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Abstract: Marine current turbines (MCTs) may exhibit reduced energy production and structural
instability due to attachments, such as biofouling and plankton. Semantic segmentation (SS) is
utilized to recognize these attachments, enabling on-demand maintenance towards optimizing power
generation efficiency and minimizing maintenance costs. However, the degree of motion blur might
vary according to the MCT rotational speed. The SS methods are not robust against such variations,
and the recognition accuracy could be significantly reduced. In order to alleviate this problem, the SS
method is proposed based on image entropy weighted spatio-temporal fusion (IEWSTF). The method
has two features: (1) A spatio-temporal fusion (STF) mechanism is proposed to learn spatio-temporal
(ST) features in adjacent frames while conducting feature fusion, thus reducing the impact of motion
blur on feature extraction. (2) An image entropy weighting (IEW) mechanism is proposed to adjust
the fusion weights adaptively for better fusion effects. The experimental results demonstrate that
the proposed method achieves superior recognition performance with MCT datasets with various
rotational speeds and is more robust to rotational speed variations than other methods.

Keywords: marine current turbine; vision transformer; semantic segmentation; blade attachment;
image entropy

1. Introduction

As climate change becomes more intense, the development of clean energy sources is
gradually accelerating [1,2]. Marine current energy is recognized as a promising source
of clean energy due to its predictability, high energy density and limited environmental
impact [3,4]. The marine current turbine (MCT) can convert marine current energy into elec-
trical energy. However, MCTs are deployed underwater, and attachments can accumulate
over time on the submerged surfaces of the MCT, such as plankton or biofouling [5]. The
work of Farkas et al. [6] indicates that more than 80% of the areas on the blades of a normally
operating MCT have the potential to be attached. Attachments can cause increased fatigue
load and unbalanced torque, which can threaten the structural stability of the MCT. Most
importantly, there is a reduction in the energy conversion efficiency of MCTs since the
roughness of the blade surface is changed by attachment [6–8]. Therefore, it is necessary
to clean and maintain the MCT to ensure its stable and efficient operation. However, the
marine environment poses problems in accessibility, which means that the maintenance of
the MCT will be time-consuming and costly [9]. Consequently, it is important to recognize
the attachment of MCT blades accurately and quickly, which facilitates the optimization of
maintenance schedules and even on-demand maintenance, thus reducing maintenance and
monitoring costs and improving power generation efficiency.

Recent research has focused on developing methods for recognizing attachments on
MCT blades, which can be classified into two categories, as summarized by Xie et al. [5].
The first category involves extracting features from the electrical signals obtained from the
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built-in sensors of the MCT to recognize attachment, which has been demonstrated to be
fast and effective [10–12]. However, these methods are likely to respond only when there is
unbalanced torque or significant speed variations caused by the attachment. Additionally,
the extracted features may be submerged due to strong turbulence interference, which
may lead to recognition failure. In contrast, image signals are less affected by turbulence
since they contain rich spatial information. Thus, the second category involves utilizing
image signals from optical or image sensors to recognize attachments. Convolutional
neural networks (CNNs) have been widely used to extract image features for recognizing
attachments on MCT blades. Typically, a CNN encoder is used for feature extraction, which
is followed by a corresponding classifier or decoder to achieve recognition. Zheng et al. [13]
proposed a method that utilizes a sparse auto-encoder and softmax regression for the feature
extraction and classification of various attachment cases through MCT images. However,
this method has a complex training process and can only roughly classify a few pre-defined
cases. In comparison, Xin et al. [14] utilized depthwise separable convolutions [15] instead
of sparse auto-encoders to classify more complex attachment cases. However, the above
methods may fail to recognize the attachment cases outside of the pre-defined standards,
and it is challenging to obtain the location or coverage of the attachment exactly.

In contrast to the previous methods, semantic segmentation (SS) is capable of clas-
sifying each pixel of an image, which can eliminate the drawbacks associated with the
above methods. Peng et al. [16] first introduced SS to the attachment recognition of MCT
blades, combining fine features into the encoder to optimize the segmentation contours
and improve accuracy. The pixel-level recognition results can be used as output and visu-
alized, thus giving detailed information on the location and coverage of the attachment
and therefore facilitating the provision of real-time and detailed information on the status
of the blades to the monitoring personnel. However, the MCT operation is affected by
various factors, such as turbulence, and the rotational speed is not constant. These factors
result in different degrees of motion blur in the acquired MCT images, which causes the
degradation of feature extraction, leading to changes in the edge and texture features and
potential recognition failures [17]. This will lead to a significant reduction in the recogni-
tion accuracy of SS when the rotational speed of the MCT changes. The above problem
shows the poor robustness of the SS method against the variation of the MCT rotational
speed, which leads to the inability to achieve the ideal recognition performance when
encountering an unknown rotational speed situation. In order to address this issue, a SS
method is proposed for the attachment recognition of MCT blades in this paper, which is
based on image entropy weighted spatio-temporal fusion (IEWSTF). The core idea of this
method is to perform feature extraction on multiple adjacent frames simultaneously and
construct a feature mapping from other frames to the key frame through feature learning,
which reflects the spatio-temporal (ST) features between adjacent frames and alleviates
the degradation of feature extraction due to motion blur. A spatio-temporal fusion (STF)
mechanism is designed to learn the ST features. In addition, an image entropy weighting
(IEW) mechanism is proposed to adaptively adjust the fusion weights of adjacent frames
to prevent inaccurate feature learning due to the excessive differences between frames.
The experimental results demonstrate the superior performance of the proposed method
compared to other methods, with highly accurate attachment recognition for MCT blades
at high rotation speeds and robustness against rotational speed variations.

The main work of this paper is summarized as follows:

1. An IEWSTF-based semantic segmentation method is proposed in this paper for the
attachment recognition of MCT blades, which aims to improve robustness against the
variations in rotational speed of the MCT;

2. The STF mechanism is proposed for learning the ST features between the adjacent
frames to alleviate the degradation of feature extraction due to motion blur;

3. An IEW mechanism is proposed to obtain the optimal fusion features by adaptively
adjusting the fusion weights by measuring the degree of difference between the
adjacent frames.



J. Mar. Sci. Eng. 2023, 11, 691 3 of 14

The remainder of this paper is arranged as follows. Section 2 provides a concise
overview of prior research related to the present study, outlining their respective limitations
in the context of attachment recognition on MCT blades. Section 3 introduces the MCT
image dataset employed in the experiments in this paper and then presents a detailed
exposition of the IEWSTF-based SS method proposed for robust attachment recognition.
Section 4 presents the experimental results and discussion. Finally, Section 5 summarizes
the main findings in this paper and provides some directions for future research.

2. Related Works
2.1. Semantic Segmentation

The SS techniques aim to predict the categorical assignment for each pixel in an image,
thereby facilitating the depiction of their spatial interrelationships. The advent of the fully
convolutional network (FCN) [18] revolutionized the application of deep learning models
in SS by eliminating fully connected layers and introducing skip connections, enabling
pixel-level prediction. However, the limited receptive field of the FCN hinders its ability to
produce high-quality segmentation. To address this challenge, Chen et al. [19] introduced
the concept of dilated convolution. In its subsequent iterations [20–22], a pyramid structure
is established through the incorporation of dilated convolution with varying dilation
rates, thereby expanding the receptive field and facilitating the modeling of contextual
information. However, these advancements have failed to fundamentally address the
limitation of the fixed receptive field size on CNNs, thereby impeding further progress in
the field of SS. Furthermore, too many empirical modules have been introduced to improve
the segmentation performance [23], which leads to computational complexity and makes it
unsatisfactory for the processing speed when used for the attachment recognition of MCTs.

In recent times, transformer and self-attention models have garnered significant at-
tention in computer vision, with experiments demonstrating the superiority of vision
transformers (ViTs) with their variable receptive fields over CNNs [24,25]. There have been
extensive works developing ViT-based SS methods that still follow the encoder-decoder
structure that is generally adopted. Earlier efforts include SETR [26] and TransUNet [27],
both of which attempt to replace the CNN in the encoder with the ViT for early-stage
feature extraction. It has been observed that the ViT has the ability to capture global
contextual relationships from the outset, thereby overcoming the drawback of the limited
receptive field of CNNs. Yet, the difference is that SETR employs the ViT exclusively in its
encoder, while TransUNet utilizes a hybrid structure comprising a variant CNN and the
ViT. However, the above methods fail to entirely alleviate the limitations of the CNN, as
their decoders are still constructed by convolutional layers. In response to this problem,
convolutional layers are replaced with linear layers in the decoder by SegFormer [23], thus
constructing the SS framework completely without convolution. The framework realizes
high efficiency through the complete utilization of linear layers. Meanwhile, excellent
segmentation performance is maintained by the great advantage of ViTs in extracting global
contextual information.

To the best of our knowledge, limited research has been conducted to evaluate the
performance of ViT-based models in recognition of MCT blade attachments. In this paper,
we will evaluate the performance of several state-of-the-art ViT-based SS methods for MCT
attachment recognition and propose a new SS method to enhance the robustness against
rotational speed variations.

Meanwhile, as motion blur remains a challenge in the SS field, many efforts have
attempted to overcome this problem. Li et al. [28] improved the accuracy of SS for motion-
blurred images by fusing the features of ViT and convolutional layers. Some works [29–32]
optimize the semantic segmentation performance with the help of relevant information
from history frames to overcome motion blur. However, it is difficult to achieve an optimal
estimation of the exact position of motion-blurred objects with the information of history
frames only. Wang et al. [33] used the information in the next adjacent frame to overcome
the effect of motion blur. However, this method requires the help of optical flow estimation
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to model the motion trend of the object, which will create additional computational costs
and also require additional a priori knowledge for support. The goal of this paper is to
utilize the spatio-temporal information contained in both the historical and future frames,
thus filling the gap in the above research. Moreover, such information is fused into the
feature maps to better estimate the position of objects with motion blur in the current frame.
In addition, by aggregating multi-scale features, it is able to optimize the segmentation
edges and achieve optimal attachment recognition.

2.2. Image Entropy

In the field of thermodynamics, entropy is utilized to characterize the disorder or
randomness of molecular motion. Shannon introduced the concept of entropy to quantify
the uncertainty of an information source in communication systems. The information
entropy can be interpreted as the amount of information present in a source, with higher
entropy indicating a greater amount of information. As such, it is frequently utilized as an
objective function in optimization problems.

In the field of image processing, various entropies are utilized for the determination
of threshold values for image segmentation [34–36], where the optimal threshold is deter-
mined by maximizing the entropy value. However, in this paper, entropy is employed
to measure the degree of difference between adjacent frames, which serves as a reference
for weight assignment and thus helps to mitigate the distortion of feature fusion caused
by excessive differences between adjacent frames. A detailed analysis is presented in
Section 3.2.2.

3. Data and Methods
3.1. Image Dataset for MCT

For the purpose of model training, the MCT data is sourced from the marine environ-
ment simulation and experimental platform of the marine current generator set at Shanghai
Maritime University, as depicted in [16]. In order to simulate the operation of the MCT on
the seafloor, an MCT prototype is placed in a water tank, which is used to replicate the flow
of water. The pump is used to propel the water flow, thereby inducing the rotation of the
MCT. An underwater camera is placed in the water tank to record a frontal video of the
MCT prototype at a resolution of 640 × 576. The original images are acquired through
video frame capturing and resized to 480 pixels in width and height.

The blade attachment occurs through the growth of biofilms on the submerged surface
of the MCT and the accumulation of plankton by adsorption [6]. However, it is not practical
to cultivate biofilms on the prototype or simulate plankton accumulation due to the time-
consuming nature of the process, the uncontrollability of the results, and the potential for
irreversible damage to the prototype. Therefore, ropes are wrapped around the blades to
simulate the textural features of the attachment in this paper. Considering that the blade is
less likely to be attached to the locations that are closer to the tip [6], the rope is wrapped
from the root of the blade while leaving the tip of the blade empty. In order to prevent
uniform textural features, variations are introduced, including the use of ropes of different
colors and forms of wrapping, etc. In summary, five forms of attachment are simulated.
Figure 1 shows examples of the five simulations and their corresponding hand-labeled
ground truth (GT). The GT utilizes gray to represent the healthy part of the blade; red
indicates the attachment and light blue indicates the shaft that carries the blade.
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Figure 1. The images of MCT blades and the corresponding GT under different conditions of
attachment simulation. The red box in the images indicates the area covered by the attachment. The
forms of attachment are: (a) healthy; (b) single blade sparsely attached; (c) single blade densely
attached; (d) double blades densely attached; (e) triple blades densely attached.

In order to evaluate the effect of the rotational speed on SS accuracy, it is necessary to
acquire MCT image data at different rotational speeds. In fact, the degree of motion blur
determines the effect of the rotational speed on SS accuracy. Therefore, it is necessary to
find the relationship between the rotational speed of the MCT and the degree of motion
blur so as to determine the rotational speed reasonably during the image acquisition. There
are two factors that determine the degree of motion blur: one is the exposure time of the
image acquisition device, and the other is the displacement of the object in the frame that
occurs during the exposure time. With a certain exposure time, motion blur is mainly
related to the latter factor, i.e., the rotational speed of the MCT. Since the MCT prototype
lacks a speed sensing module, the rotational speed is measured through the stator current
frequency output from the prototype’s permanent magnet synchronous generator (PMSG).
The reason is that, in the PMSG, the shaft rotation frequency has the following relationship
with the stator current frequency [10]:

fm =
fe

p
(1)

where fe denotes the frequency of the stator current, the p is the pole pair of the PMSG, and
fm represents the rotational frequency of the shaft.

Therefore, fe and p can be used to determine the rotational speed of the MCT blades.
Further, it is necessary to derive the relationship between the rotational speed of the MCT
and motion blur. The MCT turns through an angle ∆θ during the exposure time texp of the
image acquisition device, resulting in motion blur. By combining with Equation (1), it is
obtained that

∆θ =
fe · texp

p
× 360◦ (2)

where texp denotes the exposure time of the image acquisition device. In the experimental
platform introduced in the previous section, texp = 1/90 s and p = 8.

The parameter ∆θ is appropriate to reflect the degree of motion blur of the MCT.
As a result, this paper divides five levels of rotational speed according to the ∆θ of the
MCT: level 1 for ∆θ ≤ 6◦, level 2 for 6◦ < ∆θ ≤ 7◦, level 3 for 7◦ < ∆θ ≤ 8◦, level 4 for
8◦ < ∆θ ≤ 9◦, and level 5 for ∆θ > 9◦. Thus, the determined ranges of the stator current
frequencies are fe ≤ 12 Hz, 12 Hz < fe ≤ 14 Hz, 14 Hz < fe ≤ 16 Hz, 16 Hz < fe ≤ 18 Hz,
and fe > 18 Hz. The MCT images will be acquired in each of these five current frequency
ranges. Similarly, images are acquired for five attachment types at each speed level, as
shown in Figure 1.
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Data augmentation is applied to enrich the dataset further to enhance the generaliza-
tion and robustness of the model. Two approaches are used in this paper: random rotation
and photometric distortion. Random rotation is used to rotate the original image and GT
by the same random angles. Since the MCT is rotating, this approach is able to simulate
various spatial positions of the MCT blades while reducing the effort of processing raw
data. Photometric distortion is used to randomize the hue, contrast and saturation of the
image during the training phase, thus avoiding over-fitting due to the model’s over-reliance
on color and background features. There are 48 images for each attachment form at each
level of rotational speed, totaling 1200 images in the dataset.

3.2. The Image Entropy Weighted Spatio-Temporal Fusion-Based SS Method

Figure 2 illustrates the IEWSTF-based SS method proposed in this paper. The network
structure of the proposed method still follows the basic structure of the encoder-decoder.
The ViT is employed in the encoder part of the proposed method to ensure a sufficiently
large perceptual field for the model and to enable a fast SS. The encoder contains four
stages, each of which will reduce the resolution of the feature maps by half so that the
multi-scale features are extracted. In the encoder, the STF mechanism is designed to learn
the ST features contained between the adjacent frames. Different features are learned and
extracted from the three adjacent frames F(t), F(t− 1) and F(t + 1), respectively. These
feature maps will be used for fusion. More details will be described in Section 3.2.1. In
the above three frames, F(t) is used as the key frame, and GT is labeled according to F(t).
The other two are used as reference frames. The network constructs a mapping from these
reference frames to the key frame features, which reflects the changes that occur in the
reference frames relative to the key frame, i.e., the ST features.

Figure 2. The structure diagram of the proposed IEWSTF-based SS method.

In the fusion process, an IEW mechanism is proposed in order to avoid distortion
of the fused features caused by the excessive differences between the adjacent frames.
Smaller weights will be assigned to the features that differ excessively, thus weakening
the distortion of the fused features. A description of the proposed IEW mechanism will be
given in Section 3.2.2.
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In the decoder of the method, a lightweight structure is constructed based on the
multilayer perceptron (MLP) that will accept multilevel features from the encoder as
input [23]. Through the fusion of multilevel features, both global and local features are
preserved, thus allowing for high-quality segmentation results with fewer computations.

In order to further reduce the model computations and thus increase the speed of
attachment recognition, the segmentation map size output by the model is set to be smaller
than the input image. When the input size is (hi, wi), the size of the segmentation map
output by the model is (hi/4, wi/4). The bilinear interpolation upsampling is used to scale
up the segmentation map to (hi, wi) in order to compare the segmentation results with the
GT of size (hi, wi) for evaluating the performance.

3.2.1. Spatio-Temporal Fusion

In order to learn the ST features contained in the adjacent frames for the network, the
first step is to calculate the embeddings of the adjacent frames F(t), F(t− 1) and F(t + 1)
for feeding them into ViTs for feature learning. For effective feature learning, on the one
hand, there need to be some differences between the features to be fused. Excessively small
differences can cause the weights that are learned by the three ViTs to converge to the
same, and therefore, no ST features will be learned. On the other hand, the differences
between the adjacent frames are mainly reflected in the variations in the spatial positions
of the objects in the images. For the MCT images, the deep features in the network tend
to reflect the abstract and global features with little difference. In contrast, the shallow
features will retain more contour and texture features and are more likely to highlight the
differences between the adjacent frames. For the above reasons, the learning and fusion
of the ST features are done in the shallow layers of the encoder. Specifically, in Stage
1 of the encoder, three ViT modules are used to learn the features in F(t), F(t− 1) and
F(t + 1), respectively. The three sets of embeddings will be fed into the corresponding
ViT module for feature learning, respectively, which has been computed in the first step.
As depicted in Figure 2, ViTt will learn the features of the key frame F(t) by iteratively
updating the network parameters. The feature maps will be used as the foundation for SS.
Furthermore, since the ground truth for segmentation is annotated based on the key frame
F(t), the feature maps extracted by ViTt−1 and ViTt+1 in the adjacent frames F(t− 1) and
F(t + 1) will also gradually approach the feature maps corresponding to the key frame F(t)
during the iterative update of the network parameters. In fact, this will enable ViTt−1 and
ViTt+1 to construct mappings from the adjacent frames to the key frame features, which
can be considered as the network capturing the ST features of the adjacent frames [29,37].
It is worth noting that the above ViT modules use a similar structure to the Transformer
Block in SegFormer. However, this paper uses three ViT modules to process three frames,
respectively. The additional ViT modules are used to learn the spatio-temporal features in
the adjacent frames and fuse them with the features of the key frames. The process of STF
can be formulated as Equation (3):

G[F(t), F(t− 1), F(t + 1)] = WtF(t) + wIE[Wt−1F(t− 1) + Wt+1F(t + 1)] (3)

where G[F(t), F(t− 1), F(t + 1)] are the fused features. The wIE is the image entropy
weights, which will be described in Section 3.2.2. Wt, Wt−1 and Wt+1 denote the weight
matrix of ViTt, ViTt−1 and ViTt+1, respectively.

3.2.2. Image Entropy Weighting

It is necessary to fuse the feature maps of the adjacent frames described above to
improve the robustness of the SS network against the variations in rotational speed. To
avoid feature fusion distortion due to the excessive differences between adjacent frames, an
IEW mechanism is proposed to adjust the values of the fusion weights adaptively. Lower
fusion weights will be assigned to the features of the adjacent frames with larger differences.
Specifically, the difference matrix is calculated between adjacent frames. Then, the image
entropy is obtained from the difference matrix, and then the fusion weights are calculated.
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For frame F(t), it is subtracted from the neighboring frames F(t− 1) and F(t + 1),
respectively, to obtain the corresponding difference matrix Dt−1 and Dt+1:{

Dt−1 = Squeeze(ReLU(F(t)− F(t− 1)))/(255× 3)
Dt+1 = Squeeze(ReLU(F(t)− F(t + 1)))/(255× 3)

(4)

where ReLU denotes the rectified linear unit (ReLU). The ReLU filters out values less than
zero so as to ensure that the information retained in the difference matrix is based on the
F(t). The matrix continues three channels after the ReLU, which is the same as an image.
The Squeeze represents the squeezing of three channels into one, i.e., summing up the
values of each pixel over the three channels. Since the image pixels have a maximum value
of 255 on each channel, the Squeeze sums the three channels so that the maximum value
becomes 255 × 3. For normalizing all the values, the matrix is divided by 255 × 3.

However, there is considerable noise in the difference matrix calculated directly from
the original image, which is presented as discrete noise in the background region. In
contrast, it is continuous in the region belonging to the MCT blade in the difference
matrix, which is fundamentally different from the background. Utilizing this characteristic,
convolve filtering is used to perform background denoising on the difference matrix. It
is an effective algorithm to reduce the pixel value of the noise by filtering the local area
with its local average. The kernel size of the convolving filter is set to (7, 7). After convolve
filtering, the noise removal is then achieved by setting the values to zero for those less than
the threshold τ in the difference matrix. For Dt+1, the above process can be described as
Equation (5):

D′t+1 = ReLU(convolve7×7(Dt+1)− τ). (5)

where convolve7×7 denotes the convolve filtering with the kernel size of (7, 7), and D′t+1
is the difference matrix after denoising.

Equation (5) will be repeated n times to achieve the optimal denoising effect. The
denoising of Dt−1 is done in the same way. For the image data of the MCT in this paper, it
is set as τ = 0.55 and n = 4.

Then, for the denoised difference matrices D′t−1 and D′t+1 above, their image entropies
are calculated according to Equation (6) [38]:

h( f ) = −
255

∑
i=0

pi log2 pi (6)

where pi denotes the probability of the appearance of the pixels with gray value i in the
image f .

To calculate the entropy of the difference matrix, all values in the difference matrix
D′t−1 and D′t+1 are multiplied by 255 and rounded down; thus, the difference matrix can
be considered a grayscale map to calculate the image entropy. Further, the normalized
results are obtained after the calculation of the sigmoid function in order to be used in the
weight calculations. The operation above is shown in Equation (7):

hnormal = σ
(
h
(
floor

(
D′ × 255

)))
(7)

where σ denotes the sigmoid function, and the floor indicates rounding down.
At this point, the weight values are obtained via Equation (8), which will be assigned

to the feature maps:
wIE = 1− hnormal (8)

where wIE denotes the weight that will be assigned to the feature maps of adjacent frames.
When there is a larger gap between the adjacent frames, there will be a larger scatter

of points in the difference matrix indicating the MCT blades, which means a higher entropy
value, i.e., a larger value of hnormal. After the operation of Equation (8), the weights assigned
to these features will be smaller. The above process is the IEW proposed in this paper. The
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IEW adaptively adjusts the fusion weights according to the differences in adjacent frames,
thus weakening the distortion of feature fusion by the excessive differences.

4. Results and Discussion

A comprehensive comparative experiment was conducted on the MCT dataset to
evaluate the effectiveness of the proposed method. Section 4.1 outlines the experimental
parameters of this paper, and Section 4.2 provides the evaluation metrics of the experiments.
The evaluations are conducted in Sections 4.3 and 4.4, with different experimental condition
settings, to assess the performance of the proposed method.

4.1. Configuration of the Training Process

In this paper, the experimental hardware platform is a single NVIDIA Quadro P5000
GPU with 15 GB of RAM. The software framework is built based on Pytorch. The param-
eters are set for the training process, as shown in Table 1. The initial learning rate is set
to 0.001 using the AdamW optimizer, and the batch size is set to 4 due to the fixed input
image size of 480 × 480 and the memory limitation of the hardware platform. All models
are trained from scratch, and the weight parameters are randomly initialized using the
truncated normal distribution.

Table 1. Experimental parameters.

Parameters Value

Optimizer AdamW
Batch size 4

Initial learning rate 0.001
Epochs 100
Shuffle True

Photometric Distortion True

During the training process, data augmentation is used to increase the richness of the
dataset to ensure that the trained models have sufficient generalization performance, which
has been introduced in Section 3.1. Further, all data are normalized to accelerate network
convergence before being fed into the model.

4.2. Evaluation Metrics

The mean intersection-over-union (mIoU) is used to evaluate the SS accuracy of these
approaches, which is the most commonly used evaluation metric for SS. In addition, pixel
accuracy (PA) is also used in this paper to evaluate the recognition accuracy of the model
in each semantic category in detail. The calculation of these two metrics has been described
in [39].

In order to ensure a fair and reasonable comparison of the proposed method with other
methods, this paper conducts two types of comparisons. The first comparison involves
the use of all MCT image data, collected at five levels of rotational speed for training and
testing, where 1200 images are randomly split into the training set and the test set with a
9:1 ratio. Section 4.3 presents the results and analysis obtained using this approach. The
second comparison involves training the model using only a portion of the level 1 data.
The 240 images from level 1 are randomly split into the training set and test set with a 9:1
ratio, and all 960 images from the other four speed levels (levels 2 to 5) are used for testing.
Section 4.4 presents the comparison results and analysis for this approach.

4.3. Overall Accuracy Evaluation of SS on MCT Dataset

The proposed method is compared with the current mainstream ViT-based SS methods,
including SETR and SegFormer, in which the performances are close to state-of-the-art. For
SETR, the parameter setting follows the SETR-Naive-Base, which is the lightest configu-
ration of the model. In terms of SegFormer, SegFormer-MiT-B0 is used, which is also the
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smallest model configuration of SegFormer, for the consideration of the requirements for
fast recognition.

Table 2 shows the comparison of the mIoU among these methods. It can be seen from
Table 2 that a higher segmentation accuracy is achieved by the IEWSTF-based SS method
proposed in this paper than the other two methods, with improvement exceeding 2% of
the mIoU compared to the SETR model. The performance boost is even more than 4%
compared to SegFormer. This is due to the fact that the proposed IEWSTF is able to perform
efficient feature learning based on the adjacent frames, and the mappings from images to ST
features can be constructed, thus overcoming the feature deviations caused by motion blur.
Therefore, the proposed method achieves more accurate recognition of the MCT images at
various speeds than other methods, resulting in a higher overall mIoU.

Table 2. Comparison of mIoU for all methods.

Methods mIoU

SegFormer-MiT-B0 92.95
SETR-Naive-Base 94.26
IEWSTF (Ours) 96.99

To evaluate the recognition accuracy on each semantic category (blade, attachment,
shaft) for all methods in more detail, the PA is calculated for each category, respectively.
The comparison for PA is shown in Figure 3.

Figure 3. Comparison of PA for all methods in each semantic category.

As seen in Figure 3, the proposed method achieves 98% PA in all three categories,
which is higher than the other two comparison methods. Furthermore, there is a significant
improvement in PA in both the blade and attachment categories with respect to SETR and
SegFormer, in the range of 2–3%, which shows the superiority of the proposed method in
the attachment recognition of MCT blades. In fact, the motion blur is mainly reflected in the
positions of the blades and attachments in the images, which indicates that the proposed
IEWSTF can effectively overcome the degradation of the feature extraction caused by
motion blur.

In order to more intuitively evaluate the effectiveness of attachment recognition, a
qualitative comparison is made with the SS results of all methods. Figure 4 shows some
of the comparison results. As seen in Figure 4, the higher quality can be seen in the
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segmentation maps output by the proposed method compared with the other two methods.
It is seen that the contour of the segmentation map of IEWSTF is closer to the GT. The other
two methods are more obviously affected by motion blur, and distortion is observed in the
segmentation maps at various rotational speeds.

Figure 4. Qualitative comparison of segmentation maps of different methods.

Specifically, incomplete segmentation edges are found in some of the results from
SegFormer for the location of the blade tip. This is due to the fact that there is a more
significant motion blur at the tip of the blade compared to the root, thus having a greater
impact on accuracy. Furthermore, the proposed IEWSTF has complete segmented edges by
adaptively learning the ST features between adjacent frames, which can be compensated
after being motion-blurred.

For the recognition results of the attachment, both SETR and SegFormer showed
incomplete recognition of the coverage area of the attachment, as can be seen from the third
result of SegFormer and the second and sixth results of SETR. In contrast, the proposed
method has the most accurate recognition of the attachment, with an accurate depiction of
the location of the attachment and the boundaries of the coverage area.

In addition, it shows more misrecognitions from the segmentation maps of SETR,
especially in the background. This is determined by the mechanisms within SETR. In SETR,
the ViT transforms the image into multiple patch embeddings via location. Each patch
embedding is a local region in the image. Since these local regions do not overlap each
other, they will be more vulnerable to noise due to the lack of learning for common features
at the junctions. While IEWSTF adopts the transformation strategy of overlapping patch
embedding, which is similar to SegFormer, the common features of the overlapping part of
patch embeddings can be learned to eliminate the interference of noise.

4.4. Evaluation of the Robustness against the Variations in Rotational Speed

In order to evaluate the robustness of the proposed method against the variations in
rotational speed of the MCT, the models are trained using only a portion of the data of
level 1. Then, the models are tested on the remaining level 1 data and all data from level 2
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to level 5. Figure 5 shows the comparison of the testing results. As shown in Figure 5, when
trained with data from level 1, there is a decrease in the mIoU for all methods from level 2
to level 5. SETR and SegFormer both show declines of more than 30%. Furthermore, while
the IEWSTF shows the slightest drop, the mIoU is still above 70% from level 2 to level 5,
which indicates that the IEWSTF improves the robustness of the SS network against the
variations in rotational speed. It should be noted that when the speed is accelerated, the
differences are subsequently increased between the adjacent frames. In this case, the IEW
mechanism will adaptively assign smaller weights to the features of the adjacent frames.
This also contributes to the higher robustness of the model.

Figure 5. Comparison of mIoU for all methods at different levels of rotational speed.

5. Conclusions

An IEWSTF-based SS method is proposed in this paper to improve the robustness of
the SS method against the variations in MCT rotational speeds. The method adaptively
learns and fuses the ST features in adjacent frames by using the STF and IEW mechanisms.
The method performs excellently with the MCT image datasets with multiple rotational
speed levels. Additionally, the proposed method shows stronger robustness to the varia-
tions in MCT rotational speeds than the comparison methods. The experimental results also
demonstrate that the proposed method can meet the requirements for practical applications
with sufficient training data.

Follow-up work can focus on further extending the model to semi-supervised or
unsupervised SS methods to reduce the dependence on labeled datasets. In addition, future
research could also focus on studying how to reduce the impact of marine environmental
variations on the model.
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