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Abstract: There are inevitable multiphase flow problems in the process of subsea oil-gas acquisition
and transportation, of which the two-phase flow involving gas and liquid is given much attention.
The performance of pipelines and equipment in subsea systems is greatly affected by various flow
patterns. As a result, correctly and efficiently identifying the flow pattern in a pipeline is critical
for the oil and gas industry. In this study, two attention modules, the convolutional block attention
module (CBAM) and efficient channel attention (ECA), are introduced into a convolutional neural
network (ResNet50) to develop a gas–liquid two-phase flow pattern identification model, which
is named CBAM-ECA-ResNet50. To verify the accuracy and efficiency of the proposed model, a
collection of gas–liquid two-phase flow pattern images in a vertical pipeline is selected as the dataset,
and data augmentation is employed on the training set data to enhance the generalization capability
and comprehensive performance of the model. Then, comparison models similar to the proposed
model are obtained by adjusting the order and number of the two attention modules in the two
positions and by inserting other different attention modules. Afterward, ResNet50 and all proposed
models are applied to classify and identify gas–liquid two-phase flow pattern images. As a result, the
identification accuracy of the proposed CBAM-ECA-ResNet50 is observed to be the highest (99.62%).
In addition, the robustness and complexity of the proposed CBAM-ECA-ResNet50 are satisfactory.

Keywords: gas–liquid two-phase flow; convolutional neural network; attention mechanism; flow
pattern identification; oil–gas transportation

1. Introduction

In recent years, marine engineering and subsea engineering technology have been
rapidly developed. With the gradual maturity of onshore oil-gas field acquisition technol-
ogy, the exploration and exploitation of oil and gas have gradually developed from onshore
to deep and far ocean, which is also the trend of global industrial energy exploitation and
utilization [1–3]. In the process of subsea oil-gas energy production, oil reservoirs usually
contain associated gas, and gas reservoirs often contain condensate oil and water. After the
oil-gas multiphase medium is collected, it will undergo various types of gathering pipelines
for mixed transportation and will inevitably face the problem of multiphase flow [4]. There-
fore, to reduce the operating cost of gathering pipelines, in the exploitation of deep and
far ocean oil-gas fields, including onshore oil-gas development, oil-gas-water multiphase
flow mixed transportation technology is often adopted [5]. Gas–liquid two-phase flow
is a typical and complex flow situation in multiphase flow problems, and its proportion
in industrial production is high [6]. The flow mechanism of gas-liquid two-phase flow,
fluidic vibration and hydrodynamic analysis are also the current research interests of many
scholars [7–10]. In the mixed flow process of a gas–liquid two-phase fluid, due to the
different flow velocities and compressibility of each phase fluid, different flow patterns will
emerge [11]. The flow pattern is an important feature reference in the study of gas–liquid
two-phase flow mechanisms [12,13]. Typical gas–liquid two-phase flow patterns include
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stratified flow, wave flow, slug flow, churn flow and annular flow [14]. Different flow
patterns sometimes have different effects on gathering pipelines and related equipment.
For example, severe slug flow in subsea risers, with the alternating injection and backflow
of gas and liquid slugs, will cause drastic vibration to the pipeline, which will reduce the
service life of gathering pipelines to a certain extent. Therefore, to promote the study of
gas–liquid two-phase flow mechanisms and prediction models, it is necessary to strengthen
industrial flow pattern monitoring, optimize the structural design of gathering pipelines
and develop more efficient flow pattern identification methods.

Currently, artificial intelligence technology has been vigorously developed, espe-
cially in the field of deep learning computer vision, and many effective results have been
achieved [15–17]. In addition, image identification technology has been increasingly ap-
plied to the field of multiphase flow pattern identification [18,19], which has created new
directions and ideas for multiphase flow pattern identification technology. Many scholars
have applied machine learning to flow pattern identification, such as support vector ma-
chines (SVMs) and decision trees. The image, vibration and pressure of difference signals
corresponding to various flow patterns are measured, and then the features of the mea-
sured data need to be complexly extracted. The machine learning algorithm is utilized to
identify the data. However, this flow pattern identification method has some disadvantages.
When working with a large amount of data, the work efficiency is often very low, and
sometimes a very serious overfitting phenomenon occurs. Zhang et al. used electrical
capacitance tomography (ECT) to obtain capacitance measurement data corresponding to
four flow patterns. After extracting features, the data were input into an SVM to realize
flow pattern identification [20]. Qi et al. employed electrical resistance tomography (ERT)
to measure electrical signal data containing flow pattern characteristics and used the SVM
method in machine learning to realize flow pattern identification [21]. Saito et al. extracted
the fluctuating force signal characteristics of four flow patterns and utilized an artificial
neural network (ANN), SVM and decision tree algorithm to realize the identification of
two-phase flow patterns in the nuclear industry [22]. Deep learning can build a model with
strong generalization ability by training large quantities of data, and the feature extrac-
tion process of the model also substantially avoids the error influence caused by different
levels of human subjective consciousness [23–27]. Therefore, deep learning models are
increasingly and widely applied in image identification, behavior recognition and speech
recognition [28]. A CNN is a representative and typical deep learning network model [29].
Simultaneously, many scholars have applied the CNN model to flow pattern identification
technology, quantified the measured flow pattern data, and performed deep potential fea-
ture extraction. Xu et al. compared three classical CNN models and established an online
flow pattern monitoring system using ResNet50 [30]. Li et al. used ECT to collect images of
four flow patterns in a subsea jumper and established a dataset. The Adam optimizer is
utilized in EfficientNet-B5, and the flow pattern image type achieves high identification
accuracy [31]. The research focus of flow pattern identification is not only to construct a new
flow pattern identification method system by combining different measurement methods
and intelligent identification models, but also to innovate and improve the identification
model. Xu et al. applied the ResNet50 model to the identification of gas–liquid two-phase
flow patterns for the first time and changed the classifier in the original model to the
SVM classifier. A model combining deep learning and machine learning was constructed
to realize the intelligent identification of gas–liquid two-phase flow patterns [32]. Niu
et al. proposed a new CNN-LSTM model by combining CNN and LSTM; the model can
effectively identify oil-in-water flow patterns in vertical pipelines [33]. Ouyang et al. com-
bined BiLSTM with CNN and introduced an attention mechanism and residual connection
structure to identify conductance signals under five typical flow patterns to achieve flow
pattern recognition [34].

Although traditional convolutional neural networks (CNNs) have achieved good
results in the field of two-phase flow pattern identification and classification, they lack
the control of global information in detailed feature extraction. The attention mechanism
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can increase the receptive field of the feature extraction layer of the neural network and
integrate the global features of the data to improve the performance of the identification
model. In addition, improving the identification and classification accuracy of CNNs is a
controversial research direction [35]. In this study, an improved gas–liquid two-phase flow
pattern identification model is proposed. Based on the classical CNN—ResNet50—double
attention mechanism modules (CBAM and ECA) are introduced to make the model pay
more attention to the potential characteristics of flow pattern image data and effectively
improve the flow pattern identification capacity. First, four flow patterns of gas–liquid
two-phase flow in a vertical pipeline are collected: annular flow, sparse bubbly flow, dense
bubbly flow and slug flow. Two attention modules are introduced into ResNet50 at two
specific positions to construct a new model. The comparison model was obtained by
adjusting the order and number of attention modules in the two specific positions. Second,
the performance analysis and comparison of the proposed model, original model and
comparison model are implemented to confirm the accuracy and efficiency of the proposed
model for flow pattern identification. Last, the simplicity and performance of the model are
verified by comparing the model complexity and accuracy when inserting other attention
modules. The proposed model provides a new direction for algorithm optimization and
flow pattern identification technology, which is important for industrial oil-gas exploitation
and multiphase flow guarantees.

The remainder of this paper is organized as follows: Section 2 presents the principle of
the proposed methodology. Data processing, model training approaches and performance
analysis of related comparison models are described in Section 3, and the study is concluded
in Section 4.

2. Methodology

In this study, the classical network structure ResNet50 is improved by introducing
double attention mechanism modules (CBAM and ECA) to identify and classify gas–liquid
two-phase flow patterns in vertical pipelines.

2.1. Convolutional Neural Network–ResNet50

The classical convolutional neural network (CNN) is a supervised neural network
model [36] that is widely employed in the field of image identification in computer vi-
sion [37]. The main structures of the CNN are the convolution layer, pooling layer and fully
connected layer, and the convolution layer can be calculated by:

Xl
n = f ( ∑

a=Dl
n

Xl−1
a × Kl

an + Bl
n) (1)

where f (·) is the activation function, K is the convolution kernel, l is the layer structure of
the network, Dl

n is neuron n corresponding to the filter, and Bl
n is the bias of the n unit in

the lth layer. The calculated data samples in the CNN operation are vector groups, and the
weight vectors must first be randomly initialized for subsequent calculations.

In addition, the CNN is a feed-forward neural network that uses a back-propagation
algorithm for iterative learning, automatically updates the convolution kernel weight
parameters and calculates the optimal weight in the identification model, making the image
identification accuracy more accurate [38]. In the image identification task, to improve
the identification accuracy of the model, a common method is to deepen the network
structure [31]. However, as the number of convolutional layers increases, the model may
experience gradient explosion, gradient disappearance and overfitting, which adversely
affect the identification accuracy of the model [39]. Based on the ResNet50 model, this study
enhances the identification accuracy of gas–liquid two-phase flow pattern images. Figure 1
shows the overall network architecture of ResNet50, which was applied to 1000 object
classification tasks in the ImageNet dataset. Since ResNet50 adds an identity mapping
structure, it effectively solves the problem of network degradation [40].
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Figure 1. ResNet50 network structure. 
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Figure 1. ResNet50 network structure.

Figure 2 shows the characteristic residual structure in ResNet, where x is the quantized
feature map parameter, F(x) is the output result calculated by the convolution layer and
H(x) is the final mapping result, both of which are satisfied by:

H(x) = F(x) + x (2)

when the error of H(x) increases, the mapping mechanism will make F(x) close to 0, and
the original parameter x will be directly passed. Thus, the final mapping relationship is
expressed as [41]:

H(x) = x (3)
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The cross-entropy loss function is a commonly employed loss function in classification
tasks. In this study, the cross-entropy loss function is applied to all models to calculate the
loss and facilitate iterative learning of the model. Its function expression is defined as:

L = − 1
Q

Q−1

∑
q=0

R−1

∑
r=0

yq,r ln pq,r (4)

where Q is the number of samples; R is the number of label values; yq,r is the label of the q
sample, r; and pq,r is the probability that the q sample is predicted to be the r label value.

The ReLU function serves as the activation function by default in ResNet50, and the
expression of the ReLU activation function is:

f (x) = max(0, x) (5)
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2.2. Attention Mechanism

In the process of visual observation, much attention is always paid to prominent and
valuable scenes, which are referred to as attention mechanisms in the field of deep learning
computer vision. In the CNN, the larger part of the model weight parameter is used to
improve the final identification performance of the network model [42]. Generally, channel
attention, spatial attention and 3D attention are common and the main types of attention
mechanisms in computer vision [43].

2.2.1. CBAM Attention Mechanism

The convolutional block attention module (CBAM) is lightweight compared to other
attention modules. It consists of two attention modules in series, namely, the channel
attention module and spatial attention module [44]. Figure 3 shows the network structure
of the CBAM. In the process of image feature extraction, the CBAM adaptively calculates
better weight values in the dimensions of channel and space so that important features can
be fully utilized in the subsequent iterative learning of parameters. The learning process
of the neural network is strengthened so that the identification model focuses more on
features unique to the image [45].
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The structure of the channel attention module is illustrated in Figure 4. First, assuming
that the input feature map is F, it enters the max pooling layer and average pooling
layer. Second, the derived features of the two pooling layers are input into the multilayer
perceptron (MLP) to obtain new features. Third, two new features are added. Fourth,
the sigmoid activation function is used to calculate the channel feature weight vector MC.
Last, the original input feature F is multiplied by the channel feature weight to obtain the
channel attention feature F′, which is expressed as:

F′ = MC(F)⊗ F (6)J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 6 of 25 
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The structure of the spatial attention module is shown in Figure 5. The channel atten-
tion feature F′ obtained by the channel attention module serves as the input feature of the
spatial attention module for the max pooling calculation and average pooling calculation.
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The derived results are spliced to obtain new features, and then the convolution operation
is performed on this new feature. The size of the convolution kernel is 7× 7, and the spatial
weight vector MS is calculated by the sigmoid activation function. The spatial feature F′′ is
obtained by multiplying the spatial weight vector and channel feature by:

F′′ = MS(F′)⊗ F′ (7)

where⊗ is elementwise multiplication. The channel attention module focuses on important
features in the channel dimension of the feature map, while the spatial attention module
focuses on important features in the spatial dimension. In both the channel attention
module and spatial attention module, the input features are calculated by max pooling and
average pooling.
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The calculation relationship between the channel and the spatial weight vector is
expressed as follows:

MC(F) = σ(MLP(AvgPool(F) + MLP(MaxPool(F))) (8)

Ms(F′) = σ(Conv([AvgPool(F′); MaxPool(F′)])) (9)

where σ(·) is the sigmoid activation function, MLP(·) is a multilayer perceptron, AvgPool(·)
is the average pooling calculation, MaxPool(·) is the max pooling calculation and Conv(·)
is the two-dimensional convolution calculation.

2.2.2. ECA Mechanism

Efficient channel attention (ECA) is an optimization model of squeeze-and-excitation
(SE) attention [46], which uses fewer parameters to enhance the performance of the model.
ECA is also a plug-and-play attention mechanism module [47]. The forward flow of the
ECA module is to perform global average pooling in different channel dimensions of the
input feature map and then to splice it into a one-dimensional feature vector. Then, the new
feature vector is convoluted by a one-dimensional convolution kernel, and the new weight
value is calculated by the sigmoid activation function. The new features are calculated by
multiplying by the original input features. The advantage of this calculation method is that
it effectively avoids the problem of channel dimension reduction and enables cross-channel
feature information interaction [48], thus achieving an efficient feature extraction process.
Figure 6 shows the structure of the ECA module.
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In the process of parameter learning, the ECA module shares the same learning pa-
rameters with all channels [49] and achieves efficient information cross-channel interaction.
The process is expressed as follows:

ωi = σ(
k

∑
j=1

ω jyj
i), yj

i ∈ Ωk
i (10)

Note that this parameter sharing process can be easily realized by using one-dimensional
convolution with a convolution kernel size of k. The one-dimensional convolution process
is expressed as follows:

ω = σ(C1Dk(y)) (11)

where C1D(·) is a one-dimensional convolution and σ(·) is the sigmoid activation function.
When using this method in the ECA module, only k parameters are involved.

In the process of using cross-channel information interaction to enhance the effect
of feature extraction, it is necessary to determine the appropriate interaction coverage,
that is, to determine the appropriate size of the one-dimensional convolution kernel [50].
In the CNN architecture, the output features of different locations often have different
numbers of channels. If the optimal cross-channel interaction coverage suitable for different
channel numbers is obtained by manually adjusting the size of the convolution kernel,
the computational resources and time cost are considerable. Wang et al. proposed an
adaptive convolution kernel size determination method that can be utilized in different
channel dimensions [48]. Given the number of channels C, an adaptive one-dimensional
convolution kernel size k is obtained. There is a mapping relationship between C and k:

C = φ(k) (12)

Linear function mapping, such as Equation (13), is a common and simple mapping
relation. However, because linear mapping is too simple, it cannot meet the actual needs
in many cases and will be subject to many restrictions. In CNN parameters, the channel
dimension C is generally a power of 2. Therefore, the original linear function Equation (13)
is improved to obtain a nonlinear mapping function, as shown in Equation (14).

φ(k) = γ× k− b (13)

C = φ(k) = 2(γ×k−b) (14)

The size of the one-dimensional convolution kernel k is determined by the number of
channels C according to:

k = ψ(C) =
∣∣∣∣ log2(C)

γ
+

b
γ

∣∣∣∣
odd

(15)
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where |t|odd is the odd number closest to t, γ is set to 2 and b is set to 1. According to the
mapping relationship in Equation (15), it can be concluded that high-dimensional channels
need to use larger convolution kernels to adapt to cross-channel interactions. In contrast,
the low-dimensional channel determines a smaller convolution kernel to complete a shorter
range of interactions.

2.3. Principle of CBAM-ECA-ResNet50

In summary, the convolutional layer in the network architecture of the deep learning
CNN can quantify the features of the image by layer-by-layer advancement without the
need to manually extract the unique features of the image. The introduction of an attention
mechanism creates a new direction in improving the structure of the neural network and
enhancing the performance of the model. Based on the classical network ResNet50, this
study combines the two attention mechanism modules CBAM and ECA and adds them
to the front and back positions of the four stages in ResNet50 (hereinafter referred to
as the former position and the latter position). The aim is to improve the identification
performance of the network model for gas–liquid two-phase flow patterns. According
to the method and principle of model improvement, the proposed new model is defined
and named CBAM-ECA-ResNet50. Figure 7 shows the network structure of CBAM-ECA-
ResNet50. The collected gas–liquid two-phase flow pattern image data of the vertical
pipeline are applied to the proposed model to realize the intelligent classification and
identification process, which is mainly divided into four steps:
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Figure 7. CBAM-ECA-ResNet50 structure.

Step 1: The flow pattern image in the dataset is input into the model. First, the
convolution layer and max pooling layer are passed in turn, and a preliminary feature
map extraction is carried out to obtain feature maps with 64 channels. The max pooling
layer has the effect of increasing the receptive field. The extracted preliminary features are
input into the CBAM and then passed through the channel attention module and spatial
attention module in the CBAM. The extracted preliminary features continue to calculate
more appropriate weights in the dimensions of channel and space to further extract higher-
quality remodeling features without changing the overall channel dimension.
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Step 2: The reconstructed features enter an important part of ResNet50, a continuous
convolution layer composed of 16 bottlenecks, which is divided into 4 stages. The number
of channels output by each stage is 256, 512, 1024 and 2048. In this process, because of
the unique residual mapping structure of ResNet50, the reconstructed features of CBAM
output are further extracted.

Step 3: The new feature output at the end of the fourth stage will enter the ECA module
to make the 2048-dimensional features fully undergo cross-channel information interaction
so that the model pays more attention to the correlation among different channel features.
Because the position of the ECA module in the network structure and the channel dimension
of the input features have been determined, the cross-channel interaction coverage in the
ECA module can be calculated by Equation (15); that is, the convolution kernel size of the
adaptive one-dimensional convolution is k = 7. In this part, the feature weights are further
optimized without channel dimension reduction.

Step 4: The global average pooling operation is performed on the features output by
the ECA module to obtain a 1 × 1 × 2048 feature vector. This process does not require
learning updated weight parameters and reduces the risk of model overfitting. The process
also better reflects the global information of features. To make the model adapt to the iden-
tification task of four types of gas–liquid two-phase flow patterns in this study, the feature
vector is connected to a fully connected layer with four neurons. The 2048-dimensional
feature is mapped into a four-dimensional feature vector. By the comparison of the classifi-
cation score ratio, the category of the image data is determined. Intelligent identification of
flow pattern images is realized.

The size and dimension of the input image data in the model are 224× 224× 3. Table 1
shows all the structural parameters in CBAM-ECA-ResNet50.

Table 1. CBAM-ECA-ResNet50 structure and related parameters.

Part Layer Name Output Size Operator Channels

1 Conv 112 × 112 conv7 × 7 64
2 Max Pooling 112 × 112 max pool3 × 3 -

3 CBAM 112 × 112

channel
attention
module

spatial attention
module

64
64

4 Conv Stage 1 56 × 56

 conv1× 1
conv3× 3
conv1× 1

×
3

64
64

256

5 Conv Stage 2 28 × 28

 conv1× 1
conv3× 3
conv1× 1

×
4

128
128
512

6 Conv Stage 3 14 × 14

 conv1× 1
conv3× 3
conv1× 1

×
6

256
256

1024

7 Conv Stage 4 7 × 7

 conv1× 1
conv3× 3
conv1× 1

×
3

512
512
2048

8 ECA 7 × 7 ECA attention
module 2048

9 Global Average
Pooling 1 × 1 global average

pool -

10 Fully Connected 1 × 1 fully connected 4
11 Output
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3. Validation of CBAM-ECA-ResNet50
3.1. Dataset and Data Augmentation

To validate the performance of the proposed new CBAM-ECA-ResNet50 for gas–liquid
two-phase flow pattern identification, 3522 gas–liquid two-phase flow pattern images
collected in the vertical pipeline are selected as the dataset of the model [51]. Labeling each
image and using the method of no-return random sampling, with 70% as the training set
and 30% as the validation set are shown in Table 2. Generally, due to the different flow rates
of gas–liquid two-phases in the pipeline, the flow patterns of the fluid will also be different.
The collected image data include four flow patterns, namely, sparse bubbly flow, dense
bubbly flow, slug flow and annular flow. Sparse bubbly flow is one of the most common
gas–liquid two-phase flow patterns in vertical pipelines and is characterized by bubbles of
different sizes scattered in the liquid phase. Small bubbles are usually spherical, and larger
bubbles may show different shapes. In dense bubbly flow, the velocity of bubbles is usually
faster, the distribution of bubbles is diffuse and bubbles of different sizes are almost filled
with the liquid phase. The bubble flow is theoretically divided into sparse bubbly flow and
dense bubbly flow, which can be distinguished quantitatively by measurable parameters,
such as bubble volume fraction, bubble diameter and bubble velocity. Generally, the bubbly
flow with a bubble volume fraction below 0.1 and a bubble diameter less than 1 mm is
identified as sparse bubbly flow; otherwise, it is the dense bubbly flow. As with the bubble
velocity, in case of small bubble velocity, the flow pattern may be identified as sparse
bubbly flow. However, in practice, there is no absolute criterion to distinguish sparse
bubbly flow from dense bubbly flow due to the influence caused by various factors, such
as pipe diameter and the relative volume fraction, diameter and velocity of the bubbles. In
addition, in some cases, the dense bubbly flow can hardly be distinguished from slug flow
by visual observation, which can be effectively solved by the model proposed in this study.
When slug flow occurs in a vertical pipeline, the top phase boundary of the gas phase
is usually arc-shaped. Thus, the slug flow in the vertical pipeline is sometimes referred
to as plug flow, which is characterized by a large volume of gas phase gathered to form
a gas slug. Gas slug and fluid in the liquid phase alternately appear in the pipeline. In
industrial production, this flow pattern often produces a strong vibration in pipelines or
related equipment [7,8], reducing its service life and increasing production costs. Therefore,
accurate and efficient identification of slug flow has engineering significance. Annular flow
generally occurs when the gas flow rate is large. The gas phase occupies the main body
in the pipeline, and the liquid phase will be forced to fit on the inner wall of the pipeline
to form a circular liquid film. Figure 8 shows the representative morphology of each flow
pattern. In all image data, each image represents one of the flow patterns.

Table 2. Statistics of flow pattern datasets.

Classification Original Dataset Training Dataset Validation Dataset

Annular flow 807 565 242
Sparse bubbly flow 818 573 245
Dense bubbly flow 681 477 204

Slug flow 1216 851 365
Total 3522 2466 1056
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Although gas–liquid two-phase flow has a variety of flow patterns, there are also
many similar features among the various patterns, which makes the flow pattern difficult
to identify. If the flow pattern image is observed by the human eye to determine the type of
flow pattern, it will be affected by human subjective ideas, especially when various flow
patterns contain these similar features. This method is inefficient. Figure 9 shows similar
features of different flow patterns. The red frame line represents high-density bubbles.
Notably, both dense bubbly flow and slug flow have this feature. Therefore, when this
feature appears in a large area, it will increase the difficulty of judging dense bubbly flow
and slug flow. The slug part of slug flow, as shown in the green frame line, the vertical
phase interface and the liquid film of the annular flow are also easily confused. When the
slug length in the slug flow is relatively large, it is difficult to distinguish between slug flow
and annular flow.
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The neural network is in an underfitting state at the beginning of training. For
certain practical tasks, the collection of datasets for training may be difficult, so there are
insufficient data to help the neural network improve its ability to learn. Data augmentation
technology can generate different data by fine-tuning the data, such as rotation, flipping,
shape reshaping and masking. Strictly, the number of data samples does not increase, but
because the data augmentation is random to each sample, the same original image data
may exhibit different forms when entering the neural network, which indirectly increases
the diversity of data features. In this study, a large amount of image data is generated by
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using the single sample data augmentation method of supervised learning. For the samples
in the training set, the torchvision.transforms toolkit module in the PyTorch framework is
introduced, and the RandomResizedCrop function is employed to randomly crop the image
samples. Then, the cropped area image is scaled to a size of 224 × 224 × 3 by interpolation
mapping. In this way, standard image data suitable for the model are generated. After
adding the horizontal flip data augmentation operation, using the RandomFlip function,
the value of flip_prob is set to 0.5. When the data are input into the model, there is a
50% probability that they will be horizontally flipped into new image data. Figure 10
shows the possible data augmentation pipeline in the training set. After conducting data
augmentation on the dataset, the learning performance of the model is improved, and the
generalization ability of the model identification is enhanced.
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It should be noted that the collection of the dataset is not limited to the images being
easily identified by the visual identification, but also images characterized by fuzzy features.
In practice, however, the human subjective consciousness is able to classify the images with
clear features into a certain flow pattern, and the discrimination of flow patterns for images
with fuzzy features is often inefficient. In the present study, these images are also identified
as one of the four flow patterns in the original data presentation. For instance, the captured
slug flow images which have no clear gas–liquid interface or observable complete gas slug
are indeed captured when the segmental slug flow phenomenon occurs in the pipeline.
Considering the practical situation, the images with fuzzy features are also included in the
dataset, which are assigned with lower weights when updating the model. Therefore, the
flow pattern identification model proposed in this study cannot only identify specific flow
patterns in batch and effectively, but also focuses on the fuzzy features corresponding to
each flow pattern quantitatively as much as possible to improve the engineering values of
the model. Specifically in the case of images being not discriminated by visual observation,
the proposed model would give the most likely result based on deep learning.

3.2. Model Training

In the research of this study, a CNN model with a double attention mechanism module
is constructed. To confirm that the identification performance of CBAM-ECA-ResNet50
is improved compared with that before the improvement, the new model CBAM-ECA-
ResNet50 and the original model ResNet50 are used to train the prebuilt dataset. The
parameter settings in the model are shown in Table 3. The optimizer is set to SGDM. To
make the training process converge at a faster rate with greater stability, the momentum is
set to 0.9. The weight decay (L2 regularization factor) is set to 0.0001. The purpose is to
adjust the influence of model complexity on the loss function, effectively limit the range
of network parameters and prevent the occurrence of model overfitting by penalizing
the larger weight in the learning process. The initial learning rate is set to 0.1, and the
learning rate is attenuated. Starting from the training starting point, every 30 epochs, the
learning rate is attenuated to 0.1 times the original. The maximum number of epochs is 100
during training. The interpreter is Python 3.9 (Python Software Foundation, Amsterdam,
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Netherlands), and the PyTorch version is 1.10.0 (FAIR, Palo Alto, CA, USA). The device
model used in the experiment is a single NVIDIA GeForce RTX3050 laptop GPU, VRAM
4G. In this study, the batch size of the model is 32.

Table 3. Setting of model training parameters.

Parameters

Optimizer SGDM
Momentum 0.9

Weight decay 0.0001
Initial learning rate 0.1

Learning rate decay step 30/60/90 (Epoch)
Decay rate 0.1
Batch size 32
Max epoch 100

3.3. Results and Model Performance Analysis

Since the proposed model is based on the classical model ResNet50, it is the most
intuitive and convincing model to compare the performance of the improved model CBAM-
ECA-ResNet50 with the original model. Figure 11 shows the change curve of the identifi-
cation accuracy of CBAM-ECA-ResNet50 and ResNet50 on the validation set. Figure 12
shows the degree to which CBAM-ECA-ResNet50 and ResNet50 reduce the loss value of
the validation set. These models have a common trend. After 30 epochs, the changes in
accuracy and loss decline are more stable because at 31 epochs, the first attenuation of the
learning rate occurs. The magnitude of each update parameter of the model begins to de-
cline, which makes the process of model learning converge at a faster rate. While the weight
parameters of the model are updated to the optimal weight at a faster speed, the weight
update error caused by the large learning rate is avoided. During the training process of
the model, we saved a set of weight parameters with the best identification effect of each
model on the validation set. The identification accuracy of the original model ResNet50
for gas–liquid two-phase flow pattern image data is 98.96%. The proposed CBAM-ECA-
ResNet50 increased the identification accuracy by 0.66% to 99.62%. The floating area of
the accuracy is also higher than that of the ResNet50 model. CBAM-ECA-ResNet50 has a
lower loss value of 0.05197 when identifying the validation set data. Compared with the
original model, the loss value is reduced by 0.04927, which also shows that fewer images are
misidentified. Higher identification accuracy and lower loss value provide cross-validation
and data support for the proposed model with higher performance.
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Since the two attention mechanism modules introduced in this study are plug and
play, in theory, the positions of the attention mechanism can be exchanged with each other.
Therefore, to verify the unique efficiency of the performance when the attention mechanism
module is inserted into two specific positions, we use the CBAM and ECA module as the
core to exchange the position order of the attention mechanism module. The number of
attention mechanism modules changes, and multiple sets of different models with attention
mechanism modules are constructed. The identification performance of these models
for gas–liquid two-phase flow pattern image datasets was compared. Table 4 shows the
simplified structure of the comparison model and describes the location and number of
attention mechanism modules that were inserted.

The role of the attention mechanism is to attach a set of better weights to the existing
features, thereby enhancing the features to a certain extent so that the model can learn
better weight parameters. Therefore, in theory, the identification performance will improve
after the attention mechanism module is introduced into the model. Even if the effect is
not improved, it should not deteriorate. However, the calculation process of the neural
network is a “black box” concept. The introduction of the attention mechanism may render
the extracted feature weights too general and cannot be implemented on specific features,
resulting in worse model performance. The position and number of attention mechanism
modules may affect the identification effect of the model. In the comparative experiment
of this study, Table 5 and Figure 13 show the identification effect of all the comparison
models on the overall data of the validation set. In general, with the exception of CBAM-
ECA-ResNet50, the identification accuracy of the other models with the CBAM decreased.
However, the introduction of the ECA module improved the identification performance of
the model in most cases.
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Table 4. Comparative models of attention modules in different positions.

Model Name Number of Attention Modules Simplified Structure of the Model

ECA-CBAM-Resnet50 2
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ResNet50 224 32 2967 0.10124 98.96 

(↑) represents an increase in accuracy. (↓) represents a decrease in accuracy. 
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Figure 13. Identification accuracy of different models. 

This study inserts attention modules at two specific positions in the ResNet50 model. 

However, the number of input channels at these two positions is different. The input chan-

nel at the former position is 64 and that at the latter position is 2048. The two introduced 

attention mechanism modules have the function of further optimizing features in the 

channel dimension. However, the difference is that ECA can perform cross-channel infor-

mation interaction on the channel dimension. Therefore, in theory, the ECA module can 

have a stronger channel feature information extraction function than CBAM. An analysis 

of the results in Table 5 and Figure 13 concluded that the identification effect of ResNet50-

ECA is better than that of ECA-ResNet50 and ResNet50-CBAM and that the identification 

accuracy reaches 99.34%. This result further verifies that the ECA module will improve 

the performance of the model when it is inserted into a position with a larger number of 

input channels. In the same position with many channels, the ECA module improves the 

performance of the model more than CBAM. The influence of CBAM in different positions 
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Table 5. Relevant parameters and identification accuracy of the model.

Models Image Size Batch Size Memory/Mb Loss Validation
Accuracy/%

CBAM-ECA-ResNet50 224 32 3014 0.05197 99.62 (↑)
ECA-CBAM-ResNet50 224 32 2993 0.11292 98.48 (↓)

CBAM-CBAM-ResNet50 224 32 3020 0.11136 98.48 (↓)
ECA-ECA-ResNet50 224 32 2988 0.06250 99.43 (↑)

CBAM-ResNet50 224 32 3018 0.09436 98.67 (↓)
ECA-ResNet50 224 32 2992 0.08481 99.15 (↑)

ResNet50-CBAM 224 32 2969 0.09603 98.67 (↓)
ResNet50-ECA 224 32 2963 0.06239 99.34 (↑)

ResNet50 224 32 2967 0.10124 98.96

(↑) represents an increase in accuracy. (↓) represents a decrease in accuracy.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 16 of 25 
 

 

Resnet50-ECA 1 

st
a

g
e1

st
a

g
e2

st
a

g
e3

st
a

g
e4

E
C

A

G
lo

b
a

l 
a

v
er

a
g

e
 

p
o

o
l

M
a
x
p

o
o
l

· · · · · · · · · · · ·

 

Table 5. Relevant parameters and identification accuracy of the model. 

Models Image size Batch size Memory/Mb Loss 
Validation  

accuracy/% 

CBAM-ECA-ResNet50 224 32 3014 0.05197 99.62(↑) 

ECA-CBAM-ResNet50 224 32 2993 0.11292 98.48(↓) 

CBAM-CBAM-ResNet50 224 32 3020 0.11136 98.48(↓) 

ECA-ECA-ResNet50 224 32 2988 0.06250 99.43(↑) 

CBAM-ResNet50 224 32 3018 0.09436 98.67(↓) 

ECA-ResNet50 224 32 2992 0.08481 99.15(↑) 

ResNet50-CBAM 224 32 2969 0.09603 98.67(↓) 

ResNet50-ECA 224 32 2963 0.06239 99.34(↑) 

ResNet50 224 32 2967 0.10124 98.96 

(↑) represents an increase in accuracy. (↓) represents a decrease in accuracy. 

97.8

98

98.2

98.4

98.6

98.8

99

99.2

99.4

99.6

99.8

CBAM-ECA-ResNet50 ECA-CBAM-ResNet50 CBAM-CBAM-ResNet50

ECA-ECA-ResNet50 CBAM-ResNet50 ECA-ResNet50

ResNet50-CBAM ResNet50-ECA ResNet50

A
cc

u
ra

cy
/%

 

Figure 13. Identification accuracy of different models. 

This study inserts attention modules at two specific positions in the ResNet50 model. 

However, the number of input channels at these two positions is different. The input chan-

nel at the former position is 64 and that at the latter position is 2048. The two introduced 

attention mechanism modules have the function of further optimizing features in the 

channel dimension. However, the difference is that ECA can perform cross-channel infor-

mation interaction on the channel dimension. Therefore, in theory, the ECA module can 

have a stronger channel feature information extraction function than CBAM. An analysis 

of the results in Table 5 and Figure 13 concluded that the identification effect of ResNet50-

ECA is better than that of ECA-ResNet50 and ResNet50-CBAM and that the identification 

accuracy reaches 99.34%. This result further verifies that the ECA module will improve 

the performance of the model when it is inserted into a position with a larger number of 

input channels. In the same position with many channels, the ECA module improves the 

performance of the model more than CBAM. The influence of CBAM in different positions 

Figure 13. Identification accuracy of different models.

This study inserts attention modules at two specific positions in the ResNet50 model.
However, the number of input channels at these two positions is different. The input chan-
nel at the former position is 64 and that at the latter position is 2048. The two introduced
attention mechanism modules have the function of further optimizing features in the chan-
nel dimension. However, the difference is that ECA can perform cross-channel information
interaction on the channel dimension. Therefore, in theory, the ECA module can have
a stronger channel feature information extraction function than CBAM. An analysis of
the results in Table 5 and Figure 13 concluded that the identification effect of ResNet50-
ECA is better than that of ECA-ResNet50 and ResNet50-CBAM and that the identification
accuracy reaches 99.34%. This result further verifies that the ECA module will improve
the performance of the model when it is inserted into a position with a larger number of
input channels. In the same position with many channels, the ECA module improves the
performance of the model more than CBAM. The influence of CBAM in different positions
and different combinations on the performance of the model is unstable. However, under
the condition that the ECA module is introduced at the latter position of the original model,
the second attention module is introduced. The performance of CBAM-ECA-ResNet50 is
better than that of ECA-ECA-ResNet50, and the identification accuracy is improved by
0.19%. This phenomenon shows that the channel dimension carries less feature information
when the number of input channels is low. On the basis of ResNet50-ECA, the information
interaction of the ECA module at low channel number positions has less influence on the
performance improvement of the model in this experiment than the CBAM. Comparing all
the experimental results, the identification accuracy of four combined models, which are
CBAM-ECA-ResNet50, ECA-ECA-ResNet50, ECA-ResNet50 and ResNet50-ECA, is higher
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than that of the original model ResNet50. A common feature is that they all introduce the
ECA module. However, after comparing ECA-CBAM-ResNet50, ECA-ECA-ResNet50 and
ECA-ResNet50, it is concluded that only the performance of the ECA-CBAM-ResNet50
model is weaker than that of the original model ResNet50, and the identification accuracy is
reduced by 0.48%. This finding shows that the feature extraction process of the CBAM in the
latter position does not play a greater role and verifies that the ECA module performs more
efficient weight optimization on the input features of the large channel in the latter position.
Therefore, the combination and arrangement of attention in CBAM-ECA-ResNet50 is the
best in the comparative experiment.

The role of the confusion matrix is different from the overall identification accuracy.
The confusion matrix lists the prediction categories and error categories in the form of
tables and specifically analyzes the identification of each type of image data. The matrix
provides a more specific basis for discussing the identification results effect of the model.
For the four labels, namely, annular flow (AF), sparse bubbly flow (SBF), dense bubbly flow
(DBF) and slug flow (SF), the respective and average (AVG) precision, recall and F1 score
are introduced, which provides a reference for evaluating the identification effect of the
model on each class. Figure 14 shows the identification effect of the comparison model on
the image data of the gas–liquid two-phase flow. The identification effect can be analyzed
from the confusion matrix results:

(1) Figure 14a–i show that all models correctly identify sparse bubbly flow. Table 6 shows
that the precision, recall and F1 score of all models for sparse bubbly flow are 100%.
The characteristics of sparse bubbly flow are the most obvious compared to other
flow patterns.

(2) In annular flow, one image is often mistakenly identified as slug flow. There are many
bubbles in this annular flow image, so a similar phase interface appears in slug flow.
However, both CBAM-ECA-ResNet50 and ECA-ECA-ResNet50 correctly classify this
difficult annular flow image data, and the recall reached 100%. This finding shows
that these two models enhance the process of feature extraction and improve the
performance of model identification due to the introduction of an attention mechanism
and realize the identification and classification of images with higher difficulty.

(3) In contrast experiments, the error classification results are mostly concentrated in slug
flow and dense bubbly flow because the slug flow in the dataset has different gas
slug sizes and the image may be filled with foggy bubbles of different areas. These
results are very similar to the characteristics of dense bubbly flow. The results of
Figure 14a show that CBAM-ECA-ResNet50 only misclassifies slug flow and that
the recall of slug flow is 98.90%. The other three types of image data are correctly
classified, and the recall is 100%. Among the 365 slug flow images, only one image is
misclassified as annular flow. The precision of CBAM-ECA-ResNet50 for annular flow
is 99.59%, possibly because the gas slug in this slug flow image is too large, resulting
in an increase in the void fraction of the pipeline in the instantaneous state and the
formation of a long liquid film on the pipeline wall. Thus, the image features are
similar to annular flow. In addition, three slug flow images were misclassified as
dense bubbly flow. The classification results show that CBAM-ECA-ResNet50 has the
best identification performance of gas–liquid two-phase flow pattern images in the
comparison model.

(4) Precision, recall and F1 score are important evaluation indicators for the model to
identify each label datum. The precision, recall and F1 score of ResNet50-CBAM are
the lowest: 97.64%, 98.35% and 97.95%, respectively. The precision, recall and F1 score
of CBAM-ECA-ResNet50 are the highest: 99.54%, 98.90% and 99.63%, respectively. In
a comprehensive comparison, CBAM-ECA-ResNet50, due to the introduction of the
double attention modules, amplifies the important information in the feature map so
that the iterative learning process of the model has been further optimized. Both the
identification effect of the overall sample and the average classification effect index of
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specific categories are enhanced. The model has the best comprehensive performance
in the comparison model.

Table 6. Precision, recall and F1 score of the models.

Models
Precision/% Recall/% F1 Score/%

AF SBF DBF SF AVG AF SBF DBF SF AVG AF SBF DBF SF AVG

CBAM-ECA-ResNet50 99.59 100 98.55 100 99.54 100 100 100 98.90 99.73 99.79 100 99.27 99.45 99.63
ECA-CBAM-ResNet50 98.77 100 97.06 98.07 98.48 99.59 100 97.06 97.53 98.55 99.18 100 97.06 97.80 98.51

CBAM-CBAM-ResNet50 99.59 100 95.26 98.61 98.37 99.17 100 98.53 96.99 98.67 99.38 100 96.87 97.80 98.51
ECA-ECA-ResNet50 99.59 100 98.07 99.72 99.35 100 100 99.51 98.63 99.54 99.79 100 98.78 99.17 99.44

CBAM-ResNet50 100 100 94.01 99.72 98.43 99.59 100 100 96.44 99.01 99.79 100 96.91 98.05 98.69
ECA-ResNet50 99.59 100 97.13 99.44 99.04 99.59 100 99.51 98.08 99.30 99.59 100 98.31 98.76 99.16

ResNet50-CBAM 99.59 100 91.82 99.14 97.64 99.59 100 99.02 94.79 98.35 99.59 100 95.28 96.92 97.95
ResNet50-ECA 99.59 100 98.07 99.45 99.28 99.59 100 99.51 98.63 99.43 99.59 100 98.78 99.04 99.35

ResNet50 100 100 96.19 99.17 98.84 99.59 100 99.02 97.81 99.11 99.79 100 97.58 98.49 98.97

Precision = TP/(TP + FP). Recall = TP/(TP + FN). F1 score = 2 × Precision × Recall/(Precision + Recall). TP, true
positive; FP, false positive; TN, true negative; FN, false negative.
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Figure 14. Flow pattern classification results of different models. (a) Classification on results of
CBAM-ECA-ResNet50; (b) classification on results of ECA-CBAM- ResNet50; (c) classification on
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results of CBAM-CBAM-ResNet50; (d) classification on results of ECA-ECA-ResNet50; (e) classifica-
tion on results of CBAM-ResNet50; (f) classification on results of ECA-ResNet50; (g) classification on
results of ResNet50-CBAM; (h) classification on results of ResNet50-ECA; (i) classification on results
of ResNet50.

Presently, a variety of attention modules rely on feature information in the channel
dimension to optimize the weight parameters. In the process of forward propagation of
image data, the number of feature map channels often changes. A larger number of channels
means that more feature information is carried. Therefore, the attention mechanism module
that optimizes the feature parameters in the channel dimension often plays a greater role
in the position of a large channel number, which can more efficiently improve the overall
performance of the model. We insert the lightweight attention module of channel attention
evolution and an attention module of transformer architecture style into the latter position
of the model, that is, the position with 2048 channels. In addition, we compare the impact
on model performance and the change in model complexity. The complexity of the models
and modules can be expressed by the parameter quantity and flops.

The ECA module in CBAM-ECA-ResNet50 was replaced with the SE, BAM, Shuffle
and CoT modules. Table 7 shows the parameters of the model, the overall complexity of
the model and the identification effect. Tables 8 and 9 show the parameter quantity and
flops for each part of the model. In different models, with the exception of the attention
module, the complexity is the same. Most of the parameters are concentrated in four
stages, and the number of parameters of the four stages increases in turn. The flops of the
four stages also accounted this increase. Flops gradually increased from stage 1 to stage 3.
In stage 4, although the number of channels in the feature map increases, the number
of bottlenecks is only 3. The size of the feature map is 7 × 7, so the flops are reduced.
In the 5 comparison models, the same input shape is determined to be 224 × 224 × 3,
and the training parameter batch size is 32. ECA, SE, BAM and shuffle are lightweight
attention mechanism modules, and the corresponding model size and flops are not very
different. Compared with the original model ResNet50, the accuracy of the validation set
of CBAM-BAM-ResNet50 and CBAM-Shuffle-ResNet50 is 97.92% and 98.67%, respectively,
indicating that the BAM and shuffle attention module do not learn better weight parameters
in the latter position. This results in reduced model performance and lower identification
accuracy than the original model ResNet50. The identification accuracy of the validation
set of CBAM-SE-ResNet50 is 99.43%, which is 0.47% higher than that of the original model.
The SE attention module increases the channel weight of the input feature map and uses
the full connection layer to extract the feature information in the channel dimension. Thus,
the number of parameter quantities and flops are increased, reaching 24.045 M and 4.141 G,
respectively. However, the increase is not large. The parameter quantity of the CBAM
and SE modules accounted for 2.2%, and flops accounted for 0.386%. The ECA module
uses a 1D convolutional layer instead of a fully connected layer to avoid the side effects
of dimension reduction on channel attention. Adaptive methods are used to determine
the size of the convolution kernel, which further improves the identification accuracy of
CBAM-ECA-ResNet50, reaching 99.62%, which is 0.19% higher than that of CBAM-SE-
ResNet50. Compared with CBAM-SE-ResNet50, the model size is reduced by 0.524 M, and
flops are reduced by 0.001.

The CBAM-CoT-ResNet50 model introduces the CoT attention module. Due to the
encoder process in the CoT module, the complexity of the model is greatly increased. The
model size and flops reach 60.25 M and 5.94 G, respectively. The parameter quantity and
flops of the CBAM and CoT module accounted for 60.969% and 30.556%, respectively.
Although the complexity of the model greatly changed after the introduction of the CoT
module, the CoT module did not achieve better performance due to the small amount of
training data. The identification accuracy rate only reached 99.15%. The model performance
was significantly weaker than that of CBAM-SE-ResNet50 and CBAM-ECA-ResNet50. If the
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amount of data is increased on the basis of existing conditions, the CBAM-CoT-ResNet50
model may have better identification results. A comprehensive comparison shows that
under the existing experimental conditions, CBAM-ECA-ResNet50 has a relatively low
model complexity and stronger performance in the gas–liquid two-phase flow pattern
identification process.

Table 7. Parameters and results of different attention combinations.

Models Input Shape Batch Size Model Size Flops Validation
Accuracy/%

CBAM-ECA-ResNet50 (224, 224, 3) 32 23.521 M 4.140 G 99.62 (↑)
CBAM-SE-ResNet50 (224, 224, 3) 32 24.045 M 4.141 G 99.43 (↑)

CBAM-BAM-ResNet50 (224, 224, 3) 32 24.787 M 4.159 G 97.92 (↓)
CBAM-Shuffle-ResNet50 (224, 224, 3) 32 23.521 M 4.140 G 98.67 (↓)

CBAM-CoT-ResNet50 (224, 224, 3) 32 60.250 M 5.940 G 99.15 (↑)
(↑) represents an increase in accuracy. (↓) represents a decrease in accuracy.

Table 8. Parameter quantity and overall proportion of each part of the different models.

Models

Parameter Quantity and Proportion

Conv + Max
Pooling

Conv
Stage 1

Conv
Stage 2

Conv
Stage 3

Conv
Stage 4

Attention
Modules GAP + FC

CBAM-ECA-ResNet50
0.009 M 0.216 M 1.220 M 7.098 M 14.965 M 0.005 M 0.008 M
0.038% 0.918% 5.187% 30.177% 63.624% 0.021% 0.034%

CBAM-SE-ResNet50
0.009 M 0.216 M 1.220 M 7.098 M 14.965 M 0.529 M 0.008 M
0.037% 0.898% 5.074% 29.520% 62.237% 2.200% 0.033%

CBAM-BAM-ResNet50
0.009 M 0.216 M 1.220 M 7.098 M 14.965 M 1.271 M 0.008 M
0.036% 0.871% 4.922% 28.636% 60.374% 5.128% 0.032%

CBAM-Shuffle-
ResNet50

0.009 M 0.216 M 1.220 M 7.098 M 14.965 M 0.005 M 0.008 M
0.038% 0.918% 5.187% 30.177% 63.624% 0.021% 0.034%

CBAM-CoT-ResNet50
0.009 M 0.216 M 1.22 M 7.098 M 14.965 M 36.734 M 0.008 M
0.015% 0.359% 2.025% 11.781% 24.838% 60.969% 0.013%

Table 9. Flops and overall proportion of each part of different models.

Models

Flops and Proportion

Conv + Max
Pooling

Conv
Stage 1

Conv
Stage 2

Conv
Stage 3

Conv
Stage 4

Attention
Modules GAP + FC

CBAM-ECA-ResNet50
0.122 G 0.680 G 1.037 G 1.471 G 0.811 G 0.015 G 0.004 G
2.947% 16.425% 25.048% 35.531% 19.589% 0.362% 0.097%

CBAM-SE-ResNet50
0.122 G 0.680 G 1.037 G 1.471 G 0.811 G 0.016 G 0.004 G
2.946% 16.421% 25.042% 35.523% 19.585% 0.386% 0.097%

CBAM-BAM-ResNet50
0.122 G 0.680 G 1.037 G 1.471 G 0.811 G 0.034 G 0.004 G
2.933% 16.350% 24.934% 35.369% 19.500% 0.818% 0.096%

CBAM-Shuffle-
ResNet50

0.122 G 0.680 G 1.037 G 1.471 G 0.811 G 0.015 G 0.004 G
2.947% 16.425% 25.048% 35.531% 19.589% 0.362% 0.097%

CBAM-CoT-ResNet50
0.122 G 0.680 G 1.037 G 1.471 G 0.811 G 1.815 G 0.004 G
2.054% 11.448% 17.458% 24.764% 13.653% 30.556% 0.067%

3.4. Applicability Analysis

In this study, all the images used for the modeling of the flow pattern identification are
all captured under the same illumination; as a result, the flow conditions and illumination
are approximately the same. However, in case of different conditions, the proposed model
may still be applicable or the applicability may be weakened to some extent, which can be
improved by some existing techniques. Specifically, the situation beyond this study can be
determined as the following two scenarios.
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Scenario 1: The images used for flow pattern identification are the same and the
illumination are different. In this case, the information associated with the interface
between gas and liquid is affected to some extent by the illumination, and in the proposed
model, this kind of information is critical for flow pattern identification. As a result, the
accuracy of the proposed model may be affected by poor illumination due to the loss of
some interface information. However, this issue can be solved satisfactorily by increasing
the training dataset.

Scenario 2: The images and illumination used for the flow pattern identification are
different from the dataset in this study. The identification capacity of the proposed model
may be greatly weakened, which can be rectified by re-training and learning from the newly
added image dataset to get a more adaptive and targeted flow pattern identification model.

Nevertheless, the above-mentioned issues can be solved as much as possible by taking
some measures. For instance, the size of the dataset can be increased by adding data with
different illumination and other widely varying data. In addition, other data enhancement
methods can be integrated to increase the diversity of the data. In most cases, the models
trained by such larger and more stylized datasets would be characterized by stronger
generalization and robustness.

4. Conclusions

Based on the high efficiency of convolutional neural networks in the field of image
recognition, this study uses the classical convolutional neural network ResNet50 as the
basic architecture and introduces two attention mechanism modules. A more efficient
intelligent identification method of the gas–liquid two-phase flow pattern is proposed. The
CBAM and ECA mechanism module are added to two specific positions in ResNet50, and
the number of neurons in the final fully connected layer is changed to four, corresponding
to the four flow patterns in this research task. The effectiveness of the newly proposed
CBAM-ECA-ResNet50 is verified by a dataset containing 3522 pictures of gas–liquid two-
phase flow patterns in a vertical pipeline. To improve the identification accuracy and
generalization ability of the model, data augmentation is used for the image data of the
training set. Compared with the original ResNet50 model, the performance of the new
model is fully improved. Then, the influence of the order and number of two attention
mechanism modules, added to the specific position in ResNet50 on the performance of the
model, is analyzed. The involved performance indicators are accuracy, precision, recall
and F1 score. The other attention modules are introduced to compare the performance and
complexity of the model. The comprehensive results show that CBAM-ECA-ResNet50 has
better flow pattern identification performance.

This study provides guidance for the monitoring of multiphase flow in the process
of oil-gas exploitation and gathering in the deep and far sea. This study only focuses on
the identification of gas–liquid two-phase flow (actually, air–water two-phase flow) in
vertical pipelines. Future research will expand the scope of research directions; increase
the oil phase conditions; make the research conditions closer to the oil, gas and water
multiphase flow in actual industrial production; and continue to explore a more powerful
identification model to improve the ability of flow pattern identification in the production
process of oil-gas fields. A real-time online monitoring system is developed to provide
efficient guarantees for industrial production.
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