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Abstract: Underwater vehicles have capacity limits for control inputs, within which their time-optimal
trajectories (TOTs) can be formulated. In this study, the fastest trajectory for the depth control of a
hybrid underwater glider (HUG) was found using buoyancy engines and propellers individually, and
the decoupled heave dynamics of the HUG were defined using quadratic hydrodynamic damping.
Because buoyancy engines always run at slow speeds, the buoyancy force was formulated based
on the constant force rate of the engine. It was assumed that the nominal value of the heave
dynamics parameters could be estimated; therefore, the analytical solution of heave dynamics could
be formulated using the thrusting saturation and constant buoyancy force rate. Then, the shortest
trajectory for depth control of the HUG could be established while considering the actuator saturation.
To verify the effectiveness of the TOT in HUG heave dynamics, extensive tracking control simulations
following the TOT were conducted. It was found that the proposed TOT helps the HUG reach
the desired depth in the shortest arrival time, and its robust depth control showed good tracking
performance in the presence of external bounded disturbances.

Keywords: time-optimal trajectory; heave dynamics; buoyancy engines; propellers; hybrid underwater
glider

1. Introduction

With the advancement of oceanography research and marine resource exploration,
underwater mobile platforms have gained prominence, assuming a pivotal role in various
underwater missions including resource exploration, ocean observation, environmental
monitoring, and sea area investigations [1–3]. These platforms come in various types, such
as remotely operated vehicles (ROVs) [4–6], autonomous underwater vehicles (AUVs) [7–9],
and underwater gliders (UGs) [10–12]. Among these, the underwater glider (UG) stands
out as a buoyancy-driven autonomous robot capable of converting vertical motion into
horizontal movement using airfoil technology, allowing it to move forward with minimal
power consumption over extended periods [13]. Utilizing fixed wings, internal masses, a
ballast pump, and a rudder, this glider controls its attitude and depth by adjusting buoyancy
levels, gliding effortlessly through the water column. Due to its exceptional performance,
traditional cylindrical UGs have garnered significant research attention [14,15].

UGs like the Slocum [16,17], Spray [18], Seaglider [19,20], and Deepglider [21,22] were
originally developed for oceanographic applications. While these buoyancy-driven gliders
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have demonstrated impressive endurance and energy efficiency, they suffer from limitations
in speed and maneuverability due to their restricted propulsion capabilities and external
control surfaces. Hence, enhancing the efficiency of gliders necessitates a reconfiguration
of their design [23–25]. One innovative approach to address these limitations involves
the hybrid-driven UG equipped with a propeller, independently adjustable wings, and a
controllable rudder. This innovative design incorporates a dual-mode propulsion system,
augmenting the glider’s speed significantly. Moreover, the integration of controllable
wings and a rudder enhances the glider’s maneuverability, thereby enhancing its overall
versatility.

Trajectories play a pivotal role in governing the motion of autonomous systems, and
their meticulous design is necessary for attaining high performance. Each underwater
vehicle has a capacity limit for control inputs, including the maximum thrust of the propeller
or the maximum net buoyancy force of the buoyancy engine. Time-optimal trajectories
(TOTs) for these vehicles can be formulated within these constraints. Previous studies have
focused on the TOT problem, such as the singular extremals of underwater vehicle systems
in [26] and the design of time-efficient trajectories with constant thrust arcs in [27]. However,
the latter algorithm required significant computational time for practical implementation.
Rhoads et al. [28] presented a numerical method for minimum time heading control of
an UG in known and time-varying flow fields. Meanwhile, Vu et al. [29] developed an
energy-efficient trajectory for depth motion control in underwater vehicle systems. Their
approach addressed uncertainties in bounded parameters and disturbances, utilizing a
global optimal sliding mode controller with limited control input. Duc et al. [30] derived
an analytical solution for the second-order nonlinear differential equation governing the
heading motion of underwater vehicles. However, this research exclusively formulated the
analytical solution for heading motion using propeller thrust saturation.

Achieving precise trajectory tracking amidst disturbances and uncertainties poses a sig-
nificant challenge, particularly for nonlinear systems and notably in robotic systems [31–33].
Numerous control strategies have been proposed to address this issue, including sliding
mode control [34,35], adaptive control [36,37], neural network control [38], backstepping
control [39,40], dynamic surface control [41,42], etc. Among these approaches, sliding
mode control (SMC) offers an effective approach to attain robust control for underactuated
underwater vehicles. Its inherent discontinuity, characterized by switching characteristics,
renders SMC a fitting choice for governing underactuated systems. Furthermore, SMCs
exhibit well in handling-system parameter uncertainties and disturbances [43,44]; thus,
SMC demonstrates remarkable robustness when applied to systems with uncertainties. The
depth controller is imperative for an underwater vehicle to execute its mission successfully
under the influence of environmental loads. Consequently, validating the performance
of the designed controller through simulations becomes an indispensable step before any
real-world trials. The HUG’s ability to track the desired depth is hindered by two major
barriers, namely steady-state error and non-zero pitch angle. Inaccurate trim and ballasting
conditions were found to be the cause of this issue in a previous study by Claus et al. [45],
where the depth control of a HUG using a buoyancy engine and internal moving mass was
described. However, this method resulted in considerable overshoot and steady-state error
in depth-keeping control, with suboptimal settling time. To overcome these issues, this
study aims to design an efficient trajectory for depth control of a HUG using a buoyancy
engine and thruster, with the objective of eliminating overshoot and steady-state error
while maintaining the desired depth.

In this study, the goal is to design a TOT for depth control in the HUG system using
buoyancy-driven propulsion and a thruster individually. A closed-form solution is pre-
sented for the pure heave dynamics under each constraint of buoyancy and thrusting force.
The control input is designed based on the limits of buoyancy force, buoyancy force rate,
and thruster force, and the TOT for depth control is defined to satisfy the constraints of
heave dynamics and actuator saturation. To track the TOT under the presence of external
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bounded disturbance, an SMC algorithm is designed, and its performance along with the
proposed TOT will be verified through computer simulations.

The rest of this paper is organized as follows. The concept of TOTs for depth control
of a HUG is presented in Section 2, followed by the closed-form solution of pure heave
dynamics in Section 3, where maximum buoyancy force, maximum rate of buoyancy force,
and minimum propeller force are considered. Section 4 defines the time-optimal trajectory,
and Section 5 presents the design of robust tracking control using SMC. The robust tracking
control with the proposed TOT will be simulated in Section 6 while considering the bounded
disturbance. Finally, the conclusion presents the effectiveness of the proposed TOT and
highlights the merits of the closed-form solution.

2. Heave Dynamics of Hybrid Underwater Glider and TOT Definition
2.1. Assumptions

In this paper, the motion of the HUG is simplified to focus solely on its heave motion.
Some simplifications have been applied to enable feasible simulations of the HUG. These
simplifications are outlined as follows:

• The HUG is assumed to have neutral buoyancy, with its body-fixed coordinate system
centered at its mass center;

• The HUG is deeply submerged in a homogeneous, unbounded fluid, far removed
from the free surface and devoid of surface effects;

• The HUG exhibits three planes of symmetry;
• To simplify the problem, only the depth motion of the HUG is considered in this paper;
• The hydrodynamic coefficients of the HUG remain constant and do not vary.

2.2. Heave Motion of HUG and TOT Definition

In this section, we propose a TOT for the heave control of HUGs, which is a challenging
task due to the slow speed of the buoyancy engine. The TOT is based on the limitations
of the buoyancy engine speed and saturation, as well as the thruster saturation. The six
degrees-of-freedom (DOF) nonlinear equations of motion for an underwater vehicle are
detailed in Fossen [46,47]. However, this paper specifically concentrates on depth control.
Thus, we present the nonlinear second-order differential equation that characterizes the
pure depth-plane motion of the HUG as follows:

(m− Z .
w)

.
w− Zw|w|w

∣∣∣w∣∣∣= (W − B) + Zprop
.
z = w

(1)

where m, Z .
w, w, Zw|w|, W, B, and Zprop are the mass of the HUG, added mass coefficient,

instantaneous velocity, cross-flow drag coefficient, weight of the HUG, buoyancy force, and
thrust force, respectively.

The heave dynamics of HUGs, described by two first-order differential systems, can
be represented by Equation (2), where a = m− Z .

w, b = −Z|w|w, and f represent the control
force acting on the vehicle, d is the external disturbance, Z .

w is the added mass, and Z|w|w is
the damping coefficient.

a
.

w + b|w|w = f + d
.
z = w

(2)

This paper employs an analytical approach, distinct from numerical methods, to derive
TOTs. These TOTs are represented as explicit functions within unchanged closed-form
expressions, enhancing the controller’s autonomous capabilities. The proposed trajectory-
tracking controller ensures optimal time performance when its references (inputs) align
with the TOTs, even in the presence of uncertainties. The concept of a TOT is grounded
in formulating the solution of the given dynamics as a time-dependent function for a
specific control input. In this context, maintaining the control input at both maximum and
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minimum values during acceleration and deceleration times yields the closed-form time
function representing the fastest or TOT for the given dynamics.

Table 1 provides a definition of the terms used in the proposed TOT.

Table 1. Some variables used in the TOT.

Variables Description

fmax The maximum force applied to HUG

fmin The minimum force applied to HUG

z0 Initial depth of HUG

z5 Desired depth of HUG

wd1 The velocity profile of HUG in the 1st segment

wd2 The velocity profile of HUG in the 2nd segment

wd3 The velocity profile of HUG in the 3rd segment

wd4 The velocity profile of HUG in the 4th segment

wd5 The velocity profile of HUG in the 5th segment

zd1 The position profile of HUG in the 1st segment

zd2 The position profile of HUG in the 2nd segment

zd3 The position profile of HUG in the 3rd segment

zd4 The position profile of HUG in the 4th segment

zd5 The position profile of HUG in the 5th segment
.

wd1 The acceleration profile of HUG in the 1st segment
.

wd2 The acceleration profile of HUG in the 2nd segment
.

wd3 The acceleration profile of HUG in the 3rd segment
.

wd4 The acceleration profile of HUG in the 4th segment
.

wd5 The acceleration profile of HUG in the 5th segment

The HUG system utilizes two types of control forces: the net buoyancy force ub
produced by the buoyancy engine and the thruster force ut generated by the thruster
depicted in Figure 1. The buoyancy engine is employed for descent, requiring low energy
consumption, while the thruster force is used sparingly when the vehicle approaches
the desired depth and to maintain the HUG at that depth. By switching between these
two forces, the HUG can be precisely controlled to reach the desired depth. To minimize the
use of thruster force, it should only be applied once the vehicle attains neutral buoyancy.
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The control strategy for the heaving motion of the HUG system is depicted in Figure 2a,
which shows the buoyancy force of the buoyancy engine as a dashed blue line. The up
slope and down slope represent the compression and expansion rates of air in the cylinder,
respectively. The designed thruster force is represented by the solid orange line.
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In order to control the depth of the HUG system, the constant rate of the buoyancy
force needs to be considered. This constant rate of the buoyancy force can be expressed as
cmax and cmin for the maximum and minimum speeds, respectively. Thus, the buoyancy
force can be formulated as cmax(t− t0) and cmin(t− α), where t0 and α are the initial times
for the descending motion and neutral condition, respectively. To ensure precise depth
control, it is necessary to define five different time periods, as described in Figure 2. The first
segment is from t0 to t1, and the dynamics of this period can be deduced from Equation (3).
It is important to note that t1 = t0 +

fmax
cmax

plays a key role in this period. The dynamics
equations for the second and third segments, which are from t1 to t2 and from t2 to t3,
respectively, can be defined as Equation (4). Similarly, the dynamics of the fourth and fifth
segments can be established as Equations (5) and (6), respectively. By solving all these
dynamics, the TOT for the pure depth plant of the HUG system can be defined. However,
it should be noted that this concept is only applicable during deep operation, as the HUG
should reach maximum heaving velocity as depicted in Figure 2d, which can be expressed
by the condition z5 ≥ (z2 − z0) + (z4 − z3). This concept is effective in achieving precise
depth control at depths of several hundred meters.

a
.

wd + bw2
d = cmax(t− t0) (3)
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a
.

wd + bw2
d = fmax (4)

a
.

wd + bw2
d = cmin(t− α) (5)

a
.

wd + bw2
d = fmin (6)

3. Analytical Solution of TOT in Heave Dynamics of HUG Using Buoyancy and
Thruster Force Individually
3.1. TOT in the 1st Segment with Positive Force Rate from Buoyancy Engine

The heave dynamics in this segment can be described by Equation (7), which can be

rewritten as Equation (8) by defining the variable wd1 as a
b

.
y
y . The solution to Equation (8)

involves the use of the Airy function, which can be solved using an alternative function y,
as presented in Equation (9).

a
.

wd1 + bw2
d1 = cmax(t− t0) (7)

a2

b (
..
y
y −

.
y2

y2 ) +
a2 .

y2

by2 = cmax(t− t0)

⇔ a2

b

..
y
y = cmax(t− t0)

(8)

y(t) = a0y0(t) + a1y1(t) (9)

To define the components of function y(t), we can use the following equations:

y0(t) = 1 +
σ1(t− t0)

3

6
+

σ2
1 (t− t0)

6

180
+

σ3
1 (t− t0)

9

12960
(10)

y1(t) = (t− t0) +
σ1(t− t0)

4

12
+

σ2
1 (t− t0)

7

504
+

σ3
1 (t− t0)

10

45360
(11)

σ1 =
bcmax

a2 (12)

Having the function y(t) defined, its first and second derivatives can be calculated as
follows:

.
y(t) = a0

.
y0(t) + a1

.
y1(t) (13)

..
y(t) = a0

..
y0(t) + a1

..
y1(t) (14)

Subsequently, the velocity trajectory can be represented as Equation (15) using the
alternative function y, while the acceleration trajectory can be obtained by taking the
derivative of the velocity trajectory, as presented in Equation (16). Finally, the position
trajectory can be derived by integrating the velocity trajectory and is given by Equation (17),
with C0 defined as Equation (18).

wd1 =
a
b

.
y
y

(15)

.
wd1 =

a
b

( ..
y
y
−

.
y2

y2

)
(16)

zd1 =
a
b

ln|y|+ C0 (17)

C0 = z0 −
a
b

ln|a0 p1 + a1 p2| (18)
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where p1 = y0(t0), p2 = y1(t0), p3 =
.
y0(t0), p4 =

.
y1(t0), a0 = 1, and a1 = − p3

p4
a0.

3.2. TOT in the 2nd Segment with Maximum Force from Buoyancy Engine

The second segment’s dynamics are calculated using the maximum input, as shown
in Equation (19). In [29], a closed-form solution was derived for these dynamics, which can
be expressed as Equations (20)–(22) in this work.

a
.

wd2 + bw2
d2 = fmax (19)

wd2 =
2
√

fmax/b

1 + e
2
a

√
b fmax(t+C1)

−
√

fmax

b
(20)

.
wd2 =

4 fmax

a
e−

2
a

√
b fmax(t+C1)(

1 + e−
2
a

√
b fmax(t+C1)

)2 (21)

zd2 =
a
b

ln
(

1 + e
2
a

√
b fmax(t+C1)

)
−
√

fmax

b
t + C2 (22)

The values of the constants C1 and C2 in this work are obtained through a different
approach than that used in [29] due to the variation in input geometries. These constants can
be calculated at time t1, and their formulas are given in Equations (23) and (24), respectively.

C1 =
−a

2
√

b fmax
ln

(
2
√

fmax/b
w1 +

√
fmax/b

− 1

)
− t1 (23)

C2 = z1 −
a
b

ln
(

1 + e
2
a

√
b fmax(t1+C1)

)
+

√
fmax

b
t1 (24)

3.3. TOT in the 3rd Segment with Constant Velocity

The typical desired depth for an underwater glider is usually several hundred meters,
which means that the constant velocity in the heave motion will be attained for deep-sea
HUGs. As a result, the dynamics of the third segment are always present, as defined in
Equation (25), and the constant velocity in this segment equals w∗2 or w3 = w∗2 . By using
Equation (26), the position trajectory can be determined, and the boundary constant C3 can
be obtained as Equation (27).

a
.

wd3 + bw2
d3 = fmax (25)

zd3 = w3t + C3 (26)

C3 = z2 − w2t2 (27)

3.4. TOT in the 4th Segment with Negative Force Rate from Buoyancy Engine

In this segment, the net buoyancy force begins to decrease to zero, and its delay is
defined in Equation (29). To compute the trajectory, we will use the alternative function
k(t).

a
.

wd4 + bw2
d4 = cmin(t− α) (28)

α = t3 −
fmax

cmin
(29)

The velocity trajectory of this segment can be solved using Equation (30), and its
derivative gives the acceleration trajectory, as shown in Equation (31). Finally, the posi-
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tion trajectory can be found using Equation (32) with the boundary condition given in
Equation (33).

wd4 =
a
b

.
k
k

(30)

.
wd4 =

a
b

 ..
k
k
−

.
k

2

k2

 (31)

zd4 =
a
b

ln|k|+ C4 (32)

C4 = z0 −
a
b

ln|a0 p1 + a1 p2| (33)

where

k(t) = n0k0(t) + n1k1(t); y0(t) = 1 + σ4(t−α)3

6 +
σ2

4 (t−α)6

180 +
σ3

4 (t−α)9

12960 ;

y1(t) = (t− α) +
σ1(t−α)4

12 +
σ2

1 (t−α)7

504 +
σ3

1 (t−α)10

45360 ; σ4 = bcmin
a2 ;

.
k(t) = n0

.
k0(t) + n1

.
k1(t);

..
k(t) = a0

..
k0(t) + a1

..
k1(t).

3.5. TOT in the 5th Segment with Minimum Input from the Thruster

The thruster is employed at the end of the TOT in the HUG system since it has a
quicker response compared to the buoyancy force. Although the thruster consumes more
power, it is still a feasible option for the HUG system as it is utilized for only a brief duration
in the TOT. Unlike the buoyancy force that requires a relatively longer time to change its
effect, the thruster can quickly adjust the glider’s position, making it the preferred choice
for maintaining the desired depth during the final segment of the TOT.

a
.

wd5 + bw2
d5 = fmin (34)

The fifth segment is crucial for the HUG system to reach the desired depth as quickly
as possible, and the thruster force is used for this purpose. The dynamics of this segment
can be expressed as Equation (34), which is a solution presented in a previous work [29]. By
rewriting the solution, the velocity, acceleration, and position trajectories can be obtained
as Equations (35)–(37), respectively.

wd5 =

√
− fmin

b
tan

(
−
√
−b fmin

a
(t + C5)

)
(35)

.
wd5 =

fmin
a

1

cos2
(
−
√
−b fmin

a (t + C5)

) (36)

zd5 =
a
b

ln

∣∣∣∣∣cos

(
−
√
−b fmin

a
(t + C5)

)∣∣∣∣∣+ C6 (37)

At the time instant t4, the values of the constants C5 and C6 are calculated using the
expressions given in Equations (38) and (39), respectively.

C5 =
−a√
−b fmin

arctan

 w4√
− fmin

b

− t4 (38)
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C6 = z4 −
a
b

ln

∣∣∣∣∣cos

(
−
√
−b fmin

a
(t4 + C5)

)∣∣∣∣∣ (39)

4. Closed-Form Solution for TOT in Heave Dynamics of HUG

The assumptions made for the forces and rates in the HUG system are critical for its
operation. Specifically, it is assumed that the maximum force generated by the buoyancy
engine is fmax, while the thruster’s minimum force is fmin. Additionally, the maximum and
minimum rates of the net buoyancy force generated by the buoyancy engine are cmax and
cmin, respectively.

A solution for the TOT can be obtained by solving the heave dynamics at specific time
instances, namely t1, t2, t3, t4, and t5, for the individual dynamics of buoyancy engines and
thrusters. Here, t1 = t0 +

fmax
cmax

and t4 − t3 = fmin
cmin

due to the delay in the buoyancy force.
The problem is defined with the given information such as the initial conditions t0 = 0,
w0 = 0,

.
w0 = 0, and z0 and the final conditions w5,

.
w5, and z5.

4.1. Find z1, w1 and
.

w1

First, we define some parameters as p1 = y0(t0); p2 = y1(t0); p3 =
.
y0(t0); p4 =

.
y1(t0);

p5 =
..
y0(t0); p6 =

..
y1(t0); q1 = y0(t1); q2 = y1(t1); q3 =

.
y0(t1); q4 =

.
y1(t1); q5 =

..
y0(t1);

q6 =
..
y1(t1); l1 = k0(t3 − t4); l2 = k1(t3 − t4); l3 =

.
k0(t3 − t4); l4 =

.
k1(t3 − t4); l5 =

..
k0(t3 − t4); l6 =

..
k1(t3 − t4); h1 = k0(0); h2 = k1(0); h3 =

.
k0(0); h4 =

.
k1(0); h5 =

..
k0(0);

h6 =
..
k1(0); t3 − t4 = fmax

cmin
.{wd1(t0) = w0.

wd1(t0) =
.

w0
zd1(t0) = z0

⇔
{ .

y0(t0) = 0
..
y0(t0) = 0

a
b ln|y(t0)|+ C0 = z0

⇔
{ a0 p3 + a1 p4 = 0

a0 p5 + a1 p6 = 0
C0 = z0 − a

b ln|a0 p1 + a1 p2|

⇔
{ a1 = − p3

p4
a0

a0 p5 + a1 p6 = 0
C0 = z0 − a

b ln|a0 p1 + a1 p2|

(40)

Based on the above equations, constraints on the initial conditions of w0,
.

w0, and
z0 can be defined as Equation (40). Solving these constraints yields the constant C0 and
enables the relationship between a0 and a1 to be established.

Assuming the parameter a0 = 0, the set of constraints defined in Equation (40) can be
solved as follows.

a1 = − p3

p4
a0 (41)

C0 = z0 −
a
b

ln|a0 p1 + a1 p2| (42)

z1 =
a
b

ln|a0q1 + a1q2|+ C0 (43)

w1 =
a
b

(
a0q3 + a1q4

a0q1 + a1q2

)
(44)

.
w1 =

a
b

(
a0q5 + a1q6

a0q1 + a1q2
− (a0q3 + a1q4)

2

(a0q1 + a1q2)
2

)
(45)
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The calculation of the remaining unknowns can be computed in subsequent steps once
the first boundary is solved.

4.2. Find t2, z2, w2, and
.

w2

Based on the given time t1 and the previously obtained value of w1, the boundary
constants C1 and C2 can be determined using the following equations.

C1 =
−a

2
√

b fmax
ln

(
2
√

fmax/b
w1 +

√
fmax/b

− 1

)
− t1 (46)

C2 = z1 −
a
b

ln
(

1 + e
2
a

√
b fmax(t1+C1)

)
+

√
fmax

b
t1 (47)

The logarithmic function requires a non-zero argument; therefore, we define w2c as
Equation (48), which is then used to calculate t2 in Equation (49) instead of using w2. It is
worth noting that a slight error in this conversion is considered acceptable.

w2c = ε

√
fmax

b
(ε ≈ 1) (48)

t2 = t2c =
−a

2
√

b fmax
ln

(
2
√

fmax/b
w2c +

√
fmax/b

− 1

)
− C1 (49)

After calculating the time t2 using the expression in Equation (49), the trajectories at
this time can be obtained as Equations (50)–(52).

z2 =
a
b

ln
(

1 + e
2
a

√
b fmax(t2c+C1)

)
−
√

fmax

b
t2c + C2 (50)

w2 =
2
√

fmax/b

1 + e
2
a

√
b fmax(t2c+C1)

−
√

fmax

b
(51)

.
w2 =

4 fmax

a
e−

2
a

√
b fmax(t2c+C1)(

1 + e−
2
a

√
b fmax(t2c+C1)

)2 (52)

4.3. Find w3, z4 and w4

The order of solving the TOTs cannot follow a sequential approach from the first to the
fifth segment. As such, it is necessary to define trajectories for the fourth segment before
the third and fifth segments. Constant C3 can be calculated using information from the
second segment and is given by Equation (53). The constant velocity in the third segment
can then be obtained using Equation (54).

C3 = z2 − w2t2 (53)

w3 =

√
fmax

b
(54)

The velocity at time t4 can be obtained using Equation (55).

w4 =
− a

b l3 + l1w3

l4 − b
a l2w3

(55)
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To estimate the position trajectory at time t4, we approximate χ ≈ 0, χ > 0. This
allows us to estimate the arbitrary constants n0 and n1 of the Airy solution in the function
k(t), which can be obtained using Equations (57) and (58).

β =
b
a

w4 (56)

n0 =
√

χ√
l1l5+βl2l5+βl1l6+β2l2l6−l2

3−β2l2
4−2βl3l4

(χ ≈ 0, χ > 0)
(57)

n1 = βn0 (58)

The computation of the distance from t3 to t4 is then obtained by Equation (59) in the
following.

∆z43 =
a
b

ln
∣∣∣∣n0h1 + n1h2

n0l1 + n1l2

∣∣∣∣ (59)

The distance travelled from t4 to t5 can be determined by using Equation (60).

∆z54 =
a
b

ln

√
1−

w2
4

fmin/b
(60)

Finally, based on the distance ∆z54, the position trajectory at time t4 can be determined
using Equation (61).

z4 = z5 − ∆z54 (61)

4.4. Find z3, t3, and t4

Once the position at time t4, z4, is known, we can compute the constant C4 and the
position at time t3 as Equations (62) and (63), respectively.

C4 = z4 − ln|n0h1 + n1h2| (62)

z3 =
a
b

ln|n0l1 + n1l2|+ C4 (63)

Based on the information of z3 and C3, time t3 can be determined using Equation (64).

t3 =
z3 − C3

w3
(64)

Subsequently, time t4 can be obtained as the sum of time t3 and the delay caused by
the buoyancy engine, as expressed in Equation (65).

t4 = t3 +
fmax

cmax
(65)

4.5. Find α and t5

Using time t3, the constant α in the fourth segment can be determined as Equation (66).
Subsequently, time t5 can be calculated based on the boundary constant C5, which is derived
in Equations (67)–(69).

α = t3 −
fmax

cmin
(66)

C5 =
−a√
−b fmin 3

arctan

(
w4√
− fmin/b

)
− t4 (67)

C6 = z5 (68)
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t5 = −C5 (69)

The TOT times, namely t2, t3, t4, and t5, are presented in Equations (49), (64), (65), and (69),
respectively. Therefore, if the TOT is chosen as the reference for depth control, the input
required will be identical to the design input displayed in Figure 2.

5. Design the Tracking Controller Using the SMC Algorithm

In this section, we introduce the design of a tracking controller for the proposed TOT
of the HUG’s depth motion, utilizing the SMC algorithm. The depth trajectory tracking
control is depicted in the control system block diagram illustrated in Figure 3. Employing
this control strategy ensures the HUG is efficiently guided to the desired depth.
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The heave dynamics can be reviewed as follows:

a
.

w + b|w|w = f + d
.
z = w

(70)

where f denotes the control input and d represents the bounded disturbance. It is assumed
that the nominal values of the hydrodynamic coefficients for the heave dynamics are
known, which allows the controller to focus on dealing with the bounded disturbance d.
To achieve this, an SMC with a saturation function was developed for the heave dynamics,
as shown below.

The sliding surface s is created as a function of depth error and heave velocity error,
represented by Equation (71). The weight λ is a positive value that determines the relative
importance of position and velocity error in the control design.

s = (w− wd) + λ(z− zd) (71)

The expression for the control input f is obtained as follows.

f = b̂w|w|+ â
.

wd − λâ(w− wd)− Ksat
(

s
φ

)
(72)

where â and b̂ are the assumed nominal values for the system parameters a and b, respec-
tively. The boundary layer for the sliding surface is denoted by φ, and K is a positive gain
that affects the rate of convergence to the sliding surface.

K = ∆bw2 + ∆a
∣∣ .
wd − λ(w− wd)

∣∣+ D + ηamax (73)

where the controller assumes that the magnitude of uncertainty in the parameters a and b,
represented by ∆a and ∆b, respectively, is zero. Additionally, D represents the bound of the
external disturbance d, η is a small positive scalar, and amax is the maximum possible value
of a.
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By utilizing the SMC, the TOT tracking control can be designed to be robust against
the effects of external bounded disturbance. The subsequent section aims to demonstrate
the effectiveness of combining the TOT and SMC approaches in verifying the tracking
performance.

6. Simulation and Discussion

To assess the TOT’s performance and its control input, we conduct a tracking control
analysis for the HUG using the SMC algorithm and develop a simulator based on a HUG
model. The simulation is implemented using a Matlab-Simulink model comprising three
subsystems: one for the designed TOTs and parameters, another for the SMC algorithm,
and the third for the heave motion dynamics of the HUG, as illustrated in Figure 4.
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Table 2 presents the simulation parameters. Simulating the vehicle’s depth control
with the proposed TOT and SMC strategy requires utilizing hydrodynamic coefficients
and vehicle variables from Vu et al. [29], typically estimated through the CFD method.
The values of a, b, fmax (net buoyancy force), and fmin (including the thruster force and
pitch angle) were set to 50.5 kg, 10 kg, 3.43 N, and −10 N, respectively. Additionally, the
rate of buoyancy force, an essential parameter of the buoyancy engine, was assumed to
be cmax = −cmin = fmax

20 N/s, and it takes 20 s to reach the maximum force from zero. To
further observe the simulation’s performance, we added a disturbance to the dynamics
as d = 0.2 sin (2t/π). This disturbance enabled us to test the TOT control input’s ability
to oscillate around the predefined input with the same disturbance magnitude. The SMC,
which uses a saturation function, was employed in this depth control simulation.

Table 2. Parameters for simulation.

D
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η
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λ
(s−1)
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Z|w|w
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Z .
w
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a
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6.1. Simulation 1: Tracking Control of TOT Using SMC Controller without Disturbance

The desired depth for the simulation was set to 40 m, with z0 = 0 as the water surface
and z5 = 40 m as the target depth. To determine the TOT profile, the times t2, t3, t4,
and t5 were obtained using Equations (49), (64), (65), and (69), respectively, resulting
in t2 = 63.5238, t3 = 66.1899, t4 = 86.1899, and t5 = 87.7597. In practical scenarios,
the depth z3 at which the buoyancy force must be reversed is crucial to approach the
desired depth z5 in a neutral buoyancy condition. By using Equation (63), depth z3 was
computed as 30.1475 m for this simulation. Hence, by reversing the buoyancy force at
z3 = 30.1475 m, the HUG vehicle could achieve the target depth z5 = 40 m in the neutral
buoyancy condition.

According to the results depicted in Figure 5, the TOT was accurately tracked by the
actual position, velocity, and acceleration. The heave velocity, as illustrated in Figure 5,
achieved its maximum value of 0.587 m/s at t2. Meanwhile, the heave acceleration initially
increased from zero to 0.031 m/s2 and then decreased to zero at t2. From t2 to t4, the
net buoyancy force declined to zero to achieve neutral buoyancy, and the thruster was
utilized from t4 to t5. During this period, the buoyancy force decreased from 3.43 N to
0 N in 20 s, resulting in a reduction in heave velocity and heave acceleration to 0.32 m/s
and −0.22 m/s2, respectively. The thruster was responsible for reducing the velocity and
acceleration to zero at t5, as shown in Figure 5. After a brief period of operation, the control
input of the thruster was set to zero and remained so. As a result, the vehicle’s depth was
maintained at 40 m using a 3.43 N buoyancy force and −10 N thrust, with a minimum time
of 87.8 s. This simulation can be utilized by designers to verify if their buoyancy engine
and thruster force capacity designs meet specific requirements for settling time.
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Between time points t4 and t5, the sudden shift in acceleration and velocity trajectories
led to a notable spike in the tracking error. Specifically, the position error and velocity error
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reached levels of 5× 10−4 m and 2× 10−3 m/s, respectively. However, toward the end
of the TOT period, all tracking errors gradually subsided and eventually reached zero, as
depicted in Figure 6.

As illustrated in Figure 7, the implemented control input closely resembled the pre-
planned input. Assuming that the heave dynamics parameters of the actual system match
those used in the experiment, utilizing the TOT for control input would push the buoy-
ancy engines and thrusters to their operational limits. By utilizing the full force of these
components, it was possible to achieve the shortest possible arrival time for depth control.
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6.2. Simulation 2: Tracking Control of TOT Using SMC Controller under External Disturbance

To evaluate the system’s resilience to external disturbances, we introduced a sinu-
soidal disturbance (d = 0.2 sin (2t/π)) into the heave dynamics via Equation (2). Despite
the presence of the disturbance, the TOT tracking performance remained satisfactory, as
depicted in Figure 8. However, due to the chattering elimination using the saturation
function in SMC, the tracking error deteriorated slightly, as shown in Figure 9. Even so,
the position error remained within 0.002 m, while the velocity error and acceleration error
were both controlled below 0.002 m/s and 0.006 m/s2, respectively.

Figure 10 illustrates the most crucial result of the simulation, where the control input
oscillated around the pre-defined input for the TOT due to the disturbance. Moreover,
the magnitude of the actual input deviation was equivalent to that of the disturbance.
Specifically, the buoyancy force in this simulation fluctuated between 3.22 N and 3.64 N,
while the desired input was 3.43 N, as depicted in Figure 10. However, the average value
of the actual buoyancy force was estimated to be 3.43 N, which corresponded to the pre-
defined input, with a deviation of 0.2 N, equivalent to the magnitude of the disturbance
d = 0.2 sin (2t/π). Figure 10 shows the same phenomenon for the thrusting force after
completing the TOT. These results suggest that the magnitude of the disturbance must be
factored into the buoyancy engine’s design capacity to ensure proper functioning.

The proposed TOT-based depth control algorithm demonstrated robustness against
external bounded disturbances, as shown in simulations. This was achieved through the
implementation of a robust SMC strategy, incorporating a saturation function to keep the
tracking error minimal under such conditions. The control effort closely followed the
desired input, and its deviation was equivalent to the disturbance bound. Overall, the
TOT-based approach offers a promising solution for robust depth control in the presence
of disturbances.
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7. Conclusions

The study developed an analytical solution for the TOT in heave dynamics by utilizing
a hybrid actuation scheme that incorporated individual buoyancy and thruster forces. It
was assumed that the nominal value of the heave dynamics parameters could be estimated;
therefore, the analytical solution of heave dynamics could be formulated using the thrusting
saturation and constant buoyancy force rate. Then, the shortest trajectory for depth control
of a HUG could be established while considering the actuator saturation. The results of the
closed-form heave dynamics solution for the buoyancy engine not only shows the TOT for
depth control but also provides a formula to compute the depth for reversing the buoyancy
force in practical applications. Once the nominal value of the vehicle mass, added mass,
and damping coefficients are defined, the proposed TOT helps the HUG reach the desired
depth within the shortest arrival time.

The proposed TOT-based robust depth control algorithm was validated in simulations
and demonstrated excellent tracking performance even in the presence of bounded distur-
bances. According to the simulation results, buoyancy and thruster force were used at the
maximum and minimum values; therefore, the consuming time in the depth control was
the fastest at around 88 s from 0 m to 40 m depth under the assumption that the system
parameters and actuator saturations are defined.

The focus of this study was to design the TOT for the HUG system using the buoyancy
engine and thruster. Parameter uncertainties were not taken into account in this analysis.
However, if the estimation errors of uncertain system parameters are defined as bounded
disturbances, the TOT’s application can be extended to uncertain HUG systems. This aspect
will be the focus of our future work. Also, to further validate the proposed TOT and robust
control algorithm, some experiments will be conducted on a physical HUG system.
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