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Abstract: The International Maritime Organization strives to improve the atmospheric environment
in oceans and ports by regulating ship emissions of air pollutants and promoting energy efficiency.
This study deals with the prediction of eco-friendly combustion in boilers to reduce air pollution
emissions. Accurately measuring air pollutants from ship boilers in real-time is crucial for optimizing
boiler combustion. However, using data obtained through an exhaust gas analyzer for real-time
control is challenging due to combustion process delays. Therefore, a real-time predictive modeling
approach is proposed to enhance the accuracy of prediction models for NOx, SO2, CO2, and O2 by
analyzing the color spectrum of flame images in a quasi-instantaneous combustion state. Experimen-
tal investigations were carried out on an oil-fired boiler installed on an actual ship, where the air
damper was adjusted to create various combustion conditions. This algorithm is a saturation-based
feature extraction filter (SEF) through color spectrum analysis using RGB (red, green, and blue) and
HSV (hue, saturation, and value). The prediction model applying the proposed method was verified
against exhaust gas analyzer data using a new data set, and real-time prediction performance and
generalization were confirmed.

Keywords: combustion control; deep learning; emission prediction; flame image; image processing;
oil-fired boiler; support vector regression

1. Introduction

Minimizing exhaust gas emissions from ships is crucial for addressing global warming,
considering that maritime trade accounts for 80% of the global trade volume [1]. The esti-
mated annual emissions from ships include approximately 5.0× 105 tons of nitrogen oxides
(NOx), 6.3× 105 tons of sulfur oxides (SOx), and 3.1× 105 tons of carbon dioxide (CO2) [2].

To reduce NOx emissions, the International Maritime Organization (IMO) has imple-
mented regulations up to Tier 3, enforced through MARPOL Annex VI from 2006 to 2012.
Moreover, starting in 2020 [3], IMO has limited the sulfur (S) content in ship fuels to 5% to
reduce SOx emissions [4].

There is a growing trend toward equipping the primary engines and generators of
ships with additional devices such as selective catalytic reduction (SCR), exhaust gas re-
circulation (EGR), and scrubbers. Various methods, including the use of environmentally
friendly fuels, have been proposed to reduce air pollution emissions [3,5]. However, regu-
lations on air pollutant emissions from ship boilers for NOx have received relatively less
attention compared with SOx. Nevertheless, awareness of the need for NOx emission limi-
tations is increasing, with recent studies emphasizing its importance [6,7]. Consequently,
there is growing importance placed on regulating air pollutants generated by ship boilers.

The measurement system for air pollutants plays a crucial role in emissions regulation.
Implementing these regulations requires the installation of measurement systems for
NOx and SOx in marine internal combustion engines with power outputs of 130 kW and

J. Mar. Sci. Eng. 2023, 11, 1993. https://doi.org/10.3390/jmse11101993 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse11101993
https://doi.org/10.3390/jmse11101993
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0002-0328-8877
https://orcid.org/0000-0001-9697-1861
https://doi.org/10.3390/jmse11101993
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse11101993?type=check_update&version=1


J. Mar. Sci. Eng. 2023, 11, 1993 2 of 20

above [8]. Additionally, some countries, including the European Union, have regulations
concerning the measurement system for CO2, with the expectation of further expansion in
the future [8,9]. Therefore, the importance of regulation and monitoring of emissions from
boilers has been highlighted [10].

Measurement methods include direct and indirect (soft) approaches. Direct measure-
ment sensors have low durability and pose economic challenges due to the need for regular
calibration and maintenance. Consequently, indirect measurement (soft measurement)
methods have gained attention [11].

Efforts have been made in the indirect measurement of air pollutants using oper-
ational data. Several related studies have been conducted within the past five years.
Sun [12] proposed an algorithm combining the weighted principal component analysis
(WPCA) technique with an improved least-square support vector machine (LSSVM) [12].
Tan [13] developed a dynamic model based on long short-term memory (LSTM) for predic-
tion [13]. Park proposed a double ensemble model based on operational data by adjusting
combustion states [14]. However, these operational data-based models are economically
unfavorable because numerous data collection devices are required. Moreover, the loss
of a single operational data point or sensor error can significantly impact prediction ac-
curacy. Additionally, the presence of various time delays in such processes limits their
real-time monitoring capabilities. The prediction of air pollutants using quasi-instantaneous
combustion images addresses these challenges.

The use of instantaneous combustion state images for predicting air pollutants can
address the aforementioned issues. Xia proposed a learning model that combines principle
component analysis (PCA) and Kernel-SVM for flame images from a gas-fired boiler
(GFB) [15]. Yang developed an algorithm for predicting exhaust gas emissions by applying
Garbor filters to gray-level co-occurrence matrix (GLCM) features in flame images from
an industrial circulating fluidized bed (CFB) [16]. Ganpati [17] predicted the oxygen (O2)
content by combining GFB images with operational data using a data ensemble model [17].
However, applying these models to oil-fired boilers (OFBs) is difficult because the level of
impurities in the flame images differs from those in CFB or GFB.

Han [18] researched applying an ensemble deep learning model and adversarial
denoising autoencoder (ADAE) to OFB flame images to improve prediction accuracy [18].
However, using data compression filters such as ADAE on low-resolution images has
limitations in learning the fine features of parameters. Experimental studies on flame
image-based prediction require additional observation points to obtain high-quality image
data, rendering its application to field sites challenging.

Therefore, in this study, a high-resolution (1080p) complementary metal-oxide-
semiconductor (CMOS) camera is installed in the existing observation port of a heavy fuel
oil boiler on an operating vessel without additional observation points. This enables the
collection of flame images with abundant parameter data. Simultaneously, exhaust gas
analyzers are installed in an exhaust pipe to collect data on NOx, CO2, sulfur dioxide (SO2),
and O2. These data are used to train the prediction model. Figure 1 provides an overview
of the entire research process.

This study introduced a saturation extraction filter (SEF) that extracts features related
to exhaust gas by analyzing the color space of high-resolution images containing abundant
parameter data while eliminating unnecessary parameters.

The experiments were conducted on a 3000-kg/h heavy fuel oil boiler on a training
vessel. Flame images under six different combustion conditions were used to evaluate the
feature extraction method for predicting exhaust gas components (EGCs) such as O2, CO2,
NOx, and SO2. The original flame images from the boiler were processed using SEF while
simultaneously collecting data from the exhaust gas analyzer. Then, the collected data was
used to train an SVM model.
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Figure 1. Schematic of image-based regression model training. (A) Exhaust gas measurement probe
(B) CMOS webcam (C) Exhaust gas analyzer and data acquisition device.

In terms of the validity of the SEF, three groups were evaluated as comparison groups,
including RGB (red, green, and blue) original images, histogramized RGB data, and his-
togramized hue, saturation, and value (HSV) data that involve color space conversion of
brightness. The results showed significant findings in support of the SEF.

Figure 1 shows a schematic for the experiment.
Through generalization verification, practicality in actual processes was proven, and

through comparison of immediacy, it was proven that quasi-instantaneous combustion
prediction using flame images is more suitable for measuring instruments for real-time
control than exhaust gas analyzers.

The objectives of this study can be summarized as follows:

1. Analysis and evaluation of the color spectrum of flame images using changes in the
combustion equivalence ratio.

2. Introduction of a spectrum feature extraction filter utilizing color modulation techniques.
3. Comparison of SVM learning rates for flame images based on different color transfor-

mation techniques.
4. Generalization validation using a new dataset.

2. Boiler Description and Set-Up of Experiment
2.1. OFB Combustion System

Figure 2 shows the burning process of the OFB of the training ship.
The fuel oil (F.O.) supplied from the fuel tank in the OFB is delivered to the burner

through the F.O. supply pump and pressurized to approximately 30 bar by the F.O. booster
pump mounted on the burner. The pressurized fuel oil is sprayed through the burner
nozzle, mixed with combustion air, and ignited.
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Figure 2. Combustion process of oil-fired boilers.

The combustion air is supercharged and supplied from the bottom of the burner
through the damper by a forced draft (FD) fan.

The burner load controls the amount of fuel sprayed by adjusting the fuel returned
from the nozzle, and the amount of combustion air is controlled through the damper
connected to the linkage. The fuel control and combustion air control components are
interconnected through the linkage. When a load signal is received from the controller, the
servo motor is adjusted, and the F.O. return valve and damper connected to the end of the
motor shaft are adjusted together to control the load while maintaining an appropriate
equivalence ratio.

The OFB starts at a 20% load after ignition in an automatic mode and operates within
a load range of 70–90% during the normal operation phase.

During the combustion process, nitrogen (N), surfur (S), and carbon (C) react with O2
in air to produce NOx, SO2, and CO2, with the amounts varying depending on the load
and combustion equivalence ratio (CER).

2N, S, C + 4O2 → NOx(NO, NO2), SO2, CO2 (1)

The specifications of the boiler used in the experiment are as Table 1:

Table 1. Specifications for Boiler, Burner, FD Fan of OFB.

Boiler
Model Steam production Working Steam pressure

MA03R0202 (Kangrim) 3000 kg/h 5.5–7 kg/cm2

Burner
Model Atomizing oil pressure Fuel oil consumption—min/max

RP-250M 25–30 bar 68.5/205.5 kg/h

FD Fan
Model Air supply pressure Air supply Volume—min/max

Svend hoyer HMA2 0.0275–0.039 bar 1650–3700 m3/h

2.2. Data Acquisition System for OFB

In the experiment, the load of the OFB is fixed at 80% and the supplied fuel oil is kept
constant at 0.158 kg/h to change the combustion conditions by adjusting the amount of
combustion air.

In this state, the combustion environment is changed by changing LINKAGE from
1 to 6 in sequence and adjusting the amount of air supplied to the FD fan.
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The data collection procedure is below.
As shown in Figure 1A, air pollutants such as CO2, SO2, NOX, and O2, which serve

as an indirect measure of the CER, are measured at the top of the funnel. To accomplish
this, the exhaust gas analyzer Marine350 from TESTO is utilized. This particular product is
approved for verifying SCR NOx emission rates in compliance with Marpol regulations [19].
As shown in Figure 1C, the data collected by the exhaust gas analyzer is output as analog
signals through the analog output device illustrated in Figure 1C and then transmitted to
the PC via NI’s cDAQ9189. cDAQ9189 supports resolutions of approximately 24 bits and
can achieve a maximum sample rate of 10 kS/s, enabling precise measurements.

Simultaneously, flame image data are processed through the fire observation port of
the boiler, as shown in Figure 1B.

For image acquisition, a webcam (Logitech C920 PRO HD) in CMOS format is em-
ployed. In previous studies, high-resolution flame images have been predominantly ob-
tained using charge-coupled device (CCD) format cameras [20,21]. These cameras offer
superior resolution compared with CMOS cameras and exhibit noise resistance. How-
ever, with recent technological advancements, CMOS cameras have also attained high
resolutions (1080p, 30 fps). Moreover, webcams are favored owing to their real-time data
transmission capability to a PC.

2.3. Variations in CER Based on Linkage Control

In a combustion field, the equivalence ratio is commonly used to describe the ratio of
the actual fuel-to-air ratio in a combustion process to the stoichiometric fuel-to-air ratio.
The stoichiometric ratio is the ideal ratio at which all fuel and oxidants (typically air) are
consumed without excess or deficiency. The CER is a crucial parameter in combustion
analysis and optimization. It influences various combustion characteristics, including flame
temperature, combustion efficiency, and the formation of pollutants. By controlling and
adjusting the CER, the combustion process can be optimized for specific applications, such
as maximizing energy efficiency or minimizing emissions.

As the linkage changes, the concentration of O2 in the exhaust gas varies. The mea-
sured O2 concentration can be utilized to estimate the CER, enabling the determination of
the completeness of combustion in the OFB.

The OFB used in the experiment requires about 15% excess air to ensure complete
combustion. In addition, if the fuel is oversaturated, combustion in this OFB will disappear
and the plant will not be able to continue, so this study deals only with fuel-lean combustion.
Gas oil with the chemical formula C12H26 is used as the fuel for the OFB. The concentration
of nitrogen in air is estimated to be 3.76 times that of O2.

Also, since this experiment deals with fuel-lean combustion, HC (hydrocarbons) was
not considered, and similarly, CO (carbon monoxide), which generates less than CO2 in
fuel-lean combustion, was not considered.

CER in fuel-lean combustion is defined as follows:

C12H26 + ρa(O2 + 3.76N2) = 12CO2 + 13H2O + χaO2 + 3.76ρaN2 (2)

1 mol of C12H26 requires ρa mol of air for complete combustion. This combustion has
the following characteristics. It produces 12 mol of CO2, 13 mol of H2O, and 3.76ρa mol of
N2, along with the presence of unreacted O2 molχa, depending on the value of ρa.

The molecular formula for O2 is as follows:

2ρa = 24 + 13 + 2χa (3)

ρa = χa + 18.5 (4)

In the case of complete combustion, as per the theoretical equation, χa should be 0.
Thus, the theoretical amount of air required, ρe, is 18.5 mol. The O2 concentration δo of
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the exhaust gas can be obtained from the ratio of moles of O2 χe to the total moles of
combustion products. In addition, if this is denoted as ρa, it can be expressed as follows:

δo =
χe

12 + 13 + χe + 3.76ρa
(5)

ρa =
13δo + 37
2− 9.52δo

(6)

Therefore, the CER based on the O2 concentration of the exhaust gas can be ex-
pressed as:

CER =
ρe
ρa

= 18.5
(

13δo + 37
2− 9.52δo

)−1
(7)

When the CER is 1, the mixture is in a chemically balanced state. This means that the
fuel and air theoretically experience a complete chemical reaction [22].

If the CER is less than 1, fuel is considered to be lacking, indicating more air than
stated in the stoichiometric requirements. In such cases, incomplete combustion may occur,
resulting in a decrease in temperature [23].

Conversely, a value greater than 1 shows fuel richness, indicating more fuel than
stated in the stoichiometric requirements. This can lead to the formation of pollutants
such as fuel residues and carbon monoxide (CO), along with an increase in exhaust gas
temperature [24].

Therefore, by estimating the CER based on the measured O2 volume ratio by using
the exhaust gas analyzer through the six-step change in linkage in the experiment, the
combustion performance of the OFB can be evaluated for each combustion condition.

3. Analysis of Collected Data

The experiments were conducted 50 times, resulting in the collection of 300 datasets
through six-step changes in Linkage.

Flame image data and exhaust gas data were obtained, as shown in Figure 3, using
Matlab’s Simulink, which enables real-time integration of a Webcam and cDAQ, an analog
data collection device.
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The original data of the flame image collected from the webcam was resized (cropped)
to fit the size of the learning data. The experiment collected an RGB original dataset,
histogramized RGB data, and the proposed SEF data columns from the RGB original dataset
and concatenated them with the measured values of air pollutants to obtain training data.
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3.1. Exhaust Gas Data

The exhaust gas data were collected, as depicted in Figure 4, showing the average and
distribution of the exhaust gas components with respect to the CER.
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Figure 4. OFB emission data according to different linkage positions.

Depending on the position of the linkage, the O2 concentration exhibited a propor-
tional relationship, whereas the concentrations of CO2, NOx and SO2 decreased in an
inverse proportion. As the linkage position changed from 1 to 6, the O2 concentration
increased, and the levels of CO2, NOx and SO2 decreased. Expanding the damper opening
resulted in an increase in O2 concentration increased, and the CER decreased.

As a result, it can be seen that in the OFB used in the experiment, as the CER decreases,
the production of CO2, NOx and SO2 decreases.

This resulted in a lower CER for boiler combustion, leading to improved combustion
quality and reduced production of

In Table 2, examining the data characteristics in terms of CER changes according to
linkage, it can be observed that the variance of the mean for each dataset is uniform. This
indicates low data uncertainty, ensuring the reliability of the data for both model training
stability and model interpretation.

Table 2. Data on Exhaust gas components by CER.

Linkage CER
O2 (%) CO2 (%) NOX (ppm) SO2 (ppm)

µ σ2 µ σ2 µ σ2 µ σ2

L1 0.899 2.00 0.0008 13.8 0.0076 94.00 0.4215 17.58 0.0041
L2 0.897 2.39 0.0006 13.11 0.0078 90.99 0.4885 17.99 0.0043
L3 0.824 3.50 0.0008 12.69 0.0077 88.83 0.4246 16.6 0.0033
L4 0.739 5.21 0.0005 11.51 0.0107 80.01 0.5142 16.04 0.0035
L5 0.686 6.30 0.0006 10.51 0.0079 72.15 0.5513 15.59 0.0039
L6 0.642 7.2 0.0006 9.81 0.0084 67.07 0.4934 14.42 0.0039

3.2. Collection of Flame Images

In the flame image shown from the fire observation port, minimal variation in shape
depending on the CER is observed. Therefore, to identify differences in the parameter data
of the flame image depending on the CER, detailed information regarding brightness, satu-
ration, and luminance is required. In previous studies, image data ranging from resolutions
of 488 × 582 to 1280 × 1024 were obtained using a CCD camera [15,25]. However, because
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of insufficient information, characteristics cannot be asserted to be solely based on flame
shape. Therefore, additional information, such as brightness and saturation, is required.

In this study, flame images are captured using a high-resolution CMOS webcam in
the format of 1920 (H) × 1080 (W) (1080p) to obtain detailed information. The camera is
positioned at the flame-fire observation port located on the side of the boiler, following
SOLAS regulations [26]. Using a flame-fire observation port has the advantage of being
cost-effective, as it enables image data collection without requiring additional construc-
tion. However, it has the limitation that the entire shape of the flame cannot be captured
in the image. As image collection aims to observe the brightness characteristics of fire
using O2 concentration, numerous image characteristics should be captured by measuring
both the color of the flame and reflected light. Additionally, when storing the collected
image information through histogramization, if the histogramized high-definition data
exceeds 2 bytes (216) per bin, not all features can be included. Therefore, in the original
1920 × 1080 pixel image, the image area that does not exceed 2 bytes of information per
bin needs to be cropped. Through several experiments, the area where the image features
can be effectively extracted was designated as 800 (H) × 820 (W), as shown in Figure 5, and
the stored images are primarily collected in an RGB format before color modulation.
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4. Color Space Conversion of Flame Images

The color space spectrum used in this study can be referenced in Figure 6 [27].
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4.1. RGB, YCbCr Space, and HSV Space
4.1.1. RGB

RGB hue modification is a technique used to alter the hue of an image within the
RGB color space. It involves adjusting the pixel values of the red (R), green (G), and
blue (B) channels to change the color tone of an image. This method is commonly used
in image processing and color correction tasks to achieve desired color effects. RGB hue
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modification is widely employed in various applications related to image manipulation
and color correction [28,29].

r =
R

R + G + B
, g =

G
R + G + B

, b =
B

R + G + B
(8)

4.1.2. YcbCr

Owing to the high sensitivity of the RGB color domain to changes in intensity, various
color spaces are being proposed to enhance color accuracy or segmentation. In the YcbCr
color space, “Y” represents the luminance component, and “Cb” and “Cr” represent the
differences between blue and luminance (B_Y) and red and luminance (R_Y), respectively.
If R, G, and B are represented with 8-bit digital precision, the YcbCr values can be obtained
from the RGB coordinates using a transformation matrix, as demonstrated below [30].

Y = 16 + 65.481R + 128.533G + 24.966B
Cb = 128− 37.797R− 74.203G + 112B
Cr = 128 + 112R + 93.786G− 18.214B

(9)

4.1.3. HSV

HSV color spaces were originally designed to provide an intuitive method of handling
colors and were intended to approximate human perception of colors. These color spaces
were developed when colors had to be identified manually. However, they are rarely used
currently as people can easily select colors with their eyes or specify Pantone colors [31].

4.2. Color Space Analysis for Image Feature Extraction

In this study, a histogram technique is employed to analyze the spectrum for each
CER of the images stored in the form of a three-dimensional array. This technique involves
graphically representing the distribution of pixel data values in specific regions (bins)
within an image. It is widely used in the field of computer vision for identifying and
analyzing image characteristics, providing a visual means of spectrum analysis [32].

Figure 7 presents representative images collected for each linkage position and displays
the color data histograms obtained through color modulation for the RGB original data,
YCbCr, and HSV color spaces. In the RGB histogram, L2 and L4 exhibit similar spectra in
terms of distribution and numerical values. Therefore, feature differences between them
cannot easily be distinguished.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 7. Histograms by color spaces for various combustion conditions. 

In the YCbCr histogram, the Cr value increases as the linkage position increases. Nev-
ertheless, the difference between L1 and L4 is minimal, resulting in low data separability. 
However, the saturation spectrum of HSV exhibits noticeable differences. 

Figure 8 represents the extraction of the saturation component from the HSV histo-
gram of the flame image, with the maximum values for each bin displayed. This figure 
shows that within the HSV color space, where the hue remains consistently distributed 
between 0 and 30, the histogram distribution of saturation exhibits a consistent pattern 
while the values increase, indicating a spectrum. The hue of all combustion flame images 
being distributed within a certain range means that they have similar colors. Additionally, 
as CER increases, saturation decreases, meaning the intensity of a specific color increases. 
The data distribution of saturation for each linkage in the flame images obtained from a 
total of 300 experiments is shown in Figure 9. 

 
Figure 8. Spectral variation of saturation for various combustion condition. 

Figure 7. Histograms by color spaces for various combustion conditions.



J. Mar. Sci. Eng. 2023, 11, 1993 10 of 20

In the YCbCr histogram, the Cr value increases as the linkage position increases.
Nevertheless, the difference between L1 and L4 is minimal, resulting in low data separability.
However, the saturation spectrum of HSV exhibits noticeable differences.

Figure 8 represents the extraction of the saturation component from the HSV histogram
of the flame image, with the maximum values for each bin displayed. This figure shows
that within the HSV color space, where the hue remains consistently distributed between
0 and 30, the histogram distribution of saturation exhibits a consistent pattern while the
values increase, indicating a spectrum. The hue of all combustion flame images being
distributed within a certain range means that they have similar colors. Additionally, as
CER increases, saturation decreases, meaning the intensity of a specific color increases. The
data distribution of saturation for each linkage in the flame images obtained from a total of
300 experiments is shown in Figure 9.
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The image data for each linkage, comprising 50 samples, exhibited similar distributions
across the saturation histogram bins but displayed variations in the maximum values.
Table 3 shows the highest values of the average values of the maximum and minimum
from the saturation histogram for each linkage.
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Table 3. Saturation peak data of flame image by CER.

Linkage
Position CER Saturation

Peak Min
Saturation
Peak Max µ

L1 0.899 8207 9464 9023.86
L2 0.897 10,541 11,755 11,155.64
L3 0.824 12,519 13,972 13,185.80
L4 0.739 14,761 15,562 15,204.44
L5 0.686 16,172 17,977 16,918.22
L6 0.642 19,249 21,882 20,339.84

As presented in Table 3, the distribution range of saturation varies for each linkage,
depending on the average values. This difference ensures a noticeable distinction in
data characteristics.

4.3. Saturation Extraction Filter (SEF) for Image Feature Extraction

The original color data from the CMOS Webcam with a resolution of 1080p has a size
of 6,220,800 bytes, as indicated in the equation:

1920(H)× 1080(W)× 3(Dimension: R, G, B)× 1(bytes) = 6, 220, 800 bytes (10)

Notably, using this data input for the learning model may increase training time and
decrease prediction accuracy because of overfitting. Therefore, dimensionality reduction
techniques such as PCA and convolutional neural networks (CNN) are commonly em-
ployed in the field of computer vision [33,34]. However, the use of these techniques can
result in the loss of fine-grained information from the data, and excessive reduction in
dimensions can lead to overfitting and decreased prediction accuracy [35,36].

In this section, the study presents a filtering method for extracting data features in
the form of feature data extraction rather than dimensionality reduction. This approach
reduces data size while preserving detailed information by leveraging the spectral aspect
of saturation analyzed in Section 3.

To consider the difference in the saturation spectrum of flame images across different
linkages as input for learning, RGB image data are converted to HSV data.

Then, only the saturation component is extracted. Subsequently, the extracted satura-
tion values are histogramized.

{180(Hue) + 256(Saturation) + 256(value))× 2(bytes) = 1384 bytes (11)

Consequently, the size of the flame image data amounts to 6,220,800 bytes and is ulti-
mately output in the form of feature extraction with a size of 256×2 bytes using the equation:

256(Saturation)× 2(bytes) = 512 bytes (12)

5. Comparison of Prediction Accuracy and Results

The data formation process through the proposed SEF can be seen in Figure 10.

5.1. Constructing the Dataset

To validate the effectiveness of the image extraction filter proposed in this study, a set
of 300 images captured using a CMOS webcam were transformed into RGB original, his-
togramized RGB, histogramized HSV, and SEF-filtered image data. The learning accuracies
of these different image data sets were compared with assess their performance.

As seen in Figure 10, the training dataset was prepared by combining 300 data samples
of the original RGB image data (RGB_Origin) with a size of 800(H) × 820(W) × 3(D), his-
togramized RGB data (Histo_RGB) with a size of 768 (256 + 256 + 256), histogramized HSV
data obtained after converting to HSV (Histo_HSV) with a size of 692 (180 + 256 + 256), and
the SEF-transformed data with a size of 256. This resulted in a dataset of 300 × 4 EGC data.
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The size of each dataset is presented in Table 4.

Table 4. Structure of the train dataset.

Color Space Conversion RGB_Origin Histo_RGB Histo_HSV SEF

Size of color space 800(H) × 820(W) × 3 256(R) + 256(G) + 256(B) 256(S) 256(S)

Flame Image data matrix 300 × 656,000 300 × 768 300 × 692 300 × 256

EGC data matrix 300 × 4

Conbined train dataset matrix 300 × 656,004 300 × 772 300 × 696 300 × 260

5.2. Model of Prediction

An SVM is a machine learning algorithm used for data classification and regression
that determines the decision boundary and maximizes the distance between the closest
data points, known as support vectors, to classify them [37,38]. The position of the de-
cision boundary is determined by the distance between these support vectors. SVMs
can solve nonlinear classification problems using various kernel functions to transform
them into linear problems. Additionally, it has robustness against outliers, ensuring high
classification accuracy.

5.3. Performance Evaluation

Mean squared error (MSE) is one of the methods used to measure the difference
between predicted and actual values by calculating the average of the squared differences.
The smaller the value, the better the predictive performance. It is primarily used in
regression problems and to evaluate the performance of models along with other error
measurement methods.

MSE =
1
n

n

∑
i
(yi − yw)

2 (13)

n = the number of predicted and actual values;
yi = actual values;
yw = predicted values.

Root mean squared error (RMSE) is calculated by taking the square root of the mean of
the squared differences between the predicted and actual values. It represents the average
difference between the predicted and actual values. Notably, a lower value indicates
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better performance of the model in making predictions. RMSE is commonly used as a
performance metric in regression problems, along with other error measurement methods.

RMSE =

√
1
n∑n

i=1(yi − yw)
2 (14)

The mean absolute error (MAE) is the average of the absolute differences between the
predicted and actual values. It represents the average difference between the predicted
and actual values and is less sensitive to outliers than RMSE because it does not square
the differences.

MAE =
1
n∑n

i=1|yi − yw| (15)

R-squared (R2) is a metric that represents the proportion of variability in the predicted
values that is explained by the actual values. It ranges between 0 and 1, with a higher
value indicating that the model is better at explaining the data. When the predicted values
perfectly match the actual values, (R2) is 1, whereas a model that does not fit the data well
will have an (R2) value closer to 0.

R2 = 1− ∑n
i=1(yi − yw)

2

∑n
i=1
(
yi − y′w

)2 = 1− SSE
SST

=
SSR
SST

(16)

y
′
w = the average of the Actual values.

Lower RMSE, MAE, and MSE values indicate better model performance.

5.4. Training of Prediction Model

To validate the effectiveness of the SEF with a size of 5123 bytes, comparative exper-
iments were conducted by performing regression learning on the RGB_Origin dataset,
which is 6,220,800 bytes in size and consists of uniformly cropped 800(H) × 820(W) images
without histogramization, and on the histogramized datasets: 1536, 1384, and 512 bytes of
Histo_RGB, Histo_HSV, and SEF datasets obtained through compression, respectively.

The training process for the deep neural network model is conducted using Math-
Works’ software, Matlab’s Regression Learner application. The training runs on a comput-
ing system equipped with an Intel i7-8700 CPU, 32 GB RAM, and GeForce GTX 1060Ti GPU.

Figure 11 shows the learning outcomes of predictions for EGCs, such as O2, SO2, CO2
and NOX, which were trained using a SVM on the original RGB image of the flame and
histogramized RGB data.
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Figure 11. Predicted results based on SVM. (A) RGB_origin (B) Histo_RGB.

Figure 11A represents the results of regression learning on the RGB_Origin dataset of
the flame image. In the learning results, O2 exhibits a maximum error of 3.0% at L6, SO2
exhibits an error of 2.0 ppm at L5, NOX exhibits an error of 16 ppm at L6, and CO2 exhibits
an error of 2.4% at L6.
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Figure 11B represents the results of regression learning using the Histo_RGB dataset.
In the overall learning outcomes, O2 exhibits a maximum error of 2.2% at L4, SO2 exhibits
an error of 1.9 ppm at L2, NOX exhibits an error of 11 ppm at L1, and CO2 exhibits an
error of 1.8% at L3. These results indicate that learning from histogramized RGB color
tone data outperforms learning from the original RGB data, which has a larger data
capacity. This demonstrates the impact of data capacity on learning outcomes. Additionally,
Table 5 presents the performance evaluation for EGC learning, revealing that the prediction
performance of R2, RMSE, and MAE is significantly improved for RGB histogram data
compared with RGB color data. However, the values of R2 (0.86, 0.87, and 0.79) indicated
that the prediction accuracy did not reach satisfactory levels.

Table 5. Prediction performance for RGB_origin and Histo_RGB based on SVM.

EGC Image Datasets R2 RMSE MAE

O2
RGB_origin 0.48 1.3979 1.2325

Histo_RGB 0.86 0.7165 0.5560

CO2
RGB_origin 0.44 1.0754 0.9251

Histo_RGB 0.79 0.6143 0.54804

NOx
RGB_origin 0.46 7.3473 6.3918

Histo_RGB 0.88 3.5155 2.7705

SO2
RGB_origin 0.57 0.7879 0.7276

Histo_RGB 0.87 0.4361 0.3089

Additionally, the RMSE and MAE values showed that a significant difference in errors
was still observed. To improve the prediction performance, a color space that can effectively
distinguish the characteristics of the parameters should be used.

Figure 12 shows the learning outcomes of SVM-trained predictions for EGCs (O2, CO2,
NOX and SO2) using HSV color histogram data that include saturation, exhibiting a linear
variation in the spectrum, and the SEF, which solely extracts the saturation component.
Figure 12A shows the regression learning results of the Histo_HSV dataset of the flame
image. The maximum error observed in the learning results was 2.6% for O2 at L1, 1.9 ppm
for SO2 at L2, 10 ppm for NOX at L5, and 2.1% for CO2 at L1, across the entire dataset.
Figure 12B shows the regression learning results for the SEF data. In these results, the
maximum error was 1.4% for O2 at L5, 1.5 ppm for SO2 at L2, 12 ppm for NOX at L4,
and 1.5% for CO2 at L1. These values were densely distributed, demonstrating excellent
performance in terms of R2, RMSE, and MAE.
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As analyzed in Figure 12, the Histo_HSV dataset, which includes the linear spectral
change in saturation, exhibited better learning performance in terms of parametric features
than the RGB Histogram data.

Consequently, as shown in Table 6, the SVM-trained prediction results for the EGCs,
O2, CO2, NOX and SO2 using image data with feature parameters extracted using SEF
demonstrated excellent prediction rates, with R2 values of 0.97, 0.96, 0.96, and 0.95, respec-
tively. Additionally, the errors in the RMSE and MAE were minimal, providing evidence of
the reliability of the feature extraction filter, SEF.

Table 6. Prediction performance for Histo_HSV and SEF based on SVM.

EGC Image Datasets R2 RMSE MAE

O2
Histo_HSV 0.91 0.3441 0.2458

SEF 0.97 0.1698 0.1213

CO2
Histo_HSV 0.85 0.3765 0.2562

SEF 0.95 0.3265 0.2377

NOx
Histo_HSV 0.90 3.1228 2.3381

SEF 0.94 1.7269 1.1724

SO2
Histo_HSV 0.89 0.4033 0.2872

SEF 0.96 0.3160 0.2135

5.5. Generalization Verification

To assess the generalization performance of the proposed SEF in this study, flame
images were captured from the same OFB after 1 month using the model trained on the
dataset. An experiment was conducted by using these images as input, generating real-time
predictions, and comparing them with the exhaust gas meter. The experiment was recorded
for approximately 100 s starting with Linkage 2, and the STEP was changed to Linkage 5
after 50 s. The prediction response and error were measured during the steady state. As time
passes, the OFB undergoes various environmental changes, including contamination of the
heating surface and variations in atmospheric temperature and humidity. To ensure the
stability of the prediction, the STEP was changed from 2 to 5 instead of 1 to 6, considering the
changes in the upper and lower limits of the learning data due to environmental variations.

Figure 13 represents the EGC values predicted from the flame images and the actual
values obtained from the exhaust gas analyzer for a new environment. It shows 47 to
58 s after the experiment, capturing both the steady-state conditions of L2 and L5 and the
excessive response caused by a step change between L2 and L5.

Figure 13A shows the analog signal measured from the exhaust gas analyzer and the
predictions of the SVM using the SEF applied to real-time input flame images. Figure 13B
shows the boxplot of the errors between each EGC and the corresponding predictions
from SEF-applied SVM in the steady-state conditions of each linkage compared with the
measurements from the exhaust gas analyzer.

In the OFB, the combustion state initially starts in the L2 condition and transitions
to the steady state of L5 after 50 s. The errors between the SEF-applied SVM predicted
values and the measured average values in the steady-state interval are as follows: for L2,
the maximum errors are 0.1207, 0.1703, 0.8909, and 0.1423; for L5, the errors are 0.1143,
0.1374, 0.8112, and 0.2377. These values fall within the range of the MAE of the SEF-applied
SVM training performance in Section 5.4, which are 0.1213, 0.2135, 1.1724, and 0.2377. This
validates the generalization performance of the SEF-applied SVM model.
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Figure 13A shows that the predicted values from flame images exhibit a faster response
than the actual values, starting from the step change after 50 s until reaching the steady-state
interval of L5. The flame images, representing the quasi-instantaneous combustion state,
respond immediately to changes in the CER. However, the measured EGC experiences
a delay due to the transit time through the exhaust pipe and the time required for post-
combustion chemical reactions in the exhaust gas. Therefore, the prediction of EGC using
flame images is more suitable for real-time optimization control in OFB than measurements
from the exhaust gas analyzer.

6. Conclusions

In this study, a new feature extraction filter is proposed to minimize the loss in
characteristic parameter data through the spectral analysis of flame image color spaces for
real-time monitoring of EGC in the OFB systems of ships. The effectiveness of the proposed
filter was validated through experimental testing and verification using an experimental
device installed on an actual ship. To induce various changes in the CER, the fuel quantity
was fixed and the air quality adjusted, thereby forming a dataset of 500 data points for
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flame images and EGC measurements in an OFB. For performance comparison, SVMs were
used as base models, and the performance of the SEF for each EGC was evaluated against
the comparison groups of RGB_Origin, Histo_RGB, and Histo_HSV datasets. The training
results showed excellent prediction performance for O2, SO2, NOx and CO2 with R2 values
of 0.97, 0.96, 0.94, and 0.95, respectively.

The generalization performance of the proposed method was validated through real-
time testing in a new combustion environment. By observing the error between the
prediction performance of the SEF, represented by MAE, and the exhaust gas measurement
within the normal operating range during the step changes in the combustion environment,
it was confirmed that the generalization performance was within the expected range.
Furthermore, the response speed to step changes demonstrated that flame image-based
predictions were more suitable for real-time control than direct measurement using exhaust
gas analyzers.

In the case of the OFB, the CER varies over time because of factors such as changes in
the amount of combustion air and variations in temperature and humidity. In the future,
based on the validated real-time prediction of image-based EGCs, as demonstrated in this
study, a control system will be developed to minimize EGCs and enhance combustion
efficiency in OFBs. This control system will incorporate an output device and optimize the
control process.
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Nomenclature
NOx Nitrogen oxides
SOx Sulfur oxides
SO2 Sulfur dioxides
CO2 Carbon dioxide
CO Carbon monoxide
O2 Oxygen
N Nitrogen
S Surfur
C Carbon
N2 Nitrogen molecule
H2O Water
R Red
G Green
B Blue
Y Luminance
Cb Differences between blue and luminance
Cr Differences between red and luminance
H Hue
S Saturion
V Value
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L1~L6 Linkage 1~6
n The number of predicted and actual values
yi Actual values
yw Predicted values
y’w The average of the Actual values
Greek symbols
ρa Mol of air
χa Mol of Unreacted O2
δo The O2 concentration of the exhaust gas
χe The ratio of moles of O2 to the total moles of combustion products
ρe The theoretical amount of air required
µ Average
σ2 Variance
Index
SCR Selective catalytic reduction
CFB Coal-fired boiler
GFB Gas-fired boiler
OFB Oil-fired boiler
CMOS Complementary metal-oxide-semiconductor
CCD Charge-coupled device
SEF Saturation extraction filter
EGCs Exhaust gas components
SVM Support vector machine
RGB Red, green, and blue
HSV Hue, saturation, and value
F.O. Fuel oil
F.D. Forced draft
CER Combustion equivalence ratio
PCA Principal component analysis
RGB_Origin Original RGB image data
Histo_RGB Histogramized RGB data
Histo_HSV Histogramized HSV
MSE Mean squared error
MAE Mean absolute error
RMSE Root mean squared error
R2 R-squared
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