ranked bottom 1/10 of the fitness value directly. Then, two operation sequences are
randomly selected for comparison with the remaining ones. The better operation sequence
is advanced to the following comparison round, while the worse operation sequence is
eliminated. This process continues until the desired population is selected.

4.3. Crossover and Mutation Operations

In this study, we employed the adaptive strategy that Tang et al. [53] proposed which
utilized Equations (50) and (51) to dynamically and nonlinearly adjust the crossover and
variation probabilities using trigonometric functions, considering the evolutionary prop-
erties of the population. The crossover probability, denoted by [pc_min, pc_max], and the
mutation probability, denoted by [pm_min, pm_max], are adjusted based on the average fit-
ness value of the population per generation favg. The enormous value f ′ between the two
loading and unloading task sequences to be crossed and the task sequence’s fitness value
f selected for variation are considered. p′c and p′m represent the crossover and mutation
parameters, respectively.

pc =

 p′c + (pc_max − p′c)· cos( favg− f ′

favg− fc_min
× π

2 ), f ′ < favg

p′c − (p′c − pc_min)· sin( f ′− favg
fc_max− favg

× π
2 ), f ′ ≥ favg

(50)

pm =

 p′m + (pm_max − p′m)· cos( favg− f
favg− fm_min

× π
2 ), f < favg

p′m − (p′m − pm_min)· sin( f− favg
fm_max− favg

× π
2 ), f ≥ favg

(51)

In the genetic operation, a single-point crossover is used for the operation sequences
of the selected chromosomes to minimize damage to the chromosome job sequences xt

i and
to ensure the convergence accuracy of the algorithm. A two-point mutation is employed to
improve local random searchability. The specific operations of crossover and mutation are
illustrated in Figure 6.

4.4. Chaos Optimization

When the chromosome is iterated multiple times without changing the optimal fitness
value, the randomness and ergodicity of chaotic optimization can be leveraged to explore
a more optimal solution in the solution space near the original chromosome. This new
solution replaces the original one, assisting the genetic algorithm to escape local optimal
solutions and achieve overall improvements. This paper selects the commonly used logistic
mapping model for chaotic sequences characterized by the following expressions. The
control parameter, denoted by α, is crucial in determining the system’s behavior. Notably,
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when α equals 4, the system reaches a state of complete chaos, so this setting is used in
this article.

β(n + 1) = α× β(n)× [1− β(n)] β(n) ∈ [0, 1], α ∈ (2 , 4]
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4.5. Gene Repair

The operation sequence of the chromosome after cross-variation and chaos optimiza-
tion may contain duplicated operation tasks. Therefore, checking and correcting the chro-
mosome is necessary by deleting duplicate operation tasks and adding missing operation
tasks in sequential order.

4.6. Algorithm Stopping Rules

The algorithm termination guidelines in this paper are as follows: (1) To avoid pre-
mature convergence or overfitting, the algorithm stops when the specified number of
iterations is reached. (2) If the value of the objective function remains unchanged for n con-
secutive generations, the further operation becomes computationally wasteful, prompting
the algorithm to stop running.

5. Simulation Experiments and Analysis

This study performed three simulation experiments to validate the effectiveness of
the proposed model and algorithm. The first experiment verified the effectiveness of the
proposed model and algorithm. The second experiment aimed to compare the efficiency of
the bi-objective collaborative and single-objective optimization solutions while examining
the influence of different weights on the experimental outcomes. The second experiment
focused on optimizing the configuration of RGCs, AGVs, and YCs to improve the overall
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efficiency of the terminal system. Lastly, the fourth experiment investigated the impact of
vessel delay duration and container type variation on energy consumption and analyzed
the adjustment strategy of AGVs.

The algorithm program was implemented using MATLAB R2018b and executed on a
Windows 10 operating system with an i7-12700H processor. The planimetric parameters of
the automated sea-rail terminal were configured based on the rail entry model of Terminal J
at the Port of Long Beach, USA [7]. The railway loading line consists of three railway tracks,
each capable of accommodating a maximum of 40 carriages. The railway operation area
also features a temporary storage point for temporary container storage, while the yard
is divided into four container areas. Table 1 presents the parameters relevant to loading
and unloading equipment in the railway operation area, whereas Table 2 displays the
parameters associated with the SCGA.

Table 1. ACT parameters.

Parameters Numerical Values

Elevation height for the RGC 10 m
Container widths 2.5 m

Distance between carriages 17 m
Railway loading and unloading line spacing 2.5 m

Traveling speed of the RGC gantry 80 m/min
Traveling speed of the RGC spreader 85 m/min

Average handling time for a task by YC 1.5 min
Buffer capacity of the yard 4TEU

Energy consumption of one RGC gantry during operation 30 kWh/h
Energy consumption of one RGC spreader during motion 20 kWh/h

Waiting energy consumption of one RGC 15 kWh/h
Energy consumption of one AGV with container 21 kWh/h

Energy consumption of one AGV without container 14 kWh/h
Safety distance between two RGCs 1 carriage

Waiting energy consumption of one AGV 9 kWh/h
Travel speed of the AGV with container 210 m/min

Travel speed of the AGV without container 350 m/min

Table 2. Parameters of the SCGA.

Parameters Value Parameters Value

Population size 100 Maximum Iterations 500
Crossover probability [0.4, 0.9] Mutation probability [0.01, 0.1]
Crossover parameters 0.6 Mutation parameters 0.05

5.1. Algorithm Validity Verification Experiment

A comparative study was conducted to substantiate the effectiveness of the proposed
SCGA, which incorporated scheduling rules for RGCs, AGVs, and YCs. In this study,
the algorithm was evaluated against the improved genetic algorithm (IGA), the adaptive
adjustment strategy-based genetic algorithm (SGA), and the chaotic genetic algorithm
(CGA) proposed by Yue et al. [54]. The comparison experiments were conducted under
the configuration scenarios of 120 train–ship tasks, 120 yard–train tasks, 3 RGCs, and 15
AGVs; the bi-objective weights were set as ω1 = ω1 = 0.5 for all experiments in this section.
Figure 8 illustrated the convergence trends of the four algorithms, providing insights into
their performance.
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Based on the analysis of Figure 8, it can be observed that the SCGA identified the
upper bound solution at iteration 364 as 208.8, the IGA identified the upper bound so-
lution at iteration 427 as 245.1, the SGA identified the upper bound solution at iteration
381 as 239.2, and the CGA identified the upper bound solution at iteration 292 as 223.5.
These experimental results highlight the effectiveness of both the adaptive cross-variation
probability and the chaotic optimization strategy in overcoming the limitations of the
genetic algorithm. The adaptive genetic algorithm also demonstrated superior solution
speed compared to the chaotic genetic algorithm. Conversely, the chaotic genetic algorithm
exhibited better solution results, indicating its superior local search capability. Moreover,
the adaptive adjustment strategy contributed to an accelerated convergence speed of the
algorithm. Collectively, these findings further validated the effectiveness of the SCGA
proposed in this study.

5.2. Experiment on Comparing Bi-Objective and Single-Objective Optimizatiom

To validate the effectiveness of the bi-objective optimization approach adopted in this
study, which considers both efficiency and energy consumption, a total of 13 experiments
were conducted in this section. The experiments recorded loading and unloading com-
pletion times and operational energy consumption data. Each experiment was repeated
10 times, and the results were averaged. The summarized findings are presented in Ta-
ble 3. In the table, MCT represents the maximum completion time and OEC represents the
operational energy consumption of the RGCs and AGVs. N/R/V denotes the number of
containers, RGCs and AGVs, respectively. Furthermore, the bi-objective weights were set
as for all experiments in this section.

The results have demonstrated that the bi-objective model outperforms the single-
objective model in terms of both the maximum completion time of RGCs and the total
operational energy consumption of both the RGCs and the AGVs. Specifically, the bi-
objective model achieved a significant 7.74% reduction in operational energy consumption
compared to the single objective of minimizing the maximum loading and unloading
completion time. Additionally, the maximum loading and unloading completion time was
reduced by 4.06% in the bi-objective model compared to the single objective of considering
only the total operational energy consumption. These findings provide strong evidence for
the effectiveness of the proposed bi-objective optimization model in achieving synergistic
optimization of both the loading and unloading operational efficiency and the operational
energy consumption of the equipment.
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Table 3. Comparison of bi-objective collaboration and single-objective optimization solutions.

No. N/R/V

Bi-Objective Single-Objective Gap1 Gap2

MCT/min OEC/kWh
MCT/min OEC/kWh MCT

(%)
OEC
(%)Max Min Mean Max Min Mean

1 10/3/4 21.8 16.9 18.4 34.6 28.4 30.1 20.8 34.9 11.7 13.8
2 10/3/6 18.4 12.9 14.5 25.7 21.5 22.9 17.0 27.9 14.9 18.0
3 15/3/4 35.6 31.2 31.5 48.7 44.4 45.2 32.2 50.4 2.0 10.3
4 15/3/6 25.7 21.5 24.2 40.7 36.3 37.1 25.7 40.8 6.2 9.2
5 20/3/4 39.7 38.0 38.8 62.3 61.8 62.0 39.0 63.2 0.5 2.0
6 20/3/6 33.9 29.9 32.7 52.2 49.1 50.5 32.8 53.1 0.2 4.9
7 30/3/6 57.0 49.8 52.5 87.9 84.5 84.7 53.6 92.9 2.1 8.8
8 30/3/8 51.5 46.7 47.9 85.8 79.9 81.3 48.4 90.7 1.0 10.4
9 40/3/6 61.6 58.9 60.8 101.3 96.4 97.5 64.7 105.4 6.1 7.5

10 40/3/8 58.5 53.3 55.7 95.1 91.5 91.6 56.6 99.2 1.7 7.7
11 50/3/8 81.2 80.0 80.3 137.9 134.5 135.4 83.6 137.9 4.0 1.8
12 50/3/10 82.9 77.0 78.2 136.3 132.4 132.9 78.7 137.9 0.6 3.6
13 100/3/10 136.8 132.8 135.6 314.8 308.7 310.4 138.2 318.7 1.8 2.6

5.3. Normalization and the Impact of Weights

Because the maximum completion time and operating energy consumption are vari-
ables of different units, they need to be normalized. The normalized maximum completion
time (NMCT) and the normalized operational energy consumption (NOEC) will handle
as follows:

NMCT =
MCT −min(MCT)

max(MCT)−min(MCT)

NOEC =
OEC−min(OEC)

max(OEC)−min(OEC)
(52)

We consider the operation of 3 RGCs and 12 AGVs for 120 train–ship tasks and 120
yard–train tasks to further investigate the impact of weight values on efficiency and energy
consumption objectives. After normalized data processing, the experimental results are
depicted in Figure 9. As shown in Figure 9a, an increase in the efficiency weight leads
to a gradual reduction in the completion time of loading and unloading operations. This
indicates that assigning a higher weight to efficiency results in shorter task completion
times for container operations. Conversely, Figure 9b reveals that the total operational
energy consumption of both RGCs and AGVs increases as the efficiency weight increases.
It is worth noting that when the total completion time and energy consumption reach
a relatively low level, this finding aligns with the conclusions of previous research [55].
Consequently, this weight value is consistently utilized in the objective function throughout
subsequent studies, ensuring the system’s overall effectiveness.

5.4. Optimization of RGCs, AGVs, and YCs Configurations Experiments

In the scenario where three trains simultaneously enter the port, with each train
consisting of 40 carriages and the ships arriving on time, a total of 120 train–ship tasks
and 120 yard–train tasks are generated. In the Table 4, the variables R/V represent the
RGC and AGV numbers, respectively. The normalized upper bound solution (NUBS) is the
normalized and weighted objective function value of time and energy consumption. In
this subsection, 39 experiments were conducted, each repeated 10 times, and the results
averaged. The simulation results are presented in Table 4.
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No. R/V MCT OEC NUBS CPU/s No. R/V MCT OEC NUBS CPU/s

1 2/4 348.03 549.36 1.000 194.5 21 3/17 135.88 363.57 0.086 197.3
2 2/5 322.56 538.42 0.913 195.4 22 3/18 137.24 379.02 0.121 196.4
3 2/6 287.93 465.98 0.680 190.4 23 4/8 224.05 484.84 0.554 193.4
4 2/7 257.83 444.1 0.559 191.0 24 4/9 210.17 471.17 0.491 190.2
5 2/8 241.07 393.56 0.416 192.7 25 4/10 193.7 454.72 0.416 189.6
6 2/9 222.4 408.83 0.398 193.2 26 4/11 187.36 418.67 0.328 201.2
7 2/10 219.23 423.14 0.419 192.3 27 4/12 184.85 403.19 0.291 192.1
8 2/11 221.4 432.98 0.444 193.9 28 4/13 176.48 390.34 0.244 203.0
9 2/12 222.75 438.36 0.458 194.6 29 4/14 171.64 378.71 0.208 194.3

10 3/6 213.82 428.32 0.415 190.4 30 4/15 167.29 367.14 0.174 194.8
11 3/7 198.71 407.12 0.334 199.0 31 4/16 166.07 366.75 0.170 195.4
12 3/8 188.47 398.81 0.291 203.7 32 4/17 163.68 368.51 0.168 197.7
13 3/9 174.08 386.14 0.229 197.1 33 4/18 160.1 369.01 0.159 193.8
14 3/10 162.74 372.51 0.173 202.8 34 4/19 156.39 372.67 0.157 195.2
15 3/11 153.4 363.57 0.131 198.3 35 4/20 152.75 375.56 0.154 196.8
16 3/12 144.09 348.02 0.077 193.2 36 4/21 153.68 386.18 0.177 196.4
17 3/13 144.6 357.33 0.096 193.0 37 4/22 157.02 398.7 0.210 202.7
18 3/14 132.49 348.17 0.047 197.0 38 4/23 157.81 402.8 0.221 197.9
19 3/15 114.26 350.38 0.005 196.0 39 4/24 161.64 419.73 0.264 195.4
20 3/16 125.87 354.64 0.043 194.9

As indicated in Table 4, the optimal configuration for minimizing the collaborative
value of completion time for loading and unloading operations and total operational
energy consumption relies on the number of RGCs and AGVs deployed. For the case of two
RGCs, the optimal configuration involves deploying ten AGVs. This configuration yields a
maximum RGC completion time of 219.23 min and a total operational energy consumption
of 423.14 kWh, and the NUBS is 0.419. By increasing the number of RGCs to 3 and AGVs to
15, the completion time of the loading and unloading operation decreases to 114.26 min,
along with a reduction in the total operational energy consumption to 350.38 kWh, while
the NUBS is 0.005. Moreover, further improvement is achieved by deploying 4 RGCs and
20 AGVs, resulting in a collaborative value reduction in the maximum completion time
for the RGC to 152.75 min and a decrease in the total operational energy consumption to
375.56 kWh, while the NUBS is 0.154. Consequently, the optimal configuration ratio of
RGCs to AGVs, attaining the lowest collaborative value, is determined to be 1:5.
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The configuration of 3 RGCs and 15 AGVs achieved the lowest value of bi-objective
co-optimization, as shown in Table 4. Additionally, Table 5 provided details of the tasks
and operation order of the AGVs.

Table 5. AGV Scheduling Results.

AGV
No. Container Operating Sequences

1 (−1)-8-(−16)-23-(−28)-30-(−40)-60-(−52)-68-(−61)-87-(−91)-91-(−111)-120
2 (−2)-9-(−17)-24-(−32)-39-(−39)-54-(−59)-56-(−78)-72-(−82)-81-(−109)-110
3 (−3)-10-(−18)-25-(−35)-37-(−43)-59-(−54)-75-(−94)-88-(−108)-100-(−115)
4 (−4)-11-(−19)-29-(−33)-47-(−60)-53-(−66)-76-(−92)-86-(−100)-96-(−105)-106-(110)
5 (−5)-12-(−20)-26-(−37)-38-(−42)-61-(−49)-58-(−62)-97-(−107)-107-(−118)-117
6 (−6)-13-(−21)-27-(−34)-36-(−45)-45-(−72)-55-(−75)-85-(−93)-101-(−113)-116
7 (−7)-14-(−22)-31-(−36)-57-(−58)-35-(−44)-63-(−76)-92-(−83)-105-(−96)-115-(−101)
8 (−8)-17-(−27)-28-(−38)-64-(−57)-74-(−63)-84-(−86)-94-(−97)-104-(−114)-114
9 1-(−9)-15-(−25)-40-(−48)-46-(−67)-69-(−71)-79-(−73)-89-(−90)-99-(−103)-109-(−104)

10 2-(−10)-16-(−26)-43-(−46)-48-(−65)-62-(−70)-77-(−80)-95-(−99)-102-(−117)
11 3-(−11)-20-(−24)-34-(−41)-49-(−64)-65-(−68)-78-(−77)-98-(−89)-108-(−120)
12 4-(−12)-19-(−23)-33-(−47)-44-(−85)-73-(−95)-83-(−88)-93-(−106)-103-(−112)
13 5-(−13)-18-(−29)-32-(−50)-51-(−51)-66-(−81)-71-(−84)-113-(−102)-119
14 6-(−14)-21-(−30)-42-(−55)-52-(−56)-67-(−69)-82-(−74)-111-(−119)-118
15 7-(−15)-22-(−31)-41-(−53)-50-(−79)-70-(−87)-80-(−98)-90-(−116)-112

Through an analysis of the data presented in Table 5, the operational sequence for
the 15 AGVs can be established. AGV No. 1 is designated to initiate the unloading task
for container one, followed by the loading task for Container 8, and subsequently, the
unloading task for Container 16, continuing similarly. By adhering to this predetermined
sequence, effective scheduling and coordination of the assigned tasks for the 15 AGVs are
achieved, thereby facilitating an optimized logistics operation.

5.5. Impact of Vessel Delays and Container Type Change

Uncertainties from various factors, such as weather conditions and port traffic, can
influence the arrival times of ships. Moreover, the number and composition of containers
on a train are subject to change. In this section, the effects of different ship delay arrival
times and container types on the completion time and total energy consumption of loading
and unloading operations are studied, as visually illustrated in Figures 10 and 11.
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As depicted in Figures 10 and 11, there exists a positive relationship between the
delayed arrival time of vessels and both the completion time of loading and unloading
operations and the total operational energy consumption. Conversely, an inverse rela-
tionship is observed between the proportion of train–yard tasks and these performance
indicators. Specifically, on the one hand, as the delayed arrival time of ships increases,
the completion time of loading and unloading operations, as well as the total operational
energy consumption, also increases. On the other hand, increasing the proportion of train–
yard tasks can effectively alleviate the operational pressure on the RGC, thereby reducing
the completion time of loading and unloading operations and the total operational energy
consumption. These findings highlight the significance of considering vessel delays and
optimizing the task allocation strategy to enhance operational efficiency and minimize
energy consumption.

In the event of a delayed ship arrival, AGVs that would have been assigned to the
operate train–ship task may instead be allocated to the RGC for the operate train–yard
task, using the same equipment quantity configuration as if the ship had arrived on time.
However, this allocation adjustment can lead to increased waiting time for AGVs at the
RGC, ultimately impacting the completion time of loading and unloading operations and
the total operational energy consumption of the equipment. We dynamically adjusted the
number of AGVs for different delayed vessel arrival times to investigate these effects. We
observed the corresponding changes on NUBS. The experimental results are presented in
Figure 12.

Figure 12 demonstrates that a moderate reduction in AGVs can effectively reduce costs
when ship delays are short. Conversely, maintaining the RGC to AGV ratio of 1:4 for longer
vessel delays achieves upper bound solutions in terms of the objective function, which
encompasses the synergistic optimization of loading and unloading completion time and
total operational energy consumption. Specifically, with the RGCs, configuring 12 AGVs
instead of 15 AGVs can reduce loading and unloading completion time by 5.16% and total
operational energy consumption by 8.56%. However, continuous reduction in AGVs may
lead to increased efficiency and energy consumption.

Figure 13 displays the AGV utilization rates in different experiments under various
AGV quantity configurations. As observed from the figure, adjusting the number of AGVs
can increase their utilization without altering the RGC configurations. Specifically, when a
ship arrives without delay, the AGV utilization rate stands at 67.1%. When the ship’s arrival
is delayed by 25 min, maintaining the original configuration will cause a 2% decrease in
AGV utilization. At this point, reducing the number of AGVs to 14 could increase the
utilization by 7%. If the ship’s arrival is delayed by 42 min, continuing with 14 AGVs will
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lead to a 13% drop in utilization. Reducing the AGVs to 13 in this case could increase
utilization by 14%. When the ship is delayed by 53 min, continuing with 13 AGVs will
cause a 7% decline in utilization, but reducing the AGV count to 12 could increase the
utilization by 8%. However, it is worth noting that continuously reducing the number of
AGVs will not enhance their utilization. The minimum AGV configuration is 12. If the
number of AGVs falls below this, the utilization rate will drastically decline.
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In general, when there is a delay in the arrival of a ship at the port, maintaining a
constant number of AGVs leads to an increase in the completion time and total operational
energy consumption of the loading and unloading operation and a decrease in AGV uti-
lization. Therefore, in practical scheduling, monitoring ship arrivals and making necessary
adjustments to the AGV allocation is crucial. By adjusting the rail crane to an AGV ratio
from 1:5 to 1:4, the utilization of AGVs can be increased by 23% when a ship’s arrival is
delayed beyond a specific time.
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6. Conclusions

This paper addresses the collaborative equipment scheduling issues in a sea-rail
intermodal automated container terminal. It introduces six container flow directions and
seven AGV flow directions during train loading and unloading in the terminal. Considering
the collaboration between efficiency and energy consumption, a bi-objective collaboration
optimization model is proposed for minimizing loading and unloading completion time
and total energy consumption of RC and AGV operations. The model is solved using an
adaptive chaotic genetic algorithm based on the task assignment scheduling rules of the
sea-rail automated container terminal. A multi-equipment collaborative scheduling scheme
that considers efficiency and energy consumption is obtained. The experimental results
demonstrate that the bi-objective collaborative optimization model outperforms the single-
objective model. The above simulation experiments prove the following: (1) Compared
to the single-objective model, the bi-objective optimization model proposed in this study
can achieve a 4.06% reduction in the completion time of loading and unloading operations
and a 7.74% reduction in the energy consumption of equipment operations. (2) The SCGA
algorithm used in this research converges faster and yields superior solutions compared
to other heuristic algorithms. (3) When all the containers on the train are allocated for rail
transport, the optimal configuration of RCs to AGVs is 1:5. (4) Adjusting the number of
AGVs during the delayed arrival of ships can effectively shorten the maximum completion
time of RCs, reduce total operational energy consumption, and enhance the utilization rate
of AGVs.

However, there are still limitations in this study. First, future research directions of
this work should further consider the impact of more complex operational conditions on
equipment scheduling. Secondly, the current study is only conducted under the specific
layout shown in Figure 1; further research is needed for other layouts of sea-rail auto-
mated container terminals. Thirdly, how to systematically compare heuristic algorithms
with exact algorithms in the port equipment scheduling environment to obtain optimal
solutions is also an important task for future work. Lastly, active collaborations with real-
world terminals should be sought to test and validate the models and algorithms in real
operational environments.
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